ebook img

Variational determination of approximate bright matter-wave soliton solutions in anisotropic traps PDF

1.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Variational determination of approximate bright matter-wave soliton solutions in anisotropic traps

Variationaldetermination ofapproximatebright matter-wavesolitonsolutions inanisotropictraps T. P. Billam, S. A. Wrathmall, and S. A. Gardiner Department of Physics, Durham University, Durham DH1 3LE, United Kingdom (Dated:January10,2012) We consider the ground state of an attractively-interacting atomic Bose-Einstein condensate in a prolate, cylindricallysymmetricharmonic trap. Ifatruequasi-one-dimensional limitisrealized, thenfor sufficiently weakaxialtrappingthisgroundstatetakestheformofabrightsolitonsolutionofthenonlinear Schro¨dinger equation. UsinganalyticvariationalandhighlyaccuratenumericalsolutionsoftheGross-Pitaevskiiequation 2 we systematically and quantitatively assess how soliton-like this ground state is, over a wide range of trap 1 andinteractionstrengths. Ouranalysisrevealsthattheregimeinwhichthegroundstateishighlysoliton-like 0 is significantly restricted, and occurs only for experimentally challenging trap anisotropies. This result, and 2 our broader identification of regimes in which the ground state is well-approximated by our simple analytic n variational solution, are relevant to a range of potential experiments involving attractively-interacting Bose- a Einsteincondensates. J 9 PACSnumbers: 03.75.Lm67.85.Bc ] s I. INTRODUCTION its own right, would be highly advantageous in experiments a seeking to probe quantum effects beyond the mean-field de- g scription[27–29],andpossiblytoexploittheeffectsofmacro- - Bright solitons are self-focusing, non-dispersive, particle- t scopic quantum superposition to enhance metrological pre- n like solitary waves occurring in integrable systems [1, 2]. cision [31, 32]. Similar concerns regardingadverse residual a They behave in a particle-like manner, emerging from mu- u 3Deffectsininterferometricprotocolspromptedarecentper- tualcollisionsintactexceptforshiftsintheirpositionandrel- q turbative study of residual 3D effects in highly anisotropic, ative phase. Bright soliton solutions of the one-dimensional . repulsively-interactingBECs[33]. t a nonlinearSchro¨dingerequation(NLSE)canbedescribedan- m alytically using the inverse scattering technique [3, 4] and The potential instability to collapse of attractively- are well-known in the context of focusing nonlinearities in interacting BECs [34–44] is the key obstacle to realizing - d optical fibers [4, 5]. Bright solitary matter-waves in an at- soliton-likebehaviorinaBEC.Previousstudiesofbrightsoli- n tractivelyinteractingatomicBose-Einsteincondensate(BEC) tarywavedynamics,usingvariationalandnumericalsolutions o representan intriguingalternativephysicalrealization [6–8]. of partially-quasi-1D GPEs [12, 13, 21, 45] [reductions of c In a mean-fielddescriptionan atomic BEC obeysthe Gross- the GPE to a 1D equation which retain some 3D character, [ Pitaevskii equation (GPE) [9], a three-dimensional NLSE. in contrast to the full quasi-1D limit] and the 3D GPE [16– 2 While in general non-integrable, in a homogeneous, quasi- 18, 34], have shown the collapse instability to be associated v one-dimensional(quasi-1D)limittheGPEreducestotheone- withnon-soliton-likebehavior. However,previousstudiesof 1 dimensionalNLSE,thussupportingbrightsolitons[10–15]. brightsolitarywavegroundstateshavefocusedonidentifying 4 thecriticalparametersatwhichcollapseoccurs. Approaches 8 Outside the quasi-1D limit the GPE continues to support 6 brightsolitarymatter-waves. Theseexhibitmanysoliton-like usedinthesestudiesincludepartially-quasi-1Dmethods[12], . variationalmethods[46]usingGaussian[10,34,47]andsoli- 1 characteristicsandhavebeenthesubjectofmuchexperimen- ton (sech) [34, 48] ansatzes, perturbative methods [49], and 1 tal [6–8] and theoretical [16–29] investigation. Both bright numericalsolutionstothe3DGPE[34,35,43,44,48]. Inthe 1 solitonsandbrightsolitarywavesareexcellentcandidatesfor 1 lattercase,thecollapsethresholdparametershavebeenexten- useinatominterferometry[30],astheircoherence,spatiallo- : sivelymappedoutforarangeoftrapgeometries[43,44]. v calization and soliton-like dynamicsoffer a metrologicalad- i vantagein,e.g.,thestudyofatom-surfaceinteractions[7,20]. Inthispaperweuseanalyticvariationalandhighlyaccurate X Towards this end, proposals to phase-coherently split bright numerical solutions of the stationary GPE to systematically r solitonsandbrightsolitarywavesusingascatteringpotential andquantitativelyassesshowsoliton-likethegroundstateof a [27–29]andaninternalstateinterferenceprotocol[18],andto anattractively-interactingBECinaprolate,cylindricallysym- formsolitonmolecules[26]havebeenexploredinthelitera- metricharmonictrapis,overawideregimeoftrapandinter- ture. However, while the dynamics and collisions of bright actionstrengths. Beginningwithpreviously-consideredvari- solitary waves have been explored in detail and have been ational ansatzes based on Gaussian [10, 34, 47] and soliton shown to be soliton-like in three-dimensional (3D) parame- [34,48]profiles,weobtainnew,analyticvariationalsolutions