ebook img

Variation in colonizer assembly sequence and intraspecific priority effects alter interspecific ... PDF

210 Pages·2014·4.93 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Variation in colonizer assembly sequence and intraspecific priority effects alter interspecific ...

Abstract Intraspecific Variation in Metacommunities: Linking Regional Heterogeneity to Local Population Dynamics by Christopher Joseph Dibble Variation within species drives differences in population dynamics, interactions between species, and the functioning of complex ecosystems. Fittingly, understanding the factors that govern this intraspecific variation remains a central goal of ecology and evolutionary biology. Local processes such as adaptation tend to increase divergence among distinct populations, while regional processes such as dispersal and gene flow tend to homogenize those differences. My research addresses how heterogeneity is maintained despite the movement of individuals around a landscape. Specifically, I use an experimental host-parasite system to propose and test mechanisms contributing to ecological differentiation. Initially, I found that variation in colonizer traits makes the order in which they arrive to a new habitat important. Intraspecific priority effects (IPEs) occur when early arrivers limit the growth of late arrivers, and drive context-dependent differences in growth among populations (Chapter 1). These effects of variation in individual traits and arrival order extended to alter interspecific competition and host/parasite interactions. My research indicates, then, that the process of community assembly depends not only on the traits of a dominant species in the environment, but also which individuals of that species get there first (Chapter 2). The relatively short-term importance of IPEs, however, may wane over time as individuals continue to disperse among populations. I tested the consequences of repeated dispersal, and found that they depend heavily on the expected fitness of migrants in their new habitat. That is, dispersal from a common source can increase ecological heterogeneity among populations if migrants have different effects in different environments (Chapter 3). The context- dependent effects of dispersal suggested an underlying trait-based mechanism. Specifically, I hypothesized that the effects of increasing trait variance in a population (e.g. via immigration) depend on the relationship between a population’s trait mean and the local environmental optimum. I found that increasing trait variance helps populations with suboptimal trait means, but harms populations already well-suited to the local environment, doubling their disease burden (Chapter 4). Overall, my research identifies novel ways in which intraspecific variation contributes to its own maintenance, limiting the ability of individual movement among populations to homogenize ecological and evolutionary differentiation. Acknowledgments More than any other factor, finding the right thesis advisor can make or break a graduate career. Matching long-term interests, styles, expectations, and personalities based on a relatively short courting period is a bit like proposing on the first date. I am indebted to Dr. Volker Rudolf for his patience, mentoring, and example, in addition to proving that you can excel in academia, have a family, and still be a nice person. Thank you for taking a gamble. I owe many thanks to my thesis committee, Dr. Tom Miller, Dr. Michael Kohn, and Dr. David Lane, for their time, expertise, and thoughtful advice. Additionally, Dr. Ken Whitney, Dr. Jenn Rudgers, and Dr. Hadley Wickham provided valuable feedback on ideas and proposals during my early graduate career. I’d like to acknowledge the EEB program at Rice for financial support, and for fostering a uniquely excellent environment for teaching and research. Many of my most formative interactions occurred in casual settings at the lunch table, in informal journal clubs, or on the steps of Valhalla. I owe a great deal to the many exceptional graduate students, faculty, and post-docs I’ve been fortunate enough to encounter during my time at Rice. Particular mention must go to Dr. Ben Van Allen and Dr. Nick Rasmussen, who have each contributed immensely to my research and thoughts on science (though they share no responsibility for my faults in either). Dr. Volker Rudolf, Dr. Reed Cartwright, and Dr. Scott Solomon have greatly improved my teaching, albeit in very different ways. Thanks also to Rice IACUC for not caring about invertebrates. Many thanks to the EEB front office staff for sorting out all of the problems I made for them. Diane Hatton, Laura Johnson, Rachel Stones, Lauren Hanson, and Andrea Zorbas deserve special recognition. iv Special mention must also go to the Rudolf lab, without which much of this work would not have been possible. Amber Roman deserves immense credit for running the show for many years, and I have benefitted tremendously by interacting with and mentoring some of the very gifted undergraduates to work in the lab. Specifically, Erin Mattson, Erica Harris, Emily Crowder, Sena McRory, Kenna Fowler, and Jordan Bunch deserve credit for their independent research, and Maya Carrillo and Jack Petersen were priceless assets as Daphnia wranglers and yeast lancers. I also owe a great deal to Dr. Meg Duffy and Dr. Spencer Hall, who introduced me to the Daphnia – Metschnikowia system. Many, many thanks go to Spencer and his students Alex Strauss, Dave Civitello, Jessica Hite, and Marta Shocket at Indiana University. They hosted me for several summers’ worth of research, and are a fantastic set of collaborators. Thank you to my family, in-blood and in-law, for backing this odd five-year decision. I’m sorry I haven’t visited more. Last in mention but foremost in thought, thanks to my wife Sarah. Odd as it seems, I never would have started this particular journey without your unwavering support. I’m sorry for waiting so long to propose. I’m pretty sure I knew on our first date. Table of Contents Abstract ...................................................................................................................... i Acknowledgments ..................................................................................................... iii Table of Contents ....................................................................................................... v List of Figures ............................................................................................................ ix List of Tables ............................................................................................................. xi Intraspecific priority effects and disease interact to alter population growth .............. 1 1.1. Abstract .................................................................................................................... 1 1.2. Introduction .............................................................................................................. 3 1.3. Methods ................................................................................................................... 5 1.3.1. Study system ...................................................................................................... 