ebook img

Variable Structure Systems with Application to Economics and Biology: Proceedings of the Second US-Italy Seminar on Variable Structure Systems, May 1974 PDF

329 Pages·1975·7.89 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Variable Structure Systems with Application to Economics and Biology: Proceedings of the Second US-Italy Seminar on Variable Structure Systems, May 1974

Lecture Notes in Economics and Mathematical Systems (Vol. 1-15: Lecture Notes in Operations Research and Mathematical Economics, Vol. 16-59: Lecture Notes in Operations Research and Mathematical Systems) Vol. 1: H. BOhlmann, H. Loeffel, E. Nievergel!, Einliihrung in die Vol. 30: H. Noltemeier, SensitiviUitsanalyse bei diskreten linearen Theorie und Praxis der Entscheidung bei Unsicherheit. 2. Auflage, Optimierungsproblemen. VI, 102 Seiten. 1970. DM 18,- IV, 125 Seiten. 1969. DM 18,- Vol. 31: M. KOhlmeyer, Die nichtzentrale t-Verteilung. II, 106 Sei- Vol. 2: U. N. Bhat, A Study of the Queueing Systems M/G/I and ten. 1970. DM 18,- GIIM1. VIII, 78 pages. 1968. DM 18,- Vol. 32: F. Bartholomes und G. Hotz, Homomorphismen und Re- Vol. 3: A Strauss, An Introduction to Optimal Control Theory. duktionen linearer Sprachen. XII, 143 Seiten. 1970. DM 18,- Out of print Vol. 33: K. Hinderer, Foundations of Non-stationary Dynamic Pro- Vol. 4: Branch and Bound: Eine Einfiihrung. 2., geanderte Auflage. gramming with Discrete Time Parameter. VI, 160 pages. 1970. Herausgegeben von F. Weinberg. VII, 174 Seiten. 1973. DM 20,- DM18,- Vol. 5: L. P. Hyvarinen, Information Theory for Systems Engineers. Vol. 34: H. Stormer, Semi-Markoff-Prozesse mit endlich vielen VII, 205 pages. 1968. DM 18,- Zustiinden. Theorie und Anwendungen. VII, 128 Seiten. 1970. DM18,- Vol. 6: H. P. KOnzi, O. MOiler, E. Nievergel~ EinfOhrungskursus in die dynamische Programmierung. IV, 103 Seiten. 1968. DM 18,- Vol. 35: F. Ferschl, Markovketten. VI, 168 Seiten. 1970. DM 18,- Vol. 7: W. Popp, EinfOhrung in die Theorie der Lagerhaltung. VI, Vol. 36: M. J. P. Magill, On a General Economic Theory of Motion. 173 Seiten. 1968. DM 18,- VI, 95 pages. 1970. DM 18,- Vol. 8: J. Teghem, J. Loris-Teghem, J. P. Lambotte, Modeles Vol. 37: H. MOlier-Merbach, On Round-Off Errors in Linear Pro- d'Attente M/G/I et GIiM/l a Arrivees et Services en Groupes. IV, gramming. V,.48 pages. 1970. DM 18,- 53 pages. 1969. DM 18,- Vol. 38: Statistische Methoden I. Herausgegeben von E. Walter. Vol. 9: E. Schultze, Einfiihrung in die mathematischen Grundlagen VIII, 338 Seiten. 1970. DM 24,- der Informationstheorie. VI, 116 Seiten. 1969. DM 18,- Vol. 39: Statistische Methoden II. Herausgegeben von E. Walter. Vol. 10: D. Hochstiidter, Stochastische Lagerhaltungsmodelle. VI, IV,157 Seiten. 1970. DM 18,- 269 Seiten. 1969. DM 20,- Vol. 40: H. Drygas, The Coordinate-Free Approach to Gauss- Vol. 11/12: Mathematical Systems Theory and Economics. Edited Markov Estimation. VIII, 113 pages. 1970. DM 18,- by H. W. Kuhn and G. P. Szego. VIII, IV, 486 pages. 1969. DM 38,- Vol. 41: U. Ueing, Zwei Losungsmethoden fOr nichtkonvexe Pro- Vol. 13: Heuristische Planungsmethoden. Herausgegeben von grammierungsprobleme. IV, 92 Seiten. 1971. DM 18,- F. Weinberg und C. A Zehnder. II, 93 Seiten. 1969. DM 18,- Vol. 42: A V. Balakrishnan, Introduction to Optimization Theory in Vol. 14: Computing Methods in Optimization Problems. 191 pages. a Hilbert Space. IV, 153 pages. 1971. DM 18,- 1969. DM 18,- Vol. 43: J.A Morales, Bayesian Full Information Structural Analy- Vol. 15: Economic Models, Estimation and Risk Programming: sis. VI, 154 pages. 1971. DM 18,- Essays in Honor of Gerhard Tintner. Edited by K. A. Fox, G. V. L. Vol. 44, G. Feichtinger, Stochastische Modelle demographischer Narasimham and J. K. Sengupta. VIII, 461 pages. 1969. DM 27,- Prozesse. XIII, 404 Seiten. 