ETH Library Variational Integration of Hamiltonian Systems by Discontinuous Approximations Doctoral Thesis Author(s): Heimsch, Thomas Franz Publication date: 2015 Permanent link: https://doi.org/10.3929/ethz-a-010666504 Rights / license: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information, please consult the Terms of use. Diss. ETH NO. 22952 Variational Integration of Hamiltonian Systems by Discontinuous Approximations A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by Thomas Franz Heimsch MSc ETH Masch.-Ing., ETH Zurich born September 8, 1981 citizen of St.Gallen (Switzerland) accepted on the recommendation of Prof. Dr.-Ing. Dr.-Ing. habil. Ch. Glocker, examiner Prof. Dr. J. Dual, co-examiner 2015 Acknowledgements The work presented in this thesis has been carried out at the Center of Mechanics in the Department of Mechanical Engineering at the ETH Zurich. First of all, I want to express my gratitude to my supervisor Prof. Dr.-Ing. Dr.-Ing habil. Christoph Glocker for enabling this thesis and his unconditional support with amazing patience. As a student of Mechanical Engineering, I am still impressed about how I experienced the first encounter with him in the lecture Mechanics III at the beginning of the third semester of my studies. The clear explanations and the neat lecture notes motivated me to dive deeper into the subject, looking for further courses under his wing to attend. As a passionate tutor myself, I have always been interested in teaching and Professor Glocker has definitely set the standards. I always enjoyed our discussions on the rooftop on various topics, thank you for being a passionate, patient and benevolent supervisor. Next, I want to thank Prof. Dr.-Ing. Ju¨rg Dual for reviewing my thesis. I remember me and my twin brother summing up your lecture in the first two semesters in Mechanics in the evenings, appreciating it for being self contained and interesting. Your lecture was a big motivation for us at the beginning of our studies in Mechanical Engineering, thank you very much also for that. I express Georg, my office mate from Appenzell, full gratitude for the time spent to- gether. I really enjoyed our talks and to share the office with you. You are a great help and mental backup for me in so many aspects. There are also Adrian, Christian, Gabriel, Marc, Michael, Remco, Rolf, Simon and Ueli who have always been there for a word and more. Adrian, thanks for reviewing parts of my thesis. Patrick, thanks for cycling various Alpine passes together, this was the most important medicine I needed to stay on track and to release tension. This and also our common passion for hiking and cooking has helped me through such a lot. Another important person in touch with this thesis is Michael Mu¨hlebach who I su- pervised during his Master’s thesis. Michael, thank you for your effort, your ideas, your enthusiasm and your ingenuity. Your motivation has helped me back on my path to finish this thesis. You, Professor Glocker and Simon were the reason to engage myself with variational numerics. My parents, my twin brother Fabian, and Prisca, together with Putzi & Colombo. Needless to say what I feel for you. Without your emotional support, I would not have managed to hand in, nothing more to say, you were a big motivation for me to keep on trying. i ii Finally, I want to mention Peter, my friend and former neighbour who unfortunately passed away too early, and his loving parents, Arthur and Susanne Leuzinger. Peter, I learned a lot from you, thanks for being my friend and the time spent together at “happy place”. Abstract This thesis describes the variational integration of continuous Hamiltonian systems using discontinuous ansatz functions, i.e. the ansatz functions of the generalised coordinates and impulses are allowed to jump at the interval boundaries. The time domain of interest is split up into smaller intervals and the ansatz functions are required to be continuous functions of time, for example polynomials, within these intervals. It is shown that if the ansatz functions contain the analytical solution of the system, then the constructed integrator finds this analytical solution and the jumps vanish. If this is not the case, these jumps are helpful for a more accurate approximation of the analytical solution and one is still allowed to choose relatively large time intervals. This contradicts the Discrete Mechanics community, where usually constant ansatz functions are chosen such that also significantly smaller time intervals are needed. It is shown at the example of the harmonic oscillator that the presented integrator coincides with the solution of Discrete Mechanics if constant ansatz functions are chosen for both the generalised