5 1.3.2. Experimental design .......................................................................................... 6 1.3.3. Infection assay ................................................................................................... 6 1.3.4. Mesocosm experiment ...................................................................................... 7 1.3.5. Statistical analyses ............................................................................................. 8 1.4. Results .................................................................................................................... 11 1.4.1. Microcosm infection assay .............................................................................. 11 1.4.2. Mesocosm experiment .................................................................................... 12 1.5. Discussion ............................................................................................................... 14 1.5.1. IPEs – the signature in population growth ...................................................... 15 1.5.2. Intraspecific priority effects – mechanisms ..................................................... 16 1.5.3. Ecological and evolutionary implications ........................................................ 19 1.6. Acknowledgements ................................................................................................ 20 1.7. Literature Cited ....................................................................................................... 21 1.8. Tables ...................................................................................................................... 26 1.9. Figures .................................................................................................................... 27 1.10. Appendix A ........................................................................................................... 33 Variation in colonizer assembly sequence and intraspecific priority effects alter interspecific competition and disease epidemics ...................................................... 38 vi 2.1. Abstract .................................................................................................................. 38 2.2. Introduction ............................................................................................................ 40 2.3. Methods ................................................................................................................. 42 2.3.1. Study system .................................................................................................... 42 2.3.2. Experimental design ........................................................................................ 43 2.3.3. Statistical analyses ........................................................................................... 44 2.4. Results .................................................................................................................... 47 2.5. Discussion ............................................................................................................... 49 2.5.1. IPEs and intraspecific dynamics ....................................................................... 50 2.5.2. IPEs and interspecific dynamics ....................................................................... 51 2.5.3. Conclusions ...................................................................................................... 52 2.6. Acknowledgements ................................................................................................ 53 2.7. Literature Cited ....................................................................................................... 53 2.8. Tables ...................................................................................................................... 57 2.9. Figures .................................................................................................................... 59 2.10. Appendix A ........................................................................................................... 62 2.10.1. Raw growth data ............................................................................................ 63 2.10.2. Estimating Daphnia Population Growth: ....................................................... 64 2.10.3. Generalized linear mixed model results and summary statistics: ................. 66 2.10.4. Additional figures ........................................................................................... 70 Dispersal “type” and amount interact to affect ecological heterogeneity among local populations .............................................................................................................. 72 3.1. Abstract .................................................................................................................. 72 3.2. Introduction ............................................................................................................ 74 3.3. Methods ................................................................................................................. 76 3.3.1. Study system .................................................................................................... 77 3.3.2. Initial infection assay ....................................................................................... 78 3.3.3. Experimental setup and dispersal treatments ................................................ 79 3.3.4. Statistical analyses ........................................................................................... 81 3.4. Results .................................................................................................................... 84 3.4.1. Host abundance ............................................................................................... 84 vii 3.4.2. Parasite dynamics ............................................................................................ 85 3.5. Discussion ............................................................................................................... 87 3.5.1. Effects on hosts ................................................................................................ 87 3.5.2. Effects on parasites .......................................................................................... 90 3.5.3. Role of dispersers ............................................................................................ 91 3.5.4. Conclusions ...................................................................................................... 93 3.6. Acknowledgements ................................................................................................ 93 3.7. Literature Cited ....................................................................................................... 94 3.8. Figures .................................................................................................................. 102 3.9. Appendix A ........................................................................................................... 