ebook img

Variation-Aware Adaptive Voltage Scaling for Digital CMOS Circuits PDF

89 Pages·2013·3.159 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Variation-Aware Adaptive Voltage Scaling for Digital CMOS Circuits

Springer Series in Advanced Microelectronics Volume 41 SeriesEditors Dr.KiyooItoh,Kokubunji-shi,Tokyo,Japan ProfessorThomasH.Lee,Stanford,CA,USA ProfessorTakayasuSakurai,Minato-ku,Tokyo,Japan ProfessorWillyM.Sansen,Leuven,Belgium ProfessorDorisSchmitt-Landsiedel,Munich,Germany Forfurthervolumes: www.springer.com/series/4076 The Springer Series in Advanced Microelectronics provides systematic information on all thetopicsrelevantforthedesign,processing,andmanufacturingofmicroelectronicdevices. Thebooks,eachpreparedbyleadingresearchersorengineersintheirfields,coverthebasic and advanced aspects of topics such as wafer processing, materials, device design, device technologies, circuit design, VLSI implementation, and subsystem technology. The series formsabridgebetweenphysicsandengineeringandthevolumeswillappealtopracticing engineersaswellasresearchscientists. Martin Wirnshofer Variation-Aware Adaptive Voltage Scaling for Digital CMOS Circuits MartinWirnshofer ElectricalEngineering TechnischeUniversitätMünchen Munich,Germany ISSN1437-0387 SpringerSeriesinAdvancedMicroelectronics ISBN978-94-007-6195-7 ISBN978-94-007-6196-4(eBook) DOI10.1007/978-94-007-6196-4 SpringerDordrechtHeidelbergNewYorkLondon LibraryofCongressControlNumber:2013932641 ©SpringerScience+BusinessMediaDordrecht2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Increasingperformancedemandsintoday’sintegratedcircuits(ICs),togetherwith limitedenergybudgets,forceICdesignerstothinkaboutnewwaysofsavingpower. One innovative way of doing so is presented in this work. The newly developed AdaptiveVoltageScaling(AVS)schemetunesthesupplyvoltageofdigitalcircuits according to the present Process, Voltage and Temperature variations as well as Aging (PVTA). The key components of the proposed approach are in-situ delay monitors (Pre-Error flip-flops), detecting late but still non-erroneous signal transi- tions(pre-errors).Basedonthemeasuredpre-errorrate,thevoltageisadjustedwith a low-overhead control unit connected to the on-chip voltage regulator. This way powerconsumptionisoptimized,byexploitingunusedtimingmargin,producedby state-of-the-artworst-casedesigns. The presented Pre-Error AVS scheme adapts the voltage during normal circuit operation (on-line) and hence no test intervals, nor interaction with higher system levels is required. To describe the statistics of the closed-loop voltage control, a Markovchainmodelwasdeveloped,whichisbasedontransistorlevelsimulations. Withthismodel,thepowersavingpotentialaswellastheriskofovercriticalvoltage reductions can be analyzed very efficiently. Furthermore, the Markov model was extendedinordertoevaluatetherobustnessofthecontrol-loopagainstglobaland localvariations. The elaborated approach was tested on an arithmetic and an image processing circuit,bothsynthesizedinanindustrial65nmlow-powerCMOStechnology.For thetwodesignsthePre-ErrorAVSconceptachievesdynamicpowersavingsof25% (includingalloverheads)whileensuringanerrorratebelow1E-9.Atthesametime theleakagepowerisreducedbyover30%. Munich,Germany MartinWirnshofer v Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 SourcesofVariation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 ProcessVariations . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 ImperfectionsoftheManufacturingProcess . . . . . . . . 6 2.1.2 GlobalandLocalProcessVariations . . . . . . . . . . . . 7 2.1.3 ImpactofProcessVariationsonDigitalCircuits . . . . . . 7 2.2 VoltageVariations . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 OriginofVoltageFluctuations. . . . . . . . . . . . . . . . 10 2.2.2 ImpactofVoltageChangesonthePathDelay . . . . . . . 11 2.3 TemperatureVariations . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.1 HotCarrierInjection(HCI) . . . . . . . . . . . . . . . . . 12 2.4.2 BiasTemperatureInstability(BTI) . . . . . . . . . . . . . 12 2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1 DynamicVoltageScaling . . . . . . . . . . . . . . . . . . . . . . 15 3.2 AdaptiveVoltageScaling . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 AVSbyReplicaPaths . . . . . . . . . . . . . . . . . . . . 16 3.2.2 RazorConcept . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.3 Pre-ErrorAVS . . . . . . . . . . . . . . . . . . . . . . . . 19 4 AdaptiveVoltageScalingbyIn-situDelayMonitoring . . . . . . . . 23 4.1 PrincipleofOperation . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 OverallAVSControlLoop . . . . . . . . . . . . . . . . . . . . . 23 4.2.1 DigitalCMOSCircuit . . . . . . . . . . . . . . . . . . . . 24 4.2.2 In-situDelayMonitor . . . . . . . . . . . . . . . . . . . . 26 4.2.3 AVSControlUnit . . . . . . . . . . . . . . . . . . . . . . 27 4.2.4 VoltageRegulator . . . . . . . . . . . . . . . . . . . . . . 28 vii viii Contents 5 DesignofIn-situDelayMonitors . . . . . . . . . . . . . . . . . . . . 31 5.1 Delay-ElementBasedPre-ErrorFlip-Flop . . . . . . . . . . . . . 31 5.2 Duty-CycleBasedPre-ErrorFlip-Flops . . . . . . . . . . . . . . . 34 5.2.1 DynamicImplementation . . . . . . . . . . . . . . . . . . 35 5.2.2 StaticImplementation . . . . . . . . . . . . . . . . . . . . 39 5.3 ComparisonofIn-situDelayMonitors . . . . . . . . . . . . . . . 41 6 ModelingtheAVSControlLoop . . . . . . . . . . . . . . . . . . . . 45 6.1 SimulationMethodology . . . . . . . . . . . . . . . . . . . . . . 45 6.2 MarkovModelofthePre-ErrorAVSSystem . . . . . . . . . . . . 48 6.2.1 StatisticsoftheVoltageControl . . . . . . . . . . . . . . . 48 6.2.2 PowerSaving . . . . . . . . . . . . . . . . . . . . . . . . 54 6.2.3 TimingErrorRate . . . . . . . . . . . . . . . . . . . . . . 55 6.3 StabilityoftheControlLoop . . . . . . . . . . . . . . . . . . . . 57 7 EvaluationofthePre-ErrorAVSApproach . . . . . . . . . . . . . . 61 7.1 PowerSavingPotentialandReliability . . . . . . . . . . . . . . . 61 7.1.1 VoltageAdaptationUnderGlobalVariations . . . . . . . . 61 7.1.2 TotalPowerSavingswithPre-ErrorAVS . . . . . . . . . . 64 7.1.3 VoltageAdaptationUnderLocalVariations . . . . . . . . . 65 7.1.4 RoleofIn-situDelayMonitors . . . . . . . . . . . . . . . 65 7.2 ApplicationofPre-ErrorAVSforanImageProcessingCircuit . . . 67 7.2.1 DiscreteCosineTransform(DCT)Circuit . . . . . . . . . 68 7.2.2 PowerandPerformanceAnalysis . . . . . . . . . . . . . . 69 8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 A.1 MathematicalDerivation:PathDelayUnderLocalVariations . . . 