ter regimes [16–18], less attention has been directed at the fortheGPEgroundstate. Comparingthesoliton-ansatzvari- question of exactly how soliton-like the ground state of the ationalsolutiontohighlyaccuratenumericalsolutionsofthe systemis. Inparticular,theexperimentalfeasibilityofreach- stationaryGPE,whichwecalculateoveranextensiveparam- ingthequasi-1Dlimitofanattractively-interactingBEC,and eter space, gives a quantitative measure of how soliton-like hence obtaining a highly soliton-like ground state, remains the groundstate is. In the regimewhere the axialand radial an area lacking a thoroughquantitativeexploration. Obtain- trap strengths dominate over the interactions, we show that ing such a ground state, in addition to being interesting in theGaussianansatzvariationalsolutiongivesanexcellentap- 2 proximation to the true ground state for all anisotropies; in II. SYSTEMOVERVIEW thisregimethegroundstateisnotsoliton-like. Intheregime inwhichtheinteractionsdominateovertheaxial,butnotthe We consideraBECof N atomsofmassmand(attractive) radial, trap strength we demonstrate that the soliton-ansatz s-wave scattering length a < 0, held within a cylindrically s variationalsolutiondoesapproximatethetrue,highlysoliton- symmetric,prolate(theradialfrequencyω isgreaterthanthe like ground state. However, we show that the goodness of r axial frequency ω ) harmonic trap. The ground state is de- x theapproximationandtheextentofthisregime,whereitex- scribedbythestationaryGross-Pitaevskiiequation istsatall,ishighlyrestrictedbythecollapseinstability;even atlargeanisotropiesitoccupiesanarrowwindowadjacentto ~2 4πNa ~2 theregimewhereinteractionsbegintodominateoveralltrap 2+V(r) | s| ψ(r)2 λ ψ(r)=0, (1) strengths,leadingtonon-quasi-1D,non-soliton-likesolutions −2m∇ − m | | − " # and,ultimately,collapse. wherethetrappingpotentialV(r)=m[ω2x2/2+ω2(y2+z2)/2], x r Ourresultshavesubstantialpracticalvalueforexperiments λisarealeigenvalue,andtheGross-Pitaevskiiwavefunction usingattractively-interactingBECs;primarilytheydefinethe ψ(r) isnormalizedto one. Thisequationis generatedby the challengingexperimentalregimerequiredto realize a highly classicalfield Hamiltonian(throughthefunctionalderivative soliton-like ground state, which would be extremely useful δH[ψ]/δψ =λψ) ∗ to observe quantum effects beyond the mean-field descrip- tion such as macroscopic superposition of solitons [27–29]. ~2 We note that bright solitary wave experiments to date have H[ψ]= dr ψ(r)2+V(r)ψ(r)2 not reached this regime [6–8]. Secondarily, our quantita- 2m|∇ | | | Z " tive analysis of a wide parameter space provides a picture 2πNa ~2 of the ground state in a wide range of possible attractively- | s| ψ(r)4 . (2) − m | | interacting BEC experiments. In particular, it indicates the # regimes in which a full numerical solution of the 3D GPE Thisfunctionaloftheclassicalfieldψdescribesthetotalen- iswell-approximatedbyoneofouranalyticvariationalsolu- ergyperparticle,andthegroundstatesolutionminimizesthe tions,whicharesignificantlyeasierandlesstime-consuming valueofthisfunctional. todetermine. Whendealingwithvariationalansatzesforthegroundstate The remainder of the paper is structured as follows: Af- solution, we proceed by analytically minimizing an energy ter introducing the most general classical field Hamiltonian functional in the same form as Eq. (2) for a given ansatz. andstationaryGPEinSectionII,webeginbydiscussingthe Incontrast,highlyaccuratenumericalgroundstatesaremore quasi-1DlimitinSectionIII.InSectionIIIAwedefinethedi- convenientlyobtainedbysolvingastationaryGPEofthesame mensionlesstrapfrequencyγ;inthequasi-1Dlimitthisisthe formasEq.(1). onlyfreeparameter,andallourresultsareexpressedinterms of thisquantity. Similarly, ourvariationalansatzes aremoti- vatedbythelimitingbehaviorsofthesolutioninthequasi-1D case;inthiscasewedefinethemasGaussianandsolitonpro- III. QUASI-1DLIMIT files, parametrized by their axial lengths. In Sections IIIB and IIIC we find, analytically, the energy-minimizing axial A. Reductionto1Dandrescaling lengthsforeachansatzasafunctionofγ. Comparisonofthe resulting ansatz solutions to highly accurate numericalsolu- For sufficiently tight radial confinement (ω ω ), such tionsofthestationaryquasi-1DGPEallowsustodetermine, r ≫ x thattheatom-atominteractionsarenonethelessessentially3D in the quasi-1D limit, the regimes of low γ in which highly [a (~/mω )1/2]itisconventional[10–15]toassumeare- soliton-likegroundstates canberealized(SectionIIID).We s ≪ r ductiontoaquasi-1DstationaryGPE thenconsiderthe3DGPEinSectionIV.Thesystemthenhas a second free parameter in addition to γ; we choose this to ~2 ∂2 mω2x2 beκ, the(dimensionless)trapanisotropy,whichisdefinedin + x g Nψ(x)2 λ ψ(x)=0. (3) SectionIVA.InSectionsIVBtoIVEwedefine3DGaussian −2m∂x2 2 − 1D | | − " # andsolitonansatzes,adaptedfromtheirquasi-1Danalogsand each parametrized by an axial and a radial length, and find Typicallyψ(r)istakentobefactorizedintoψ(x)andtheradial theenergy-minimizinglengthsforeachansatz. Ingeneralthis harmonic ground state (mω /π~)1/2exp( mω [y2 + z2]/2~), r r requires only a very simple numerical procedure, and in the such that g = 2~ω a . Alternative fac−torizationsare also 1D r s | | limit of a waveguide-like trap can be expressed analytically possible, which lead to an effective 1D equation retaining (Section IVF). In Section IVG we comparethe ansatz solu- more3DcharacterthanEq.