ebook img

Variational Calculus PDF

284 Pages·2022·9.126 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Variational Calculus

Springer Monographs in Mathematics Jean-Pierre Bourguignon Variational Calculus Springer Monographs in Mathematics Editors-in-Chief MinhyongKim,SchoolofMathematics,KoreaInstituteforAdvancedStudy,Seoul, South Korea, InternationalCentreforMathematicalSciences,Edinburgh,UK KatrinWendland,SchoolofMathematics,TrinityCollegeDublin,Dublin,Ireland SeriesEditors SheldonAxler,DepartmentofMathematics,SanFranciscoStateUniversity, SanFrancisco,CA,USA MarkBraverman,DepartmentofMathematics,PrincetonUniversity,Princeton, NJ,USA MariaChudnovsky,DepartmentofMathematics,PrincetonUniversity,Princeton, NJ,USA TadahisaFunaki,DepartmentofMathematics,UniversityofTokyo,Tokyo,Japan IsabelleGallagher,DépartementdeMathématiquesetApplications,ÉcoleNormale Supérieure,Paris,France SinanGüntürk,CourantInstituteofMathematicalSciences,NewYorkUniversity, NewYork,NY,USA ClaudeLeBris,CERMICS,ÉcoledesPontsParisTech,MarnelaVallée,France PascalMassart,DépartementdeMathématiques,UniversitéParis-Saclay,Orsay, France AlbertoA.Pinto,DepartmentofMathematics,UniversityofPorto,Porto,Portugal GabriellaPinzari,DepartmentofMathematics,UniversityofPadova,Padova,Italy KenRibet,DepartmentofMathematics,UniversityofCalifornia,Berkeley,CA, USA RenéSchilling,InstituteforMathematicalStochastics,TechnicalUniversity Dresden,Dresden,Germany PanagiotisSouganidis,DepartmentofMathematics,UniversityofChicago, Chicago,IL,USA EndreSüli,MathematicalInstitute,UniversityofOxford,Oxford,UK ShmuelWeinberger,DepartmentofMathematics,UniversityofChicago,Chicago, IL,USA BorisZilber,MathematicalInstitute,UniversityofOxford,Oxford,UK Thisseriespublishesadvancedmonographsgivingwell-writtenpresentationsofthe “state-of-the-art”infieldsofmathematicalresearchthathaveacquiredthematurity neededforsuchatreatment.Theyaresufficientlyself-containedtobeaccessibleto morethanjusttheintimatespecialistsofthesubject,andsufficientlycomprehensive toremainvaluablereferencesformanyyears.Besidesthecurrentstateofknowledge initsfield,anSMMvolumeshouldideallydescribeitsrelevancetoandinteraction with neighbouring fields of mathematics, and give pointers to future directions of research. Jean-Pierre Bourguignon Variational Calculus Jean-Pierre Bourguignon Institut des Hautes Études Scientifiques Bures-sur-Yvette, France ISSN 1439-7382 ISSN 2196-9922 (electronic) Springer Monographs in Mathematics ISBN 978-3-031-18306-5 ISBN 978-3-031-18307-2 (eBook) https://doi.org/10.1007/978-3-031-18307-2 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland LAVISION1 D’oùestsorticelivre Iln’estpasdebrouillards,commeiln’estpointd’algèbres, Quirésistent,aufonddesnombresoudescieux, Alafixitécalmeetprofondedesyeux; Jeregardaiscemurd’abordconfusetvague, Oùlaformesemblaitflottercommeunevague, Oùtoutsemblaitvapeur,vertige,illusion; Et,sousmonœilpensif,l’étrangevision Devenaitmoinsbrumeuseetplusclaire,àmesure Quemaprunelleétaitmoinstroubléeetplussûre. VictorHUGO inLaLégendedesSiècles 1Thisisanexcerptfromtheintroductionofthefamous(long!)collectionofpoemsbyVictorHugo called“Lalégendedessiècles”,createdintheperiod1859–1883,aimingatpresentinghispoetary visionofthehistoryandevolutionofhumanity(notethatthetitleandsubtitleoftheexcerptare duetohim): THEVISION Fromwherethisbookcomes Thereisnofog,asthereisnoalgebra, Whichpersist,inthedepthsofnumbersoroftheskies, Tothequietanddeepgazeoftheeyes; Ilookedatthiswall,atfirstconfusedandvague, Whereformseemedtofloatlikeawave, Whereallseemedtobemist,vertigo,illusion; And,undermypensiveeye,thestrangestvision Becamelessfoggyandclearer, Asmyeyewaslesstroubledandsurer. Editor’s Preface Aspointedoutintheprefacetothisbook,theCalculusofVariationsunderliesmany