1971. DM 32,- Vol. 16: H. P. KOnzi und W. Oettli, Nichtlineare Optimierung: Vol. 45: K. Wendler, Hauptaustauschschritte (Principal Pivoting). Neuere Verfahren, Bibliographie. IV, 180 Seiten. 1969. DM 18,- 11,64 Seiten. 1971. DM 18,- Vol. 17: H. Bauer und K. Neumann, Berechnung optimaler Steue- Vol. 46: C. Boucher, Le<;ons sur la theorie des automates ma- rungen, Maximumprinzip und dynamische Optimierung. VIII, 188 thematiques. VIII, 193 pages. 1971. DM 20,- Seiten. 1969. DM 18,- Vol. 47: H. A Nour Eldin, Optimierung linearer Regelsysteme Vol. 18: M. Wolff, Optimale Instandhaltungspolitiken in einfachen mit quadratischer Zielfunktion. VIII, 163 Seiten. 1971. DM 18,- Systemen. V, 143 Seiten. 1970. DM 18,- Vol. 48: M. Constam, FORTRAN liir Anfanger. 2. Auflage. VI, Vol. 19: L. P. Hyvarinen, Mathematical Modeling for Industrial Pro-. 148 Seiten. 1973. DM 18,- cesses. VI, 122 pages. 1970. DM 18,- Vol. 49: Ch. SchneeweiB, Regelungstechnische stochastische Vol. 20: G. Uebe, Optimale FahrpUine. IX, 161 Seiten. 1970. Optimierungsverfahren. XI, 254 Seiten. 1971. DM 24,- DM 18,- Vol. 50: Unternehmensforschung Heute - Obersichtsvortrage der Vol. 21: Th. Liebling, Graphentheorie in Planungs- und Touren- ZOricher Tagung von SVOR und DGU, September 1970. Heraus- problemen am Beispiel des stiidtischen StraBendienstes. IX, gegeben von M. Beckmann. IV, 133 Seiten. 1971. DM 18,- 118 Seiten. 1970. DM 18,- Vol. 51: Digitale Simulation. Herausgegeben von K. Bauknecht Vol. 22: W. Eichhorn, Theorie der homogenen Produktionsfunk- und W. Nef. IV, 207 Seiten. 1971. DM 20,- tion. VIII, 119 Seiten. 1970. DM 18,- Vol. 52: Invariant Imbedding. Proceedings of the Summer Work- Vol. 23: A Ghosal, Some Aspects of Queueing and Storage shop on Invariant Imbedding Held at the University of Southern Systems. IV, 93 pages. 1970. DM 18,- California, June-August 1970. Edited by R. E. Bellman and E. D. Vol. 24: Feichtinger Lernprozesse in stochastischen Automaten. Denman. IV, 148 pages. 1971. DM 18,- V, 66 Seiten. 1970. DM 18,- Vol. 53: J. RosenmOller, Kooperative Spiele und Markle. IV, 152 Seiten. 1971. DM 18,- Vol. 25: R. Henn und O. Opitz, Konsum- und Produktionstheorie. I. II, 124 Seiten. 1970. DM 18,- Vol. 54: C. C. von Weizsacker, Steady State Capital Theory. III, 102 pages. 1971. DM 18,- Vol. 26: D. Hochstiidter und G. Uebe, Okonometrische Methoden. XII, 250 Seiten. 1970. DM 20,- Vol. 55: P. A V. B. Swamy, Statistical Inference iQ Random Coef- ficient Regression Models. VIII, 209 pages. 1971. DM 22,- Vol. 27: I. H. Mufti, Computational Methods in Optimal Control Vol. 56: Mohamed A EI-Hodi ri, Constrained Extrema. Introduction Problems. IV, 45 pages. 1970. DM 18,- to the Differentiable Case with Economic Applications. III, 130 Vol. 28: Theoretical Approaches to Non-Numerical Problem Sol- pages. 1971. DM 18,- ving. Edited by R. B. Banerji and M. D. Mesarovic. VI, 466 pages. Vol. 57: E. Freund, Zeitvariable MehrgroBensysteme. VIII,160 Sei- 1970. DM27,- ten. 1971. DM 20,- Vol. 29: S. E. Elmaghraby, Some Network Models in Management Vol. 58: P. B. Hagelschuer, Theorie der linearen Dekomposition. Science. III, 176 pages. 1970. DM 18,- VII, 191 Seiten. 1971. DM 20,- continuation on page 322 Lectu re Notes in Economics and Mathematical Systems Managing Editors: M. Beckmann and H. P. Kunzi Systems Theory 111 Variable Structure Systems with Application to Economics and Biology Proceedings of the Second US-Italy Seminar on Variable Structure Systems, May 1974 Edited by A Ruberti and R. R. Mohler Springer-Verlag Berlin· Heidelberg· New York 1975 Editorial Board H. Albach· A V. Balakrishnan· M. Beckmann (Managing Editor) . P.Dhrymes J. Green • W. Hildenbrand . W. Krelle . H. P. Kunzi (Managing Editor) • K Ritter R. Sato . H. Schelbert . P. Schonfeld Managing Editors Prof. Dr. M. Beckmann Prof. Dr. H. P. Kunzi Brown University Universitat Zurich Providence, RI 02912/USA 8090 Zurich/Schweiz Editors Dr. A Ruberti Istituto di Automatica Universita Roma 