(3)[12,13,21,45];similarfactor- tionstohighlyaccuratenumericalsolutionsofthestationary izationshave also been introducedfor axially rotatingBECs 3DGPEand,inSectionIVHassessthepotentialforrealizing [50] and for quasi-2D BECs in oblate traps [51]. In the ab- trulysoliton-likegroundstates. Finally,SectionVcomprises sence of the axial harmonic confining potential (ω 0), x → theconclusions. thereexistexactbrightsolitonsolutionstoEq.(3)ofthegen- 3 eralform1 where the variational parameter, ℓ , quantifies the axial G 1 [x vt+C] length. In the trap-dominatedlimit (γ ), the true solu- 2b1x/2sech −2bx !eiv(x−vt)m/~eimg21DN2t/8~3eimv2t/2~eiD, Etioqn.(t7e)nydisetlodsa(GusaiunsgsiiadnenwtiittihesℓGfr=om1.ASpup→besntid∞tiuxtiAng)Eq.(8)into (4) whereb ~2/mg Nisalengthscalecharacterizingthesoli- x 1D γ 1 2 ton’sspat≡ialextent,visthesolitonvelocity,C isanarbitrary H1D(ℓG)= 4 ℓG2 + ℓ2 − (2πγ)1/2ℓ , (9) displacement,andDisanarbitraryphase.  G G keyThleinsgetffhescctaivlees:1tDheGaxroiasls-hPairtmaeovnsikciileenqgutahtiaoxn co(~n/taminωsx)t1w/2o, wℓ h.eSreetHti1nDgi∂sHnow/∂eℓxpr=es0serdevaesaalsfuthnacttitohneovfartihaetiaoxniaallelnenerggthy ≡ G 1D G and the soliton length bx. A mathematicallyconvenientway describedbyEq.(9)isminimizedwhenℓ isapositive,real G toexpressthesinglefreeparameterofEq.(3)isasthesquare solutiontothequarticequation oftheratioofthesetwolengthscales; ℓ b 2 ~ω ℓ4 + G 1=0. (10) γ x x . (5) G (2πγ)1/2 − ≡ a ≡ 4mω2a 2N2 x! r| s| The positive, real solution to this quartic is (see solution in This parametrization is achieved by working in “soliton AppendixB) units”; lengths are expressed in units of b and energies are x expressedinunitsofmg21DN2/~2. Thissystemcanbecodified χ(γ) 1/2 2 3/2 1/2 as~=m =g1DN =1,andyieldsthedimensionlessquasi-1D ℓG = 24/3(πγ)1/6 χ(γ) −1 −1 , (11) GPE (cid:2) (cid:3)  !   1 ∂2 + γ2x2 ψ(x)2 λ ψ(x)=0, (6) wherewehave,fornotationalconvenience,definedχtohave −2∂x2 2 −| | − γ-dependencesuchthat " # in which γ can be interpreted as a dimensionless trap fre- quency [15]. The corresponding classical field Hamiltonian 1024π2γ2 1/2 1/3 χ(γ)= 1+ 1+ is 27  !  H1D[ψ]= dx 12 ∂∂xψ(x)2+ γ22x2|ψ(x)|2− 12|ψ(x)|4 .  + 1 1+ 1024π2γ2 1/2 1/3. (12) Z " (cid:12)(cid:12)(cid:12) (cid:12)(cid:12)(cid:12) #(7)  − 27 !  [EqT.h(e6c)]hoaincdetohfeγcfloasrst(cid:12)(cid:12)ihcealsifineglld(cid:12)(cid:12)efHreaempilatroanmiaente[rEinq.th(7e)1]DcaGnPbEe   mostdirectlypicturedaschoosingtoholdinteractionstrength C. Variationalsolution:solitonansatz constant while varying the axial trap strength, parametrized by γ. Experimentally, however, any of ω , ω , a , and N Secondly,weconsiderasolitonansatz x r s may be varied in order to vary γ. In the case γ = 0 the ex- 1 x actgroundstatesolutionisasingle,stationarybrightsoliton: ψ(x)= sech , (13) ψ(x) = sech(x/2)/2. Inthefollowingsubsectionswedevelop 2ℓS1/2 2ℓS! analytic variational solutions ψ(x) for general γ. Compar- wherethevariationalparameter,ℓ ,againquantifiestheaxial ing these solutionsto highlyaccurate numericalsolutionsof S length. In the axially un-trappedlimit (γ 0), the true so- thequasi-1DGPE thengivesapictureofthebehaviorofthe → lution tends to a classical brightsoliton, as described by the groundstatewithγ. Furthermore,thesequasi-1Dvariational aboveansatzwithℓ = 1. Thevariationalenergyperparticle solutionsmotivatethelater3Dvariationalsolutionsandyield S isgivenby(usingidentitiesfromAppendixA) severalmathematicalexpressionswhichreappearinthemore complex3Dcalculations. π2γ2 1 1 H (ℓ )= ℓ2+ , (14) 1D S 6 S 4π2γ2ℓ2 − 2π2γ2ℓ  S S B. Variationalsolution:Gaussianansatz whichisminimizedwhen  WefirstconsidertheGaussianvariationalansatz ℓ4+ ℓS 1 =0. (15) 1/4 S 4π2γ2 − 4π2γ2 γ ψ(x)= πℓ2 e−γx2/2ℓG2, (8) Again,thisquarticcanbesolvedanalytically(seesolutionin  G   AppendixB)togivethepositive,realminimizingvalueofℓS; 1Equation(4)describessolutionsofunitnorm. Moregeneralsolitonsolu- χ(γ) 1/2 2 3/2 1/2 ℓ = 1 1 , (16) tions(B/2b1x/2)sech(B[x−vt+C]/2bx)eiv(x−vt)m/~eiB2mg21DN2t/8~3eimv2t/2~eiD S 21(cid:2)1/6(π(cid:3)γ)2/3  χ(γ)! −  −  ehraavlesnoolirtmonsBs(iamnudlteaffneecotuivsely.massη=B/4),asarisewhenconsideringsev- withχdefinedasinEq.(12).   4 1.0 ground state ψ0(x), and the corresponding ground state en- ℓ 0.8 (a) SGoaliutossnaannssaattzz,,ℓℓGS(cid:4)• mergetyricE1GDa,uussse-Hs earmpsieteudfuonspceticotnrasl;mtheisthiosdainsimapblaifisiesdovfesrsyimon- xialngth, 00..46 oisfethxeplpasineueddoisnpmecotrraeldmeteatihloidnuthseednfeoxrt3sDectciaolnc.ulSaetivoenrsa,lwquhaicnh- Ae l 0.2 tities are compared in Fig. 1(b–d): the variational minimum 0.0 energies H1D for each ansatz and the numericalgroundstate 0.01 energyE areshowninFig.1(b);therelativeerrorbetween 1D nalH1D 0.00 (b) 0.4 eHa1cDhaanndsaEtz1Din,dFeigfi.n1e(dc)a;sa∆nd=th(eHm1Da−ximE1uDm)/d|Eiff1Der|,einscsehboewtwnefeonr riatioergy,--00..0021 H′1D00..23 tahnedmthoestnaupmperoripcrailatgeraonusnadtzstwataevewfuavnecftuionnct(itohna,tewxipthrelsoswedesats∆a) Vaen-0.03 0.1 percentage of the maximum value of the numerically exact groundstate, ∆ψ = max(ψ ψ )/max(ψ ) [Fig. 1(d)]. -0.04 0.0 | Ansatz − 0| 0 All the shown computed quantities are insensitive to a dou- nal -1 (c) blingofthenumericalbasissizefrom500to1000states. ariatio∆g()10 -3 lenBtoatphptrhoexiGmaautisosniatnoatnhde seoxlaictotnsoalnustaiotznessopvreorvaidlearagneerxacnegle- vo -5 ofγ. In the regimeswhere the relativeerrorin the energy∆ iny,l becomes significantly lower than 10 9 in particular, the dif- rorerg -7 ferencebetweentheansatzsolutions−andnumericalsolutions rn Ee -9 becomes generally indistinguishable from numerical round- 3 off error. For the Gaussian ansatz the convergence to this x.%) (d) regime is noticeably slower than for the soliton ansatz [Fig. a( mψ 2 1(c)]. This effect is a consequenceof the parametrizationin d∆ zeψ, terms of γ and the corresponding“soliton units”: increasing alin 1 γ leadsnotonlyto tohighertrapstrength,butalsoto higher mri peakdensities ψ(x)2,andhenceastrongernonlineareffect. Norerro 0 Forlatercom| pari|sontothe3Dcase,itisusefultodefinea -12 -8 -4 0 4 8 12 benchmarkvalueoftherelativeerror∆thatindicatesexcellent log (γ) agreementbetweentheansatzandthenumericallyexactsolu- 10 tion. Such a definition, however,will varyaccordingto pur- pose.Asourobjectivesinthispaperrelatesignificantlytothe FIG.1.Comparisonofquasi-1Dvariationalandnumericalsolutions: (a) Energy-minimizing axial lengths ℓ (Gaussian ansatz, squares) shapeof the groundstate, thisformsthe basis of ourbench- G andℓ (solitonansatz,circles)forthequasi-1DGPE.(b)Minimum mark; a maximum deformation of the wavefunction below S variationalenergycomparedwiththenumericallycalculatedground 0.1%ofthepeakvalue[asmeasuredby∆ψinFig.1(d)]cor- state energy E (black line) for each ansatz: for low γ we show respondsverycloselyto∆< 10 5. Becausetherelativeerror 1D − wHe1Dsh(soowlidHs1′yDm=bolHs)1,Dw/γhi(chholtleonwdsstyom−bo1/ls2)4, washiγch→ten0d;sfotor 1h/ig2haγs ∆thesacthuorasteensatonsaabtzaciskginroapupnldicvaablulee,oafv≈al1u0e−o1fin∆rfeoguimroersdwerhseoref γ (H is equal to the energy expressed in the “harmonic uni→ts,”∞~=m1′D=ω =1). (c)Relativeerrorinthevariationalenergy, magnitude below this backgroundvalue thus corresponds to x an excellent match in shape between the ansatz and the nu- ∆=(H E )/E .(d)Normalizedmaximumdeformationofthe 1D− 1D 1D mericallyexactsolution. Withrespecttothisbenchmark,the best-fitting ansatz wavefunction ψ with respect to the numeri- Ansatz Gaussianansatzrepresentsanexcellentfitforlog (γ)>1.15, calgroundstateψ ,∆ψ=max(ψ ψ )/max(ψ ),expressedas 10 0 | Ansatz− 0| 0 whilethegroundstateishighlysoliton-like(thesolitonansatz a percentage. For clarity in (a,b) [(c)], every 16th [20th] datum is markedbyasymbol. representsanexcellentfit)forlog10(γ)<−0.95. D. Analysisandcomparisonto1Dnumericalsolutions IV. BRIGHTSOLITARYWAVEGROUNDSTATESIN3D Theenergy-minimizingaxiallengthsℓ andℓ ,definedby A. Rescalingtoeffective1Dsolitonunits G S Eq.(11)andEq.(16)respectively,areshownasafunctionof γ in Fig. 1(a). There is no collapse instability in the quasi- We now consider the cylindrically symmetric 3D Gross- 1DGPE, andsolutionsareobtainedforall(positive,real) γ. Pitaevskiiequation[Eq.(1)].Comparedtothequasi-1Deffec- Asintendedbythechosenformsoftheansatzes,thelimiting tiveGross-Pitaevskiiequation[Eq.(6)],three-dimensionality casesareℓ 1asγ andℓ 1asγ 0. Toeval- introducesan additionalrelevantlengthscale, the radialhar- G S uate the accu→racy of th→e an∞satzes for→generalγ→, we compare monic length a = (~/mω )1/2. We incorporate this into the r r each ansatz with the numericallydeterminedgroundstate of dimensionlesstrapanisotropyκ ω /ω ,whichformsanad- r x ≡ the quasi-1D GPE. The computation of a numerically exact ditionalfreeparameter. Expressedinthesame“solitonunits” 5 asEq.(6),Eq.(1)becomes From Eq. (22) it follows that we must have ℓ > G 1/(2πγ)1/2κ to obtainaphysicallyreasonablesolution, i.e., a 1 2+V(r) 2π ψ(r)2 λ ψ(r)=0, (17) real, positive value of kG, consistent with our initial ansatz. −2∇ − κγ| | − Foragivensuchvalueofk ,Eq.(21)issolved(seesolution " # G inAppendixB)by withcorrespondingenergyfunctional H3D[ψ]=Z dr"12∇ψ(r)+·∇Vψ(∗r()r|ψ)(r)|2− κπγ|ψ(r)|4 , (18) wiℓthGχ=dheχfi(cid:16)n2γe4k/d3G−(a4π(cid:17)sγii1)n/12/E6kqG2/.3(12).χ(cid:16)γ2kG−4(cid:17)3/2−11/2−1, (23) # whereV(r)=γ2[x2+κ2(y2+z2)]/2. Inthefollowingsubsectionsweobtainvariationalsolutions C. AnalysisofGaussianansatzsolution for general κ and γ using ansatzes similar to the Gaussian and soliton ansatzes employed in the previous section, with Contrary to the quasi-1D limit, minimization of the vari- anadditionalvariable-widthGaussianradialprofile.Contrary ational energy in 3D requires simultaneous solution of two to the case in the quasi-1D limit, a self-consistent energy- equationsfor the radiallength, k 1, and the axial length, ℓ . minimizing solution for both the axial and radial length pa- G− G These equations are, respectively, Eq. (22) and [rearranged rameterscannotbeexpressedentirelyanalytically. However, fromEq.(21)] we reduce the numerical work required to the simultaneous solutionoftwoequations,andintroduceastraightforwardit- (2πγ)1/2 1/2 erative technique to achieve this. We also consider the case k = 1 ℓ4 . (24) of a waveguide-like trap (ωx = 0) separately, where an en- G " ℓG − G # (cid:16) (cid:17) tirelyanalyticvariationalsolutionexists(SectionIVF).Sub- Theseequationsdictatethatphysicalsolutionsmusthave sequently,inSectionIVG,weagaincomparetheansatzsolu- tionstohigh-accuracynumerics. 1 <ℓ <1, (25) (2πγ)1/2κ G B. Variationalsolution:Gaussianansatz andhencethatγ>1/2πκ2mustbesatisfiedinorderforphys- icalsolutionstoexist. WefirstconsideranansatzcomposedofGaussianaxialand Where solutions exist, they must be found numerically. radialprofiles.Wephrasethisas However, a very practical method of numericalsolution fol- lowsfromtheshapeoftheℓ surfacedefinedbyEq.(23),and κ1/2γ3/4k G ψ(r)= Ge−κγkG2(y2+z2)/2e−γx2/2ℓG2. (19) shownin Fig. 2(a), which is a decreasingfunctionof kG for π3/4ℓ1/2 all (real, positive) γ. The method can be consideredgraphi- G cally, in termsof locatingthe intersection(s)of Eq. (22) and Here, the first variational parameter, ℓ , quantifies the axial G Eq.(24). Thesecurvesareshown,forvariousκ,inFig. 2(b– lengthoftheansatzinanalogytothequasi-1Dcase. There- d), along with the lower bound from inequality(25). Below ciprocal of the second variational parameter, k 1, quantifies G− aκ-dependentthresholdvalueofγthecurvesfailtointersect, the radial length of the ansatz. In the trap-dominated limit indicating instability of the BEC to collapse. At the thresh- (γ ) both these lengths approach unity ( ℓ ,k 1). → ∞ { G G} → old value [dotted curves in Fig. 2(b–d)] there is exactly one Substitution of this ansatz into Eq. (18) yields (using identi- intersection, and above the threshold value [other curves in tiesfromAppendixA) Fig.2(b–d)]therearetwointersections. Inthelattercasethe higher-ℓ intersection, which smoothlydeformsto the limit- γ 1 2k2 2κ G H3D(ℓG,kG)= 4 ℓG2 + ℓ2 − (2πγ)1G/2ℓ +2κkG2 + k2 (20) ing case {ℓG,kG} → 1 as γ → ∞, represents the physical,  G G G minimal-energyvariationalsolution. Thissolutioncanbelo- Setting the partialderivativeswith respectto bothℓG andkG cvaatleudeku¯si,nsgataisfsyiminpgle1“stka¯irc<aske”,minettohEodq:. 2su3bpsrtoitduuticnegsaattrriiaall equaltozero,wededucethatℓG mustsolvethequarticequa- value,ℓ¯G,satisfyingℓ≤<Gℓ¯ G1,andsubsequentlysubstitut- tion G G G ≤ ingthistrialvalueintoEq.22producesaniteratedtrialvalue, ℓG4 + (2kπG2γℓ)G1/2 −1=0, (21) ik¯tG′er,astaiotinsfoyfintghiks¯Gpr<ock¯eG′ss<coknGv.erTgehsusth,ebetrgiianlnvinalguewsitthok¯thGe=tru1e, k andℓ . G G andthatk mustsolve Thephysicalsolutionstoequations(21)and(22)fordiffer- G entanisotropiesκareshownontheℓ surface,andprojected G k = (2πγ)1/2κℓG 1/4. (22) into the ℓG–γ plane, in Fig. 2(a). These solutions are also G (2πγ)1/2κℓG−1! shown as black crosses in the ℓG–kG plane in Figs. 2(b–d), 6 1.0 Axiallength,ℓ (a) G 0.8 1 −G k Anisotropy,κ gth,0.6 0.56 n γ ≈ e l γ=1.2 al di0.4 a R γ=4.8 0.2 (b) γ=900 κ=1 (Radiallength)2,kG−2 log10(γ) 0.00.0 0.2 0.4 0.6 0.8 1.0 Axiallength,ℓ G 1.0 1.0 2 0 0.8 0.026 0.8 0.≈0 1−G γ ≈ 1−G γ k k h,0.6 γ=0.25 h,0.6 γ=0.01 gt gt n n e e l l al al di0.4 di0.4 Ra γ=4.8 Ra γ=4.8 0.2 0.2 (c) (d) γ=900 κ=16 γ=900 κ=256 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Axiallength,ℓ Axiallength,ℓ G G FIG.2.Energy-minimizingvariationalparametersforthe3DGPEusingaGaussianansatz:(a)axiallengthℓ asafunctionoftheradiallength G k 1 andtheparameterγ[Eq.23]. Linesshowthesimultaneoussolutionsofequations(22)and(24)fortheaxiallengthℓ andradiallength G− G k 1,fordifferentanisotropiesκandvaluesofγ. Projectionsofthesesolutionsontheγ–ℓ planearealsoshown;heretheblacklineindicates G− G thequasi-1Dresult[fromfigure1(a)]. (b–d)Illustrationoftheintersectionsofequations(22)[lineswithverticalasymptoteℓ =1/(2πγ)1/2κ G shownwithfinedashes]and(24)forvariousκ:thehigher-ℓ intersection,whichcorrespondstoaphysicalsolutionfortheaxiallengthℓ and G G radiallengthk 1,canbefoundusinga“staircase”methodstartingfromk = 1. Thenumericalsolutionsobtainedthisway, andshownby G− G pointsin(a),areshownbycrossesin(b–d). Thelowestvaluesofγplottedin(b–d)arethelowestforwhichaself-consistentGaussianansatz solutionisfound. where they form a line connecting the physical-solution in- in this regime. Importantly,for γ abovethe collapse thresh- tersectionsofEq.(22) andEq.(24) forthevariousγ shown. old the projected curvesfor each anisotropyagree well with InFig.2(a)thecollapseinstabilityismanifestasarapidrise theGaussianansatzinthequasi-1DGPE,suggestingthatthe in k — correspondingto a decrease in radial extent— and Gaussianansatzgivesagoodapproximationtothetruesolu- G fall in ℓ — corresponding to a decrease in axial extent — tionhere. G just abovea κ-dependentthreshold value of γ. There are no self-consistent solutions for these quantities below this col- lapse threshold. For increasing anisotropies κ, this collapse D. Variationalsolution:solitonansatz thresholdoccursatlowervaluesofγ. Forthehighesttwoval- ues of κ considered the collapse threshold lies in the regime Secondly,weconsiderasolitonansatzcomposedofaaxial whereℓ isalreadyapproaching0;ouranalysisoftheGaus- sechprofileandaradialGaussianprofile.Wephrasethisas G sian ansatz in thequasi-1Dlimitindicatesthatthe3D Gaus- γ1/2κ1/2k sian ansatz will be a poorapproximationto the true solution ψ(r)= (2πℓ )1/2Se−κγkS2(y2+z2)/2sech(x/2ℓS). (26) S 7 1 (a) Axiallength,ℓ S 0.8 1 Anisotropy,κ −S gth,k0.6 γ ≈0.59 n e l γ=1.2 al di0.4 a R γ=4.8 2 0.2 2,k −S (b) ngth) γ=900 κ=1 le log10(γ) (Radial 00.0 0.2Scaled0a.x4iallengt0h.6, √2πγℓ0.8 1.0 S 1 1 2 0 0.8 0.027 0.8 0.≈0 1−S γ ≈ 1−S γ k k h,0.6 γ=0.25 h,0.6 γ=0.01 gt gt n n e e l l al al di0.4 di0.4 Ra γ=4.8 Ra γ=4.8 0.2 0.2 (c) (d) γ=900 κ=16 γ=900 κ=256 0 0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Scaledaxiallength, √2πγℓ Scaledaxiallength, √2πγℓ S S FIG.3. Energy-minimizingvariationalparametersforthe3DGPEusingasolitonansatz: (a)axiallengthℓ asafunctionoftheradiallength S k 1andtheparameterγ[Eq.30].Linesshowthesimultaneoussolutionsofequations(33)and(34)fortheaxiallengthℓ andradiallengthk 1, S− S S− fordifferentanisotropiesκandvaluesofγ. Projectionsofthesesolutionsontheγ–ℓ planearealsoshown;heretheblacklineindicatesthe S quasi-1Dresult[fromfigure1(a)]. (b–d)Illustrationoftheintersectionsofequations(33)[lineswithverticalasymptoteℓ =(π/3)/(2πγ)1/2κ S shownwithfinedashes]and(34)forvariousκ:thehigher-ℓ intersection,whichcorrespondstoaphysicalsolutionfortheaxiallengthℓ and S S radiallengthk 1, canbefoundusinga“staircase”methodstartingfromk = 1. Thenumericalsolutionsobtainedthisway, andshownby S− S pointsin(a),areshownbycrossesin(b–d). Thelowestvaluesofγplottedin(b–d)arethelowestforwhichaself-consistentsolitonansatz solutionisfound. Aswiththe3DGaussianansatz,thefirstvariationalparame- Onceagain,settingpartialderivativeswithrespecttobothℓ S ter,ℓ ,quantifiestheaxiallengthoftheansatzandtherecip- andk equaltozeroallowsustodeducethat: G S rocal of the second variational parameter, k 1, quantifies its radiallength.Inthequasi-1DlimitbothlengtG−hsconsequently ℓ4+ kS2ℓS 1 =0, (28) approach unity ( ℓG,kG 1). Substituting this ansatz into S 4π2γ2 − 4π2γ2 { } → Eq.(18)yields(usingidentitiesfromAppendixA) andthatk mustsolve S 6κγℓ 1/4 π2γ2 1 k2 k = S . (29) H (ℓ ,k )= ℓ2+ S S 6κγℓ 1 3D S S 6 S 4π2γ2ℓ2 − 2π2γ2ℓ S− !  S S  + 3κkS2 + 3κ . (27) toFobrotaminEaqp.h(y2s9i)cailtlyforlelaoswosnatbhlaetswoleutmiouns,ti.hea.,vaerℓeSal,>po1s/i6tiκvγe π2γ π2γk2 S valueofkS,consistentwithourinitialansatz.Foragivensuch  8 valueofk ,Eq.(28)issolved(seesolutioninAppendixB)by self-consistentsolutionsexist. For increasinganisotropiesκ, S this collapse threshold again occurs at lower values of γ. In ℓ = χ γkS−4 1/2kS2/3 2 3/2 1 1/2 1 , (30) claopnsteraisntsttoabtihlietycapsreecolfudtheessGoaluutsisoinansiannesxatazc,tlhyotwheevleimr,itthwehceorle- withSχdhefi2(cid:16)n1e1d/6a((cid:17)πsiγin)2E/3q.(12).χ(cid:16)γkS−4(cid:17) −  −  opbnriloeitpyeexrotpfyeoocbtfsstehthrevecinosgolllahitpiogsnehliaynnsbstaaritbgzihltitot-ysboseelivtaoecnrce-ullyirkareteesgt(rrγoicu→tnsdth0set)a.pteoTsshsiiins- 3D. The solution curvesin Fig. 3(a) illustrate that this effect isworstforlowtrapanisotropiesκ,butistosomeextentmit- E. Analysisofsolitonansatzsolution igatedforhigherκ. However,afullcomparisonwithnumeri- callyexactsolutionsisnecessarytoquantifytheseeffects;we AsinthecaseoftheGaussianansatz,minimizationofthe undertakesuchacomparisoninSectionIVG. variational energy in 3D requires the simultaneous solution ofequationsfortheradiallengthk 1 andtheaxiallengthℓ . S− S These equations are, respectively, Eq. (29) and [rearranged F. Variationalsolution:waveguideconfiguration fromEq.(28)] In broad experimental terms, the collapse instability sets 1 1/2 a maximumvalue forthe ratio ofinteractionstrengthto trap k = 1 4π2γ2ℓ4 (31) S ℓ − S strength(equivalenttoaminimumvalueofγ)whichincreases " S (cid:16) (cid:17)# (and hencethe minimumvalue of γ decreases) with the trap Theseequationsdictatethatphysicalsolutionsmusthave anisotropy κ. In the context of atomic BEC experiments one would typically think of controlling the interaction–trap 1 1 6κγ <ℓS < (2πγ)1/2 (32) sωtrecnognthstraantti;oibnythviasrysiintugaetiiothnetrh|easc|oolrlaNpswehinilsetahboillditiyngplωarceasnda x trap-anisotropy-dependent upper limit on the product a N. andhencethatγ > (π/3)2/2πκ2 mustbesatisfiedinorderfor | s| However,the minimumvalueofγ doesnotincreasewithout physical solutions to exist. These equations and constraints limit in the trap anisotropy κ: In an experiment one can, in can be further simplified by casting them in terms of ℓ = S′ principle,removeallaxialtrappingtocreateawaveguide-like (2πγ)1/2ℓS;thisyieldstwoequations, configuration;inthiscaseωx =0andthetrapanisotropyκ → ,whiletheparameterγ 0. Inthislimitareparametriza- k = (2πγ)1/2κℓS′ 1/4 (33) ∞tionisnecessary,andonly→needstobeperformedforthesoli- S (2πγ)1/2κℓ π/3 tonansatz,whichisclearlymoreappropriateinthiscontext. and  S′ −  parEalmimeitnerastioonf othfeth3eDaxGiaPlEtra[pEqe.lim(1i7n)a]t.esTohneeroefmthaeintiwngoffrreeee parameterisΓ=γκ =(a /2a N)2,wherea =(~/mω )1/2is k = (2πγ)1/2 1 ℓ 4 1/2, (34) theradialharmonicoscillrato|rlse|ngthscale. Trhesolitonransatz S ℓ − S′ maybere-writtenintermsofΓas " S′ # (cid:16) (cid:17) andaninequality, ψ(r)= (2Γπ1ℓ/2k)1S/2e−ΓkS2(y2+z2)/2sech(x/2ℓS). (36) S π/3 <ℓ <1, (35) (2πγ)1/2κ S′ SubstitutingthisintoEq.