oftheapplicationsofmathematicstothenaturalsciences.Inparticular,theEuler– Lagrange equations are the universal form of the specific equations that govern essentiallyalltheentitiesoffundamentalphysics,fromtheelementaryconstituents of matter to the forces that hold them together to the structure of space and time. Theyarealsothestartingpointforthemostnaturalapproachtothequantumtheory offields.Itisamonumentalachievementofhumanitytohavediscoveredtheminthe conciseandelegantformthattheynowhave.Thereadersofthisbookwillencounter their theory and use at the hands of a master and thereby come to appreciate their profundityforthemselves. Jean-PierreBourguignonhasbecomewidelyknownandrespectedintheglobal mathematicalcommunityasagreatleaderonaccountofthedistinguishedservice roleshehasmostgenerouslyassumedovertheyears.Theseincludehisdirectorship oftheIHES,oneofthetrulygreatresearchinstitutionsintheworld,andhispres- idency of the European Research Council. His prominence in the socio-politics of mathematicsmayleadsometomomentarilyforgethisoutstandingcontributionsasa researcherandhisremarkableskillsasateacher.Heisaworld-leadingexpertonthe geometricvariationalequationsofmathematicalphysics,whileseveralgenerations ofexcellentstudentsattheÉcolePolytechniquehavebeenintroducedtotheprofound andbeautifulworldofglobalanalysisbywayofhisinspiringlectures. Asiswell-known,theSpringerMonographshaveastheirprimarygoalthepubli- cationofresearchmonographsdealingwithratherrecentadvances.However,every nowandthen,apedagogicalworkofgreatimportanceandexpositionalexcellence isputforwardbecauseofitsroleasanenablerofcurrentandfutureresearchatthe highestlevel.Asaspecimenofthiskindofpublication,thebookinyourhandswill havefewequals.Itiswithgreatpleasurethatweofferitwithinthisseries. EdinburghandSeoul, MinhyongKim September2022 vii Preface The Calculus of Variations aims to characterise a mathematical object such as a curve, a surface, a function, or more generally a field (in the physicists’ sense), whichsatisfies“variational”conditions.Inmoremodernlanguage,thismeansthat thisobjectshouldbeanextremumofafunction(inthiscontext,oneoftenspeaksof functionals)definedonthespaceofobjectswhichareincompetition. ProblemsarisingfromtheCalculusofVariationshaveplayedanimportantrole in the history of mathematics. Substantial contributions to problems of this type weremadeby,amongothers,Bernoulli,Euler,Lagrange,Leibniz,Jacobi,Hamilton, Weierstrass, Hilbert, Carathéodory, Morse. This subject also attracts the attention of numerous present-day mathematicians and, thanks to a considerable extension ofthemethodsavailable,importantnewdevelopmentshaveappearedrecentlywith spectacularapplications,bothinsideandoutsidemathematics. TheCalculusofVariationshasmaintained,andstillmaintains,acloserelationship both with analysis and with geometry. The progress which it inspired has touched the foundations of mathematics as well as the elaboration of new methods. Today, itremainsasourceofproblemsofgreatinterestandnourishesaveryactivebranch of the theory of partial differential equations. Many classical variational problems ingeometryhaverecentlybeentheobjectofintenseresearchactivityintheoretical physics(weshallmentionthemonseveraloccasionsinthisbook). Thiscourseaimstopresentthebasicconceptswhichallowonetodiscussseveral classicalproblemsoftheCalculusofVariations.Aswellasgivinggeneralmethods, italsostudiesseveralspecialsituations.Itiscentredaroundthesearchfortheextrema ofafunctiondefinedonaspace.Toaccomplishthis,itisnecessarytogeneralisethe notion of a space in two directions: first, to treat effectively the objects which are “varied”(usuallyfunctions),oneisnaturallyledtoworkwithinfinite-dimensional spaces (and there lies the beginning of functional analysis, which has proved to be so