77 A.2 Two-DimensionalDCTTransform . . . . . . . . . . . . . . . . . 77 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Abbreviations and Symbols Abbreviations AVS AdaptiveVoltageScaling BTI BiasTemperatureInstability CD CriticalDimension CLK Clocksignalfordigitallogic DC-DC DirectCurrenttoDirectCurrent DCT DiscreteCosineTransform DFT DiscreteFourierTransform DIBL Drain-InducedBarrierLowering DVFS DynamicVoltageFrequencyScaling DVS DynamicVoltageScaling EDA ElectronicDesignAutomation FF Flip-Flop FO Fan-Out HCI HotCarrierInjection HDL HardwareDescriptionLanguage IC IntegratedCircuit IDCT InverseDiscreteCosineTransform ITRS InternationalTechnologyRoadmapforSemiconductors LDO Low-Dropout LER LineEdgeRoughness LLN LawofLargeNumbers MC Monte-Carlo MOSFET Metal-Oxid-SemiconductorField-Effect-Transistor NBTI NegativeBiasTemperatureInstability OPC OpticalProximityCorrection PBTI PositiveBiasTemperatureInstability PCM ProcessControlMonitoring PSM Phase-ShiftMasks PVT Process,VoltageandTemperature PVTA Process,Voltage,TemperatureandAging ix x AbbreviationsandSymbols PWCL Pulse-WidthControlLoop RDF RandomDopantFluctuations RTL Register-TransferLevel SoC System-on-Chip SPICE SimulationProgramwithIntegratedCircuitEmphasis STA StaticTimingAnalysis TGMS Transmission-GateMaster-Slave TOX ThicknessofthegateOxid VHDL Very-high-speedintegratedcircuitHardwareDescriptionLanguage Symbols a FittingparameterfortheCMOSdelaymodel α Switchingactivityindigitalcircuits A Matchingparameterfortransistorcurrent Δk/k A Matchingparameterforthresholdvoltage ΔVt b FittingparameterfortheCMOSdelaymodel b DigitsoftheVoltageLevelcontrolword i C Perunitareaoxidecapacitance ox C Loadcapacitanceoftheswitchinggates switch ΔV VoltagestepsizeoftheAVSregulator DD ΔV Voltagebounceduetodi/dtnoise di/dt ΔV VoltagebounceduetoIR-drop IRdrop ΔP Uncertaintyofthetimingerrorrate err f Clockfrequency i Time-varyingcurrent I DrainCurrent D I Leakage/staticcurrent leak I Off-statecurrentofMOSFETs off I On-statecurrentofMOSFETs on k CurrentfactorofMOSFETs L Transistorlength L Parasiticinductance parasitic μ Carriermobility N Numberofclockcyclesperobservationinterval nlimit↓ Lowerthresholdforthepre-errorcount nlimit↑ Upperthresholdforthepre-errorcount n Pre-errorcountduringanobservationinterval pre n Meanpre-errorcountduringanobservationinterval pre P Markovmatrix P Timingerrorrate err P Nominaltimingerrorrate err,nom P Dynamicpowerconsumptionofdigitalcircuits dyn π Stationary(steady-state)probabilityvector P Leakage/Staticpowerconsumptionofdigitalcircuits leak P Pre-errorprobability pre P Totalpowerconsumptionofdigitalcircuits total AbbreviationsandSymbols xi P ProbabilityforacertainvoltagelevelV VDD DD PVDD↓ ProbabilitythatthesupplyvoltageVDD isdecreased PVDD→ ProbabilitythatthesupplyvoltageVDD ismaintained PVDD↑ ProbabilitythatthesupplyvoltageVDD isincreased R Resistanceofthepowergrid grid σ Standarddeviation τ Timeconstantofthevoltageregulator t Pathdelay d t Maximumpathdelay d,max t Gatedelay gate T Temperature T Clockperiod Clk T Lengthofthepre-errordetectionwindow pre T Setuptime setup T Timingslack slack V Supplyvoltage DD V Nominalsupplyvoltage DD,nom V DrainSourceVoltage DS V GateSourceVoltage GS V Referencevoltage ref V Thresholdvoltage t W Transistorwidth

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.