coordinates and the generalised impulses. The main advantage of using ansatz functions in time as approximations for the solution is that if a higher degree of accuracy is desired, one can simply increase the degree of the used ansatz functions and does not have to construct a completely new integrator. In contrary to Lagrangian mechanics, where the generalised velocities are given as the time derivative of the generalised coordinates, the Hamiltonian approach is pursued where the generalised coordinates and the generalised impulses can be modelled independently. The velocities are then obtained as a consequence of Fenchel’s equality that is used to expresstheLagrangianfunctionintermsofthegeneralisedcoordinatesandthegeneralised impulses. The equations of motion of a given system are obtained by Hamilton’s principle. The time integral of the Lagrangian function is made stationary and the Euler-Lagrange equa- tions - or Hamilton’s equations - are extracted. But instead of the discretisation of these equations of motion, it is favourable to discretise the principle itself and imposing station- arity with respect to the parameters of the ansatz functions. It is shown that regardless of the choice of the ansatz functions, the conserved quantities of the original system are also conserved by the numerical solution. Such conserved quantities may be the total energy of the system or in the presence of cyclic coordinates the associated generalised impulses. In a more general formulation, these impulses correspond to the Noether symmetries. This guarantees a meaningful approximation even for long simulation times. In the second part of the thesis, variational integration of constrained Hamiltonian iii iv systems is addressed. The geometric constraints are assumed to be bilateral, scleronomic and holonomic. The geometric constraint (on position level) induces a constraint on velocity level by derivative with respect to time. This induced constraint is incorporated intoHamilton’sprinciplebyusingaLagrangemultiplierwhereastheconstraintonposition level is required to be satisfied at the beginning of the time interval. The constraint on positionlevelisincorporatedbyitsvirtualworkusingthetimederivativeoftheconstraint impulse which represents the second Lagrange multiplier. At the end of the thesis, the oscillatory energy behaviour of the integrator, as well as the conservation of the generalised impulses in the sense of Noether due to symmetries in the Lagrangian are presented at specific examples. For the latter, the problem of planetary motion has been chosen to show the conservation of angular momentum in both Cartesian andpolarcoordinates. ForthevariationalintegrationofconstrainedHamiltoniansystems, three examples are given. The first one being a point mass in a gravitational field that is confined to an inclined plane. In this case, using polynomial ansatz functions, the integrator finds the analytical solution. The others example consists of an oscillatory system of two point masses connected by springs. A constraint on the two point masses is subsequently introduced. At last, the pendulum consisting of a point mass confined to a fixed length from the origin is presented. Zusammenfassung DievorliegendeDissertationbehandeltdienumerischeIntegrationvonzeitkontinuierlichen Hamilton’schen Systemen mit Ansatzfunktionen, welche Spru¨nge aufweisen k¨onnen. Zeit- kontinuierliche Systeme meint, dass in der Theorie sowohl die Lagen als auch die Impulse keineSpru¨ngeaufweisen,klassischeSt¨ossealsoausgeschlossensind.Dennochbew¨ahrtsich in der Numerik eben solche Spru¨nge im Orts- und Geschwindigkeitsverlauf zuzulassen und fu¨r den kontinuierlichen Teil des Verlaufs der entsprechenden Funktionen zum Beispiel Polynome in der Zeit als Ansatzfunktionen zu w¨ahlen. Ein langes Zeitintervall wird in mehrere kurze Intervalle aufgestu¨ckelt, an deren Grenzen die Ansatzfunktionen springen k¨onnen, sonst sind sie kontinuierlich. Kann durch die erw¨ahnten Ansatzfunktionen die (analytische) L¨osung des mechanischen Systems abgebildet werden, so liefert das numeri- sche Integrationsschema eben diese analytische L¨osung und dementsprechend treten auch keine Spru¨nge an den Intervallgrenzen auf. K¨onnen hingegen die Ansatzfunktionen die analytische L¨osung nicht abbilden, so wirken die erw¨ahnten Spru¨nge korrigierend auf die L¨osung des Integrators. Die Abweichung der numerischen von der analytischen L¨osung wird minimiert, aber man kann noch immer relativ grosse Zeitschritte fu¨r die kontinu- ierlichen Ansatzfunktionen w¨ahlen. Dies im Gegensatz zur Diskreten Mechanik, wo die Ansatzfunktionen in den Lagen als konstant angenommen und die Geschwindigkeiten u¨ber finite Differenzen der Lagen approximiert werden. Es