powerful for the solution of partial differential equations); second, to find the extrema of the function being studied, one must have available a notion of the derivative on spaces of curves, which are the configuration spaces featuring most ofteninconcretesituations,suchasinmechanics.Itistherethatweshallencounter intrinsicdifferentialgeometryforthefirsttime;thispartisoftencalleddifferential calculus.Wehavedeliberatelyusedgeometriclanguagebecauseitseemstousthe mostsuitableandmosteffectivefortreatingtheproblemswehaveinmind,whence thetitleVariationalCalculusofthisbook. Another idea which appears here repeatedly is this: relate the global form of a space to the properties of the functions defined on it, which physicists like to call observables (a terminology which we have retained). The interest which this approachexcitestoday,bothinsideandoutsidemathematics,hasledtotheintroduc- tionofaspecialtermtodenoteit.Onespeaksof“GlobalAnalysis”,orinGerman “VariationsrechnungimGroßen”(theoldterminologyinEnglishwas“Calculusof ix x Preface VariationsintheLarge”).Forthisreason,weweretemptedtoaddtothetitleVaria- tionalCalculustheadjectiveglobal.Wehavedecidedagainstthis,however,sincein thelimitedspacewehaveavailable,itisdifficulttogoveryfarinthisdirection.In fact,amoreprofoundstudywouldnecessitateexcursionsintomoreadvancedareas ofmathematicssuchasalgebraictopologyanddifferentialtopology.Moreover,the mostspectacularapplicationsmakeextensiveuseofresultsfromthetheoryofpartial differentialequations. Inmanyplacesanotherthemeappears:thestudyofthesymmetriesofasystem, which Felix Klein, in his Erlangen programme of 1872, showed is identical to the search for properties which are invariant under the action of a group. These “continuous groups of transformations” (the action of which is the mathematical formulation of symmetry) have taken up, thanks to the work of Sophus Lie, a privilegedplaceintheCalculusofVariations.Moreover,thepresenceofsymmetries inavariationalproblemisaccompanied,accordingtoatheoremofEmmyNoether, bythatofconservedquantities,whichoftenfacilitatethesolutionofaproblem. The climax of the book occurs in the chapters devoted to the Euler–Lagrange equationsandHamilton’sequations.Theseequationsareveryfar-reaching(oneis seriously tempted to say “universal”), and underlie numerous theories in diverse branchesofphysics,mechanicsandeconomics.Themultiplicityofsituationswhere theyareusedsuccessfullytestifiestothepoweroftheconceptselaboratedbymath- ematiciansforsolvingtheseproblems.ThisshowshowcompletelywrongwasFelix Klein’s judgement on this subject, as expressed in his presentation of the devel- opmentofmathematicsintheXIXth century.“TrotzderunzweifelhaftenSchönheit dieses Gebietes möchte ich jedoch vor einem einseitigen Studium warnen..... In der Tat kann der Physiker wenig, der Ingenieur gar nichts von diesen Theorien fürseinenAufgabenbrauchen.SiesindsozusageneinSchemamitleerenFächern, in welche die bunte Welt der Erscheinungen erst eingeordnet werden muß, um sie sinnvoll erscheinen zu lassen”.2 In the edition of these lectures edited in 1926 by RichardCourantandOttoEduardNeugebauerunderthetitle“Vorlesungenüberdie EntwicklungderMathematikim19.Jahrhundert”(volumeXXIVoftheSpringerse- riesGrundlehrendermathematischenWissenschafteninEinzeldarstellungen),they inserted the following footnote: “Wir haben diese, durch die Entwicklung der let- zten Jahren widerlegt Bemerkungen stehen lassen, da sie zu der gerade von Klein oftgennantenErscheinungeinenBetragliefern,wiescheinbarreinmathematische Theorien auch für die Nachbarwissenscheften unvermutet von größter Bedeutung werden.”3 This historical reference, in which the actors are among the most emi- nentmathematicians,emphasisesthegreatdifficultyinvolvedinjudgingapriorithe applicabilityofamathematicalresult. 