00184 Roma Italy Dr. R. R. Mohler Oregon State University Dept. of Electrical and Computer Engineering Corvallis, Oregon 97331 USA AMS Subject Classifications (1970): 90 A XX, 90CXX, 92A05, 92A 15, 93AXX, 93BXX ISBN 978-3-540-07390-1 ISBN 978-3-642-47457-6 (eBook) 001 10.1007/978-3-642-47457-6 This work is subject to copyright. All rights are reserved. whether the whole or part of the material is concerned. specifically those of translation. reprinting. re-use of illustrations. broadcasting. reproduction by photo- copying machine or similar means. and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use. a fee is payable to the publisher. the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin· Heidelberg 1975 PREFACE The proceedings of the Second US-Italy Seminar on Variable Structure Systems is published in this volume. Like the first seminar, its conception evolved from common research interests on bilinear systems at the Istituto di Automatica of Rome University and at the Electrical and Computer Engineering Department of Oregon State University. Again, the seminar was focused on variable structure systems in general. In this case, however, emphasis is given to applications in biology and economics along with theoretical investi- gations which are so necessary to establish a unified theory and to motivate further developments in these applications of social significance. By bringing together the talents of social and biological scientists with those of engineers and mathematicians from throughout Italy and the United States, the seminar was intended to yield a cross-pollination of significant results and a base for more meaningful future research. The editors are encouraged by the progress, with which they hope the reader will agree, is made in this direction. No pretense is made, however, that completely satisfactory integration of theore- tical results and applications has been accomplished at this time. Among the more important conclusions which have resulted from this seminar are that bilinear and more general variable structure models arise in a natural manner from basic principles for certain biological and economic processes. Interesting results have been achieved on representation, identification and control theory for bilinear systems. Nevertheless, much remains to be done on a number of problems in such areas as control system design, analysis and compari- son of different abstract representations, analysis of structural properties (including controllability, stability, and so on), and identification with additive input noise. The control problem for bilinear systems naturally leads to a feedback structure and therefore to more complex types of systems (for instance, with quadratic terms in the differential equation). Similarly, these systems appear in modeling biological and socio-economic processes with built-in control mechanisms. Thus, the investigation of these classes of systems seems to be the natural development of the research on bilinear systems, within the wider frame- work of variable structure systems. The Editors wish to thank the Consiglio Nazionale delle Ricerche and the National Science Foundation for their support of this seminar as a part of the US-Italian Cultural Program. Also, sincere appreciation is extended to all colleagues and friends who collaborated to make this a successful venture. CONTENTS Stochastic Bilinear Partial Differential Equations A. V. Balakrishnan, University of California, Los Angeles, California Time-Varying Bilinear Systems .... 44 A. Isidori, A. Ruberti, Universita di Roma, Rome, Italy ...... 54 On the Reachable Set for Bilinear Systems R. Brockett, Harvard University, Cambridge, Massachusetts Algebraic Realization Theory of Two-Dimensional Filters ..•••.....•.•..•... 64 E. Fornasini, G. Marchesini, Universita di Padova, Padova, Italy Controllability of Bilinear Systems .•..........••........••......•..•. 83 G-S. J. Cheng, T. J. Tarn, D. L. Elliott, Washington University, St. Louis, Missouri Periodic Control of Singularly Perturbed Systems •.....••..•.•.•..•.•.... 101 G. Guardabassi, A. Locatelli, Politecnico di Milano, Milan, Italy Estimation for Bilinear Stochastic Systems ..•..••.•...•..•••..••..••.•• 116 A. Willsky, Steven I. Marcus, Massachusetts Institute of Technology, Cambridge, Massachusetts A Probabilistic Approach to Identifiability ..••.•••.••.••..•.•..•.•...• 138 G. Picci, Universita di Padova, Padova, Italy Some Examples of Dynamic Bilinear Models in Economics .•••...•...••..•••• 163 M. Aoki, University of Illinois, Urbana, Illinois Bilinearity and Sensitivity in Macroeconomy •.•.•..••.•.••••.•..•••••.. 170 P. d'Alessandro, Universita di Roma, Rome, Italy VI Variable Parameter Structures in Technology Assessment and Land Use ...••••• 200 H. Koenig, Michigan State University, East Lansing, Michigan An Optimization Study of the Pollution Subsystem of the World Dynamics Model .206 L. Mariani, Universita di Padova, Padova, Italy B. Nicoletti, Universita di Napoli, Naples, Italy A Basis for Variable Structure Models in Human Biology •.•.•.•••••..•••••• 233 R. Mohler, Oregon State University, Corvallis, Oregon The Inmllme Response as a Variable Structure System ...••••..•.••••••••••• 244 C. Bruni, M. Giovenco, G. Koch, R. Strom, Universita di Roma, Rome, Italy Nonlinear Systems in Models for Enzyme Cascades ••••..•..•.••.•.••..•••• 265 H. T. Banks, R. P. Miech, D. J. Zinberg, Brown University, Providence, Rhode Island Mathematical Model of the Peripheral Nervous Acoustical System: Applications to Diagnosis and Prostheses .......•...•...........•••.•...•.•.•.•... 278 E. Biondi, F. Grandori, Politecnico di Milano, Milan, Italy A Systems Analysis of Cerebral Dehydration •.•.•••••••..••••...••••••..• 299 R. Bell, University of California, DaviS, California STOCHASTIC BILINEAR PARI'IAL DIFFERENTIAL EQUATIONS A. V. Balakrishnan System Science DepariJnent University of California Los Angeles, California Abstract: We prove existence and uniqueness theorems for a class of partial differential equations with a bilinear stochastic forcing term. We give both white noise and Wiener process [Ito integral] versions and indicate the inter- relationships. Another feature is the use of semigroup theory, in contrast to the Lions-Magenes variational theory. 1. Introduction Let us begin with a simple example in one spatial variable x, of the kind of sto- chastic bilinear partial differential equations wehave in mind: + f(t,x) n(t,x); 0 < t, x £ ~ <:t. .1) (!1l being an open interval of the real line ) with appropriate initial conditions and boundary conditions such that the Cauchy problem: = o < t; x £ !1l 0.2) has a unique solution with the usual continuity properties in t. The rrain question then concerns the bilinear forcing term n(t,x) which we wish to allow to be 'white noise'. If we fix the point x in~, we should clearly get white Gaussian noise in the time variable t. Also, if we keep t fixed, and take ~ distinct space points ~,x2' then n(t,~), n(t,x2) should be stochastically independent. On the other hand, we already know that for fixed t and x n(t,x) will have infinite variance, so that such 'pointwise' stateIrents must be suitably IIDdified. In the Wiener process IIDdel, this is in effect accomplished by going to the 'integral' version. In this paper we shall retain the 'differential' form 2 (1.1), far various :reasons, some of which will hopefully be clearer as we proceed. In the first place we assUJre that n(t,x) for each 'realization' is such that it is lebesgue measurable and square integrable in the cross-product space H x [0 < t < T], the t:iJIe interval being fixed and finite throughout. Let H demte the Hilbert space L2 (!il) • Then net,. ) e: H a.e. in t, 0 < t < T, and n( ... )e:W = L2(0,T);H) For any h( ... ) in W, we should then have that En, h] is Gaussian, [,] denoting inner product in W (and IIDre.genemllly in any Hilbert space we lIB.y be working with), with variance where d denotes the constant corresponding to the mise spectral density. Further, the independence properties lIB.y now be stated as: for any g, h e: W, [n,h] and [n,g] are jointly Gaussian with E( [n,h] • [n,g]) = [g,h] E denoting 'expectation'. Thus, given the distinct points (tl''')' (t2 ,x2) we can find functions 'approximating' delta functions as closely as we wish at these points, even of the product form if necessary, say respectively, such that their inner-product in W is zero. It is natural then also to set (1. 2) as an abstract Cauchy problem in H, or in other words as a semigroup equation, the solution far each t being in H: 3 df = A f(t) df where A is the differential operator in (1. 2) with the given bo\ll1dary conditions and has to be the infinitesimal generator of a semigroup operators, strongly continuous at the origin. Using the notation B(f,n) to denote the product function f(x) n(x) ,each being an elerrent of M, we nay then rewrite (1.1) as an abstract 'first-order' equations in H: df = A f(t) + B(f(t), n(t» o < t < T (1. 3) df where n(.) e:: W. This then is essence is the abstract setting we shall employ. We shall study both Ito solutions (see [1] for a version of the Ito solution in the case where H is finite d:iJrensional) as well as white noise solutions. The fundamental notions con- cerning Ito ingegrals and white noise integrals are introduced in Section 2. The Ito solution is described in Section 3 and the (extended) white noise solu- tion in Section 4 where also SOlIe of the interrelationships between the two solutions are described. 2. WIll te Noise: Fundamental Notions Because the use of the white noise concept is unique with this presentation and is basic to the discussion of solutions to non-linear equations, we shall begin by a brief exposition of the relevant ideas. Let H be a real separable Hilbert space; even the finite dimensional case is not without interest. Let Then of course W is also a similar real separable Hilbert space. We shall use 4 [ , ] to denote the :inner product in all Hilbert spaces involved. For f, g in W, let us note that T [f ,g] = J [f(t), g(t)] dt o We invoke a 'Function Space' definition of the 'white noise' processes. Thus any elenent of W will be a white noise sample functi6n or sample point. We shall use the generic notation: W , to denote sample point. Each w then is an elenent of W, with corresponding function w (t) , 0 < t < T, which is defined a. e. in t as an elenent of H, ani for each elenent h in H lJAJ(t), h] is a Lebesgue measurable function of t, and square integrable in [0, T] • As with any Lebesgue measurable function, we cannot talk about the value at any fixed t, for arbitrary w. We nrust define next (to complete the definition of a Function Space stochastic process) a sigrIa-algebra of sets. This will be the sigrIa alge- bra of Borel sets in H. This sigrIa-algebra is generated by the class of all open sets in H. Finally we nrust define a measure on this sigrIa-algebra. Here is where the peculiarity of the 'white noise' notion come in. We shall be able to define only a 'weak distribution' or a measure on cylinder sets (with bases in finite dimensional subspaces), and co\mtably additive on cylinder sets with bases in the same finite dimensional subspace. Put another way, let B be a Borel set in W; then for each finite-dimensional subspace En' the measure of is defined and countably additive for each fixed n. Thus we cannot in general talk about the probability of the event B but only of the finite-dimensional 'cress-section' Let ~ denote such a meaS)Jre. If h is an art>it raIy element of W, then [w, h]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.