braucht dementsprechend klei- nere Zeitschritte fu¨r eine genu¨gend genaue Approximation der L¨osung, welche dann auch springen muss. Es wird fu¨r den harmonischen Oszillator gezeigt, dass der beschriebene Integrator mit dem mittlerweile verbreiteten Diskreten Mechanik-Ansatz fu¨r die Wahl von konstanten Ansatzfunktionen der Lagen und Impulse identisch ist. Der wohl gr¨osste Vor- teil in der Verwendung von Ansatzfunktionen liegt darin, dass fu¨r einen Integrator von h¨oherer Genauigkeit lediglich Ans¨atze von h¨oherem Grad gew¨ahlt werden k¨onnen und nicht ein komplett neuer Integrator konstruiert werden muss. Statt der Mechanik basierend auf Lagrange wird der Hamilton’sche Ansatz bevorzugt. Dies hat den Vorteil, dass die Geschwindigkeiten nicht direkt von den Lagen im Sinne der zeitlichenAbleitungabh¨angen,sondernvondenImpulsen,welcheunabh¨angigvondenLa- gen als eigenst¨andige Ansatzfunktionen modelliert werden du¨rfen. Die Geschwindigkeiten erh¨alt man dann aus den Impulsen als Konsequenz der Fenchel-Gleichung. In der Theorie erh¨alt man die Bewegungsgleichungen eines mechanischen Systems, in- dem man das Zeitintegral der Lagrangefunktion station¨ar macht, was auch als das Prinzip von Hamilton bekannt ist. Anstatt die Bewegungsgleichungen zu diskretisieren, ist es bes- ser, direkt das Prinzip von Hamilton zu diskretisieren und Stationarit¨at bezu¨glich der v vi Parameter der Ansatzfunktionen zu fordern. Dies hat den Vorteil, dass unabh¨angig von der Diskretisierung die Erhaltungsgr¨ossen des mechanischen Systems auch in der Nume- rik zumindest nahezu erhalten werden. Solche Erhaltungsgr¨ossen k¨onnen Impulserhaltung bei zyklischen Koordinaten, allgemeiner sogenannte Noethersymmetrien, sein oder auch die Energie. Im zweiten Teil wird die variationelle Integration von mechanischen Systemen mit idea- len, zweiseitigen Bindungen aufgezeigt. Dabei wird die Bindung auf Lageebene zu Beginn des Zeitintervalls gefordert, und deren zeitliche Ableitung, also die induzierte Bindung auf Geschwindigkeitsebene, in das Prinzip von Hamilton mit einem Lagrange-Multiplikator einbezogen. Die Bindung auf Lageebene wird u¨ber die virtuelle Arbeit der Bindungskraft, welche als Zeitableitung eines Impulses zu verstehen ist, mit eingebaut. Zum Schluss der Arbeit werden Beispiele vorgestellt, welche die gefundenen Eigenschaf- ten des Integrators aufzeigen. Diese Eigenschaften sind n¨aherungsweise Energieerhaltung oder die Erhaltung der verallgemeinerten Impulse falls die Lagrange-Funktion Symme- trien hat. Als Beispiel fu¨r letzteres wurde das Kepler Problem der Planetenbewegung gew¨ahlt, um die Drallerhaltung sowohl in kartesischen Koordinaten als auch Polarkoor- dinaten aufzuzeigen. Fu¨r die variationelle Integration von gebundenen Hamilton’schen Systemen werden drei Beispiele vorgestellt. Contents 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Discrete Mechanics and Approximation by Ansatz Functions . . . . 2 1.2.2 Variational Integration of Constrained Systems . . . . . . . . . . . 3 1.3 Aim and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Some Preliminaries of Convex Analysis 7 2.1 Convex Sets and Convex Functions . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Normal Cones and Proximal Points . . . . . . . . . . . . . . . . . . . . . . 10 2.3 The Convex Conjugate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3.1 The Indicator and Support Function of Convex Cones . . . . . . . . 16 2.4 Some Remarks on Duality and Orthogonal Cones . . . . . . . . . . . . . . 16 3 From the Virtual Work to the Hamiltonian Formalism 19 3.1 The Concept of Virtual Work and Hamilton’s principle . . . . . . . . . . . 19 3.2 Some Properties of Lagrangian Mechanics . . . . . . . . . . . . . . . . . . 25 3.2.1 Cyclic Coordinates and Noether’s Theorem . . . . . . . . . . . . . . 25 3.2.2 Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2.3 Invariance of the Euler-Lagrange equations . . . . . . . . . . . . . . 30 3.3 From Hamilton’s Principle to Hamiltonian Mechanics . . . . . . . . . . . . 31 3.3.1 The Legendre Transformation of the Lagrangian . . . . . . . . . . . 32 3.3.2 A Variational Principle Leading to Hamilton’s Equations . . . . . . 34 4 Why Variational Integrators? - An Example 37 4.1 Example: The Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . 37 4.2 A Glance at Discrete Mechanics . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3 The Symplectic Euler Scheme and an Energy-like Invariant for the Har- monic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 Variational Integrators - Galerkin in Time 53 5.1 The Principle of Virtual Work in the Hamiltonian Context . . . . . . . . . 54 5.2 The Discretisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 vii
Description: