ebook img

Variational Convergence and Stochastic Homogenization of Nonlinear Reaction-Diffusion Problems PDF

321 Pages·2022·10.927 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Variational Convergence and Stochastic Homogenization of Nonlinear Reaction-Diffusion Problems

1122889966__99778899881111225588448800__ttpp..iinndddd 11 99//66//2222 77::5533 AAMM TTTThhhhiiiissss ppppaaaaggggeeee iiiinnnntttteeeennnnttttiiiioooonnnnaaaallllllllyyyy lllleeeefffftttt bbbbllllaaaannnnkkkk 1122889966__99778899881111225588448800__ttpp..iinndddd 22 99//66//2222 77::5533 AAMM Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Control Number: 2022026782 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. VARIATIONAL CONVERGENCE AND STOCHASTIC HOMOGENIZATION OF NONLINEAR REACTION-DIFFUSION PROBLEMS Copyright © 2022 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 978-981-125-848-0 (hardcover) ISBN 978-981-125-849-7 (ebook for institutions) ISBN 978-981-125-850-3 (ebook for individuals) For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/12896#t=suppl Printed in Singapore RRookkTTiinngg -- 1122889966 -- VVaarriiaattiioonnaall CCoonnvveerrggeennccee..iinndddd 11 99//66//22002222 44::4422::5588 ppmm May25,2022 17:17 ws-book961x669 Variationalconvergenceandstochastichomogenization 12896-main pagev Preface Most of the material in this book is derived from the research work developed from various seminars and work groups during the past four years, in collaboration with thelaboratoryMIPAattheUniversityofNˆımes. Theprimaryobjectiveistoinform students and researchers about recent mathematical developments in the domain of variational convergence of sequences of reaction-diffusion equations. These theo- retical results are mainly illustrated through the modeling of population dynamics, ecosystems or diseases, spreading in heterogeneous spatial environments. In par- ticular, based on the stochastic homogenization framework specifically developed for this area, this book intend to develop an understanding of how interactions be- tween various organisms, and their spatial environment, determine the distribution of their densities. A significant portion of the results of this book also apply in the field of heat conduction, biochemical systems or chemical physics, in order to describe temperature distribution or chemical substance concentration. O. Anza Hafsa, J.P. Mandallena, G. Michaille v TTTThhhhiiiissss ppppaaaaggggeeee iiiinnnntttteeeennnnttttiiiioooonnnnaaaallllllllyyyy lllleeeefffftttt bbbbllllaaaannnnkkkk May25,2022 17:17 ws-book961x669 Variationalconvergenceandstochastichomogenization 12896-main pagevii Contents Preface v 1. Introduction 1 Part 1 Sequences of reaction-diffusion problems: Convergence 9 2. Variational convergence of nonlinear reaction-diffusion equations 11 2.1 Existenceanduniquenessforreaction-diffusionCauchyproblemsin Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Local existence and uniqueness . . . . . . . . . . . . . . . . 14 2.1.2 Global existence and uniqueness . . . . . . . . . . . . . . . 18 2.2 Existence and uniqueness of bounded solution of reaction-diffusion problems associated with convex functionals of the calculus of variations and CP-structured reaction functionals . . . . . . . . . . 21 2.2.1 Theclassofdiffusiontermsassociatedwithconvexintegral functionals of the calculus of variations . . . . . . . . . . . 21 2.2.2 The class of CP-structured reaction functionals . . . . . . . 27 2.2.3 Examples of CP-structured reaction functionals . . . . . . 28 2.2.4 The comparison principle . . . . . . . . . . . . . . . . . . . 35 2.2.5 Existence and uniqueness of bounded solutions . . . . . . . 39 2.2.6 Estimate of the L2(Ω)-norm of the right derivative . . . . . 45 2.3 Invasion property . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.4 Variational convergence of reaction-diffusion problems with CP-structured reaction functionals . . . . . . . . . . . . . . . . . . 48 2.5 Stability of the invasion property . . . . . . . . . . . . . . . . . . . 67 2.6 Variational convergence of reaction-diffusion problems: abstract version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 vii May25,2022 17:17 ws-book961x669 Variationalconvergenceandstochastichomogenization 12896-main pageviii viii Variational convergence and stochastic homogenization 3. Variational convergence of nonlinear distributed time delays reaction-diffusion equations 73 3.1 The time-delays operator. . . . . . . . . . . . . . . . . . . . . . . . 75 3.1.1 Integration with respect to vector measures . . . . . . . . . 75 3.1.2 Time-delays operator associated with vector measures . . . 75 3.1.3 Examples of time-delays operators . . . . . . . . . . . . . . 77 3.2 Reaction-diffusion problems associated with convex functionals of the calculus of variations and DCP-structured reaction functionals 81 3.2.1 The class of DCP-structured reaction functionals . . . . . . 