(18)withωx =0yields(usingiden- titiesfromAppendixA), whichareextremelysimilarto thoseencounteredinthecase oftheGaussianansatz. Thenumericalsolutionoftheseequa- 1 k2 Γk2 Γ H (ℓ ,k )= S + S + , (37) tγGioa>nuss(sπfioa/n3r)at2hn/e2saπptκzh2.y,sfioclallowsosluthtieosna,mwehpicrhocceadnuroenalsyuesxeidstfowrhthene fromwhich3DweSdedSuceth2a4tℓtS2he−e1n2eℓrgSy-mi2nimiz2inkgS2variational Variational-energy-minimizing solutions to the soliton parameterssatisfy ansatzequationsfordifferentanisotropiesκareshowninFig. 1 3; these are shown superimposed on the ℓS surface and pro- ℓS = k2 (38) jectedintotheℓS–γplaneinFig.3(a),andalongsideequations S (28)and(29)andinequality(35)inFig.3(b–d).Thecollapse and instabilityisevenmoreevidentinthesolitonansatzthaninthe Gaussianansatz,sinceitoccursinaregionwithalargerback- 6Γℓ 1/4 groundvalueofℓS. Onceagain,thecollapseismanifestasa kS = 6Γℓ S 1 . (39) rapidriseink anddropinℓ —correspondingtobothaxial S− ! S S andradialcontractionofthe solution—immediatelypriorto Contrarytothemoregeneral3Dcase,ananalyticsimultane- a κ-dependentthresholdvalueof γ. Below the threshold, no oussolutionofEq.(38)andEq.(39)existswhenℓ satisfies S 9 1.0 (a) 1.0 (a) 1 ℓgth,Sngth,k−S 00..89 xialℓngth, 00..68 ne Ae 0.4 el l xialladial 00..67 0.2 AR 0.0 al -1 (b) D1.00 (b) rrorinvariation∆nergy,log()10 ---753 Scaledgroundstateenergy,H′30000....88990505 Anκiκκs=oκκ==t2r==o516p66414y Gauss Soliton Ee -9 -1 0 1log (Γ)2 3 4 nal -1.0 (c) FIG. 4. Comparison of 3D variation1a0l and numerical solutions in ariatio∆g()10--32..00 tiaiaolwnlsae,vnegggitvuheidnℓeSbycaonEndfiq.rgau(d4ria1at)li,olneexn(igsωtthxfok=rS−1al0lf:oΓr(a=th)eκEγsnoe>lrigtoy3n-1m/2ai/nn4si.amtzi(z.bi)ngSRoealluxa--- rrorinvnergy,lo ---654...000 Ee tive error in the minimum variational energy of the soliton ansatz, (d) ∆ = (H3D − E3D)/E3D, where E3D is the numerically determined nal -2.0 groundstateenergy. ariatio∆g()10-3.0 vo thedepressedcubicequation iny,l -4.0 rg or 1 rrne ℓ3 ℓ + =0. (40) Ee -5.0 S− S 6Γ -3 -2 -1 0 1 2 3 4 log (γ) 10 Usingthegeneralsolutionforadepressedcubicequationfrom AppendixB,onefindsthatthephysicalroot(withreal,posi- FIG.5. Comparisonof3Dvariationalandnumericalsolutions: (a) tiveℓSsatisfyingthelimitℓS →1asΓ→∞)isgivenby Energy-minimizingaxiallengthsℓG(Gaussianansatz,solidsymbols) andℓ (solitonansatz,hollowsymbols). (b)Scaledvariationalener- S 1 1 3 1/2 1/3 gies H3′D = κH3D/γ(κ +1/2) (a similarly scaled ground state en- ℓS = −12Γ + 33/2Γ 16 −Γ2 earllgyanEis3′oDtro=pieκsEκ3)Dc/oγm(κp+are1d/2w)itthentdhsentoum1eirnictahlleylcimalcitulγate→dg∞roufnodr  !   + 1 1  3 Γ2 1/2 1/3. (41) svtaartieateinoenraglieenseErg3Dy∆(bl=ac(kHd3Dot−s)E.3(Dc),d/)EN3DofromratlhiezeGdarueslsaitaivne(ecr)raonrdinsothlie- −12Γ − 33/2Γ 16 − ton(d)ansatzes. Forclarityevery4thdatumismarkedbyasymbol Consequently,solutionsonlyexistfor Γ>31/2/!4,asshownin in(a–d). Fig.4(a). generalizedLaguerrefunctions(radialdirection). Theansatz withthelowestvariationalenergyisusedbothtooptimizethe G. Comparisonto3Dnumericalsolutions scalingofthebasisfunctionsandasaninitialestimateforthe solution. Expanding the stationary 3D GPE in such a basis Thevariationalenergy-minimizingaxiallengthsℓ andℓ producesasystemofnonlinearequationswhicharesolvedit- G S are shown as functions of γ in Fig. 5(a) for the general 3D erativelyusingamodifiedNewtonmethod. Asimilarmethod case; for the waveguide limit both axial and radial lengths wasusedtosolveasimilarcylindricallysymmetric,stationary ℓ and k 1 are shown as functions of Γ in Fig. 4(a). As in 3DGPE,withrepulsiveinteractions,inRef. [52]. S S− thequasi-1Dcase,wequantitativelyevaluatetheaccuracyof Asinthequasi-1Dcase,wecompareseveralquantitiesbe- theansatzsolutionsforgeneralγ(Γ)bycomparingthevaria- tweentheansatzandnumericalsolutions.Fig.5(b)showsthe tionalminimumenergyH withthenumericallydetermined scaled energy H = (H /γ)/(1+1/2κ) in the general 3D 3D 3′D 3D ground state energy E . We calculate E using a pseu- case. Thisscalingissuchthat E —whichisdefinedanal- 3D 3D 3′D dospectral method in a basis of optimally-scaled harmonic ogouslyto H withrespectto E —tendsto1asγ . 3′D 3D → ∞ oscillator eigenstates; this is formed from a tensor product Figs. 5(c) and (d) show the relative error in the variational of symmetric Gauss-Hermite functions (axial direction) and minimumenergy∆ = (H E )/E fortheGaussianand 3D 3D 3D − 10 solitonansatzes, respectively. Thesamequantity∆isshown H. Discussion forthe waveguidelimit in Fig. 4(b). Allquantitiesshownin Figs. 5 and 4 are computed using between 2000 and 12000 Aphysicalinterpretationoftheaboveresultsfollowsfrom basisstates(κ-dependent)andareinsensitivetoadoublingof consideringtwo conditionsthat must be satisfied in order to thenumberofbasisstates. realizeasoliton-likegroundstate;(1)theradialprofileshould be“frozen”toaGaussian,thusrealizingaquasi-1Dlimit;and (2)interactionsshould dominateoverthe axialtrapping. On In the general 3D case, a close inspection of Fig. 5(b–d) first inspection these conditions seem mutually compatible, is necessary to revealthe overallrelationbetween the ansatz andsatisfiablesimplybyincreasingtheradialtrapfrequency solutions and the numerically obtained ground state. In the ω with other parametersheld constant. However, condition high-γ limit Fig. 5(b) shows that both the Gaussian varia- r (1)canonlybesatisfiedifthemaximumdensityremainslow tional energies (solid symbols) and the ground state