2 “Despite the undoubtedbeauty of this field, however, Iwould caution the reader.... In reality, physicistscanextractonlyverylittlefromthesetheoriesforuseintheirownwork,andengineers almostnothing.Theyconstituteakindofschemewithemptyspaces,whichonlytakesonmeaning whenthegapsarefilledfromthevariedworldofnaturalphenomena.” 3“Wehaveretainedtheseremarks,whicharerefutedbyrecentdevelopments,becausetheyarean exampleofaphenomenonoftenevokedbyKleinhimself,namely,thatmathematicaltheorieswhich mayseemcompletelypurecanturnouttobeextremelyrelevanttoothersciences.” Preface xi Today,theEuler–Lagrangeequationsformtheconceptualframeworkforallstud- ies,basedonenergymethods,ofthemechanicsofsystemsdefinedbyafinitenumber of parameters. The dual methods related to Hamilton’s equations are now used in practiceinnumerousquestionsofautomation,especiallyinproblemsarisingfrom spatial engineering and from econometrics. They also serve as the point of depar- tureforquantummechanics,whichcannotbedevelopedstartingfromtheNewtonian viewofmechanics,andasthesettingforthetheoryoffieldsinphysics.Theyillustrate thepowerofthenotionofduality,onceithasbeensuitablyextendedtothissetting. Note,however,thatthepracticalstudyofthesequestionsoftencannotbedivorced from that of the numerical approximation of their solutions. These considerations leadtotheintroductionoftheidea,whichcansometimesbeforgotten,thatinreal life(andinindustry),thereareproblemsofamathematicalnaturewhosesolution requirestheuseofamongthemostrecentmathematicalresults,andwhichgiverise to new research which can be carried out only by teams of mathematicians devel- oping the most modern theories. In this process, the modelling of the phenomena whichoneisstudyingplays,ofcourse,anessentialrole. Inabookofthislevel,itisdifficulttoincludethenewestresults.Wehave,above all, tried to put the recent evolution of the subject in perspective, and to bring out a truth which is unfortunately often concealed: “mathematics is, today more than ever,alivingscienceopentointeractionwithothersciences”.Inthelastfortyyears, its development has undergone an unprecedented acceleration, with the result that thereareprobablymoreprofessionalmathematiciansalivetodaythanhaveexisted beforesincethebirthofhumanity.Suchanexplosionmakestheselectionofbasic material more difficult than ever, since this expanding activity goes hand-in-hand withaveryrapiddiversificationaccompaniedbyamultitudeofthemostunexpected cross-fertilisationsbetweensub-disciplinesofmathematics. Theprerequisitesforthisbookarethoseacquiredbymoststudentsinthefirsttwo yearsofanundergraduatecourse.Weregularlyappealtothefundamentalresultsof linearalgebra.Anappendixcollectstogetherthebasicideasandconceptsofgeneral topology. Thesubtletyoftheknowledgecontainedinthisbookmaynotbeassurprisingto thereaderasthechangeofstylewhichitexhibitscomparedtopreviouscourses.This changeis,inpart,inherentinthefactthatthisisamoreadvancedcourse;butone can findanother explanation inthe general evolutionof stylesof exposition which reflects the manner in which knowledge is developing: to a period of linear devel- opmentofmathematicscentredaroundthestructureofgreattheoriescorrespondsa “one-dimensional” style of presentation; to the recent explosion of sub-disciplines andmultipleinteractionscorrespondsamorepersonalsynthesis.Fromtheseconsid- erationsfollows,inparticular,thegreatimportanceofthebibliography,sinceabook onmathematicsoffers,aswellasthepresentation(correct,ifpossible!)oftheorems, a vision of the connections between concepts. In the opinion of this author, a real understandingofthefundamentalideascanonlydevelopoutofthediversityofthese approaches. Palaiseau,4August1987 Jean-PierreBourguignon

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.