108 The ecological and evolutionary effects of phenotypic variance depend on the relationship between the mean phenotype and the environmental optimum ......... 113 4.1. Abstract ................................................................................................................ 113 4.2. Introduction .......................................................................................................... 115 4.3. Methods ............................................................................................................... 122 4.3.1. Initial clone isolation ...................................................................................... 122 4.3.2. Life table assay ............................................................................................... 124 4.3.3. Heritability and relationships among life table traits .................................... 126 4.3.4. Maintenance and re-acclimation of clones ................................................... 127 4.3.5. Individual infection assay .............................................................................. 127 4.3.6. Population infection assay ............................................................................. 129 4.3.7. Factorial manipulation of trait mean and variance ....................................... 130 4.3.8. Evolution of susceptibility.............................................................................. 135 4.4. Results .................................................................................................................. 136 4.4.1. Relationships among life history traits .......................................................... 136 4.4.2. Relationships between life history traits and disease risk ............................ 137 4.4.3. Factorial manipulation of trait mean and variance ....................................... 141 4.4.4. Effects on Daphnia abundance ...................................................................... 142 4.4.5. Effects on disease epidemics ......................................................................... 144 4.4.6. Evolution of susceptibility.............................................................................. 145 4.4.7. Results summary ............................................................................................ 146 viii 4.5. Discussion ............................................................................................................. 147 4.5.1. Daphnia traits and disease risk ...................................................................... 148 4.5.2. Factorial manipulation of trait mean and variance ....................................... 149 4.5.3. Mechanisms driving positive effects of increasing trait variance ................. 150 4.5.4. Mechanisms driving negative effects of increasing trait variance ................ 152 4.5.5. Trait evolution ............................................................................................... 154 4.5.6. Summary ........................................................................................................ 156 4.5.7. Conclusions .................................................................................................... 156 4.6. Acknowledgements .............................................................................................. 157 4.7. Literature Cited ..................................................................................................... 157 4.8. Figures .................................................................................................................. 172 4.9. Appendix A ........................................................................................................... 183 4.9.1. Life table assay ............................................................................................... 186 4.9.2. Individual and population assays................................................................... 190 4.9.3. Factorial manipulation of trait mean and variance ....................................... 191 List of Figures Figure 1.1. a Infection prevalence in a laboratory-based infection assay for two lake populations of a zooplankton host-grazer (Daphnia dentifera) used in the mesocosm growth experiment ................................................................................................................... 27 Figure 1.2. Population growth of experimental populations of Daphnia dentifera upon colonization of a new habitat patch ........................................................................... 29 Figure 1.3. GAMM-derived estimates of Daphnia abundance through time (coefficient means +/- SE) for experimental populations, showing influence of early and late arriver identity (Susceptible = S, Resistant = R) when parasites are present or absent ..................................................................................................................................... 31 Figure 1.4. Resource decline (chlorophyll a, µg/L, log-transformed) between day 9 and day 16 .................................................................................................................................. 32 Figure 2.1. Daphnia abundance from days 5 to 25 for order of arrival treatments, showing fit to Eq. (1) with b (peak abundance) estimates for each treatment .................................................................................................................................. 59 Figure 2.2. a. Treatment means ± 1 SE for Daphnia population performance (b – peak density, Eq. 1), by order of arrival treatment.......................................................... 60 Figure 3.1. Individual susceptibility to the fungal parasite Metschnikowia bicuspidata among natural lake populations of Daphnia dentifera ............................ 102 Figure 3.2. A,B. Population density (individuals / L, mean ± 1 SE) for A) low- susceptibility and B) high-susceptibility resident populations of Daphnia dentifera experiencing different rates of dispersal .......................................................................... 103 Figure 3.3. Higher dispersal rates slightly increase synchrony in population abundance among resident populations........................................................................... 105 Figure 3.4. The likelihood of parasite establishment depends on early host growth (line and shaded region = binomial GLM ± 1 SE). ........................................................ 106 Figure 3.5. Average peak prevalence of M. bicuspidata epidemics in two different resident D. dentifera populations (one with low individual susceptibility, one with high individual susceptibility [e.g. Figure 3.1]) ............................................................. 107 Figure 4.1. Jensen’s inequality and phenotypic variance. .................................... 172

Description:
More than any other factor, finding the right thesis advisor can make or indebted to Dr. Volker Rudolf for his patience, mentoring, and example, and late arriver identity (Susceptible = S, Resistant = R) when parasites are .. Mixed effects model of Daphnia population size (abundance integrated.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.