83 3.2.2 Some examples of DCP-structured reaction functions coming from ecology and biology models . . . . . . . . . . 84 3.2.3 Existence and uniqueness of bounded nonnegative solution 88 3.3 Convergence theorems . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.3.1 Stability at the limit . . . . . . . . . . . . . . . . . . . . . . 95 3.3.2 An alternative proof of Theorem 3.3 in the case of a single time delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 3.3.3 Non stability of the reaction functional: convergence with mixing effect between growth rates and time delays . . . . 105 4. Variational convergence of two components nonlinear reaction-diffusion systems 109 4.1 Two components reaction-diffusion system associated with convex functionals of the calculus of variations and TCCP-structured reaction functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.1.1 The class of TCCP-structured reaction functionals . . . . . 111 4.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.1.3 Existence and uniqueness of a bounded solution . . . . . . 118 4.2 Convergence theorem of two components reaction-diffusion systems 125 4.3 Convergence theorem for problems coupling r.d.e. and n.d.r.e. . . . 134 4.4 Proofs of Propositions 4.1–4.5 . . . . . . . . . . . . . . . . . . . . . 138 4.4.1 Proof of Proposition 4.1 . . . . . . . . . . . . . . . . . . . . 138 4.4.2 Proof of Proposition 4.2 . . . . . . . . . . . . . . . . . . . . 139 4.4.3 Proof of Proposition 4.3 . . . . . . . . . . . . . . . . . . . . 140 4.4.4 Proof of Proposition 4.4 . . . . . . . . . . . . . . . . . . . . 142 4.4.5 Proof of Proposition 4.5 . . . . . . . . . . . . . . . . . . . . 143 5. Variational convergence of integrodifferential reaction-diffusion equations 145 5.1 The general analysis framework . . . . . . . . . . . . . . . . . . . . 146 5.1.1 Structure of the first member of (P) . . . . . . . . . . . . . 146 5.1.2 Structure of the reaction functional . . . . . . . . . . . . . 151 5.2 Existence of a local solution . . . . . . . . . . . . . . . . . . . . . . 151 5.2.1 The regularized problem (P ) . . . . . . . . . . . . . . . . 151 λ May31,2022 8:51 ws-book961x669 Variationalconvergenceandstochastichomogenization 12896-main pageix Contents ix 5.2.2 Convergenceof(P )to(P): existenceofalocalsolutionof λ (P) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.3 Existence of solutions in C([0,T],X) . . . . . . . . . . . . . . . . . 160 5.3.1 Existence of a global solution in C([0,T],X): translation-induction method . . . . . . . . . . . . . . . . . 160 5.3.2 Existence and uniqueness when Ψ is a quadratic functional 162 5.3.3 Existence of a right derivative of the solutions at each t∈[0,T[ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 5.4 Convergence under Mosco×Γ-convergence . . . . . . . . . . . . . . 164 5.4.1 The abstract case . . . . . . . . . . . . . . . . . . . . . . . 164 5.4.2 The case X =L2(Ω) . . . . . . . . . . . . . . . . . . . . . . 171 6. VariationalconvergenceofaclassoffunctionalsindexedbyYoung measures 173 6.1 The main continuity result . . . . . . . . . . . . . . . . . . . . . . . 175 6.1.1 The lower bound . . . . . . . . . . . . . . . . . . . . . . . . 177 6.1.2 The upper bound . . . . . . . . . . . . . . . . . . . . . . . 180 6.1.3 Proof of Theorem 6.1 . . . . . . . . . . . . . . . . . . . . . 182 6.1.4 Proof of Lemma 6.3 . . . . . . . . . . . . . . . . . . . . . . 182 6.2 The case of integral functionals . . . . . . . . . . . . . . . . . . . . 184 Part 2 Sequences of reaction-diffusion problems: Stochastic homogenization 191 7. Stochastic homogenization of nonlinear reaction-diffusion equations 193 7.1 Probabilistic setting . . . . . . . . . . . . . . . . . . . . . . . . . . 194 7.1.1 The random diffusion part . . . . . . . . . . . . . . . . . . 195 7.1.2 The random reaction part. . . . . . . . . . . . . . . . . . . 203 7.2 General homogenization theorems . . . . . . . . . . . . . . . . . . . 205 7.3 Examples of stochastic homogenization of a diffusive Fisher food-limited population model with Allee effect . . . . . . . . . . . 212 7.3.1 Random checkerboard-like environment . . . . . . . . . . . 213 7.3.2 Environment whose heterogeneities are independently randomly distributed with a frequency λ . . . . . . . . . . 215 7.4 Stochastic homogenization of a reaction-diffusion problem stemming from a hydrogeological model . . . . . . . . . . . . . . . 217 8. Stochastic homogenization of nonlinear distributed time delays reaction-diffusion equations 219 8.1 The random diffusion part . . . . . . . . . . . . . . . . . . . . . . . 219 8.2 The random reaction part . . . . . . . . . . . . . . . . . . . . . . . 220

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.