energy enoughto avoid any deformationof the radial profile due to E (black dots) approach1 as γ , whereasthe soliton an3sDatzenergies(hollowsymbols)te→ndt∞ohigherenergies.This thecollapseinstability.Increasingωrleadstoexactlysuchde- formation,andultimatelytocollapse,asithasthesecondary correspondstotheactualgroundstatemostcloselymatching effectofstronglyincreasingthedensity. Thisstrongincrease the Gaussian ansatz in this limit, as one would expect. In- indensitywithω isparticulartothecaseofattractiveinterac- deed,therelativeerrorinvariationalenergy,∆,fortheGaus- r tions.Increasingω inarepulsively-interactingBEClikewise sianansatz[Fig.5(c)]continuestodropexponentiallywithγ r acts to increase the density, but this increase is counteracted forallanisotropiesκ, makingitpossibletofindregimesofγ bytheinteractions;theseacttoreducethedensity,andcause where the Gaussian ansatz gives an excellent approximation theBECtoexpandaxially.Intheattractively-interactingcase tothetruegroundstate. theresponseoftheinteractionsistheopposite: increasingω r leads to axial contraction of the BEC. Consequently condi- In the opposite, low-γ limit, collapse occurs at a κ- tion (1) is far harder to satisfy for an attractively-interacting dependent value of γ; this corresponds to the points in Fig. BEC than a repulsively-interacting one. Responding to this 5(a–d) where solution curves abruptly cease. Prior to col- problem simply by reducing the interaction strength (either lapse(athighervaluesofγ)therelationbetweentheGaussian through as or N) leads to violation of condition (2). The | | ansatz,thesolitonansatz,andtheactualgroundstateishighly nature of the problem is made particularly clear by consid- dependent on the trap anisotropy κ [Fig. 5(b)]. In the case ering the waveguide limit: here condition (2) is automati- ofa sphericallysymmetrictrap, wherethe anisotropyκ = 1, cally satisfied (ωx = 0). This makes it possible to achieve thesolitonansatzvariationalenergyisneverclosertothetrue a highly soliton-like groundstate by satisfying condition(1) groundstateenergyE thantheGaussianansatzvariational alone. However,suchagroundstateisachievedbylowering 3D energy. A regime of soliton-like groundstates consequently the product ωr1/2asN, and thus by progressing towards the | | cannot exist at this low anisotropy; as the soliton ansatz is limitofextremediluteness. intrinsically asymmetric, this is to be expected. For higher Thisphysicalbehaviorofthesystempresentsconsiderable anisotropies, the soliton ansatz energy is closer to E than challengesforexperimentsaimingtorealizeahighlysoliton- 3D theGaussianansatzenergyinasmallregimepriortocollapse. likegroundstate. Inessence,themostdesirableconfiguration Exactlyhowsoliton-likethegroundstateisinthisregimecan istohaveextremelyhighanisotropiesκ,whilekeepingωr as be quantitativelyassessed using the relative error ∆. This is low as possible. Realizing such a configuration through ex- shown for the soliton ansatz in [Fig. 5(d)]. For each κ the tremelylow,orzero,axialtrapfrequenciesωxisproblematic: “background”valueof∆inthelimitγ isdifferent;this such frequencies are hard to set precisely experimentally as → ∞ effectisduetothedecreasingsizeoftheaxialpartoftheen- they require a very smooth potential to be generated, poten- ergywithrespecttotheradialpartforincreasingγ. Intheop- tially over a considerable length. Furthermore, in the case posite, low-γ, limit ∆ increases sharplyclose to the collapse ωx =0themean-fieldapproximationceasestobevalidforan pointasthegroundstatewavefunctionrapidlycontracts. The attractively-interactingBEC;thetruewavefunctionshouldbe maximumextentto which∆ decreasesfromits high-γlimit, translationallyinvariantin thiscase, butthe mean-fieldsolu- beforethisincreaseduetocollapse-relatedcontractionatlow tion breaks this symmetry [53]. Even for very low but non- γ,quantifieshowsoliton-likethegroundstatebecomesinthis zeroωx themean-fieldapproximationcanlosevaliditydueto regime. Evenforthehighestanisotropyshown,κ = 256,the the extremedilutenessof the BEC, and the energygap from regime of γ over which ∆ dropsbelow its backgroundvalue the ground state to states with excited axial modes can be- is rather narrow, and the actual drop in ∆ is only one order come low enough to cause significant population of the ex- ofmagnitude. ComparedtobenchmarkofSectionIIID,this citedstatesatexperimentallyfeasibletemperatures. indicates that the true groundstate remains considerablyde- It is informativeto consider the parametersused in bright formedwithrespecttothesolitonansatz. Theminimumerror solitarywaveexperimentstodate[6–8]. Noneoftheseaimed in the soliton ansatz energydoes, however,improvewith in- torealizehighlysoliton-likegroundstatesinthesenseconsid- creasing anisotropy κ. Excellent agreementcan be achieved eredhere. However,theynonethelessindicateregimeswhich in thewaveguidelimit(κ ): Fig.4 showsthatexcellent haveprovedtobeexperimentallyaccessibleandofferaguide → ∞ agreement, with respect to the benchmark figure of Section to future possibilities. All have operated outside the regime IIID,canbeobtainedforΓ>103/2. ofhighlysoliton-likegroundstates; directcomparisonofthe

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.