ebook img

Variable Lebesgue Spaces and Hyperbolic Systems PDF

173 Pages·2014·1.652 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Variable Lebesgue Spaces and Hyperbolic Systems

Advanced Courses in Mathematics CRM Barcelona David Cruz-Uribe Alberto Fiorenza Michael Ruzhansky Jens Wirth Variable Lebesgue Spaces and Hyperbolic Systems Advanced Courses in Mathematics CRM Barcelona Centre de Recerca Matemàtica Managing Editor: Carles Casacuberta More information about this series at http://www.springer.com/series/5038 David Cruz-Uribe • Alberto Fiorenza Michael Ruzhansky • Jens Wirth Variable Lebesgue Spaces and Hyperbolic Systems Editor for this volume: Sergey Tikhonov (ICREA and CRM Barcelona) David Cruz-Uribe Alberto Fiorenza Department of Mathematics Dipartimento di Architettura Trinity College Università di Napoli Federico II Hartford, CT, USA Napoli, Italy Michael Ruzhansky Jens Wirth Department of Mathematics Fachbereich Mathematik Imperial College London Universität Stuttgart London, United Kingdom Stuttgart, Germany ISBN 978-3-0348-0839-2 ISBN 978-3-0348-0840-8 (eBook) DOI 10.1007/978-3-0348-0840-8 Springer Basel Heidelberg New York Dordrecht London Library of Congress Control Number: 2014945352 Mathematics Subject Classification (2010): Primary: 35B45, 42B20, 42B25, Secondary: 35L30, 35L45, 42B35 © Springer Basel 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer Basel is part of Springer Science+Business Media (www.birkhauser-science.com) Foreword This book contains expository lecture notes for two of the courses given under the title Advanced Courses on Approximation Theory and Fourier Analysis in the Centre de Recerca Matem`atica, Bellaterra, Barcelona, from November 7 to 11, 2011. These courses were among the main activities of a six-month research program on Approximation Theory and Fourier Analysis. Five courses were delivered by David Cruz-Uribe (Trinity College) on vari- able Lebesgue spaces, Feng Dai (University of Alberta) on weighted polynomial approximation on the sphere, Michael Ruzhansky (Imperial College London) on the asymptotic behaviour of solutions to hyperbolic partial differential equations, VladimirTemlyakov(UniversityofSouthCarolina)ongreedyapproximation,and Yuan Xu (University of Oregon) on approximation theory and harmonic analysis on the unit sphere. This book contains expanded versions of the lectures on variable Lebesgue spacesbyDavidCruz-Uribeandthelecturesonasymptoticsforhyperbolicsystems by Michael Ruzhansky. The lectures by Vladimir Temlyakov, Feng Dai, and Yuan Xu will be published in separate volumes of this series. The lectures by Cruz-Uribe (written jointly with Alberto Fiorenza) offer an introductiontothetheoryofvariableLebesguespacesLp(·) andcoverawiderange of topics including boundedness properties of the Hardy–Littlewood maximal op- erator, convolution operators, and norm inequalities for the Riesz potentials. The second part consists of the lectures given by Ruzhansky (written jointly with Jens Wirth) and provides an overview of the asymptotic properties of solutions to hyperbolic partial differential equations and systems with time-dependent co- efficients, containing the presentation of very recent results by the authors on the topic. I am indebted to the Centre de Recerca Matema`tica and its staff for hosting the advanced courses, and would like to express gratitude to Joaquim Bruna for hissupportwiththeorganizationofthecoursesandofthewholeprogram.Iwould also like to thank the authors for their active participation and cooperation. Sergey Tikhonov v Contents Introduction to the Variable Lebesgue Spaces David Cruz-Uribe and Alberto Fiorenza 1 1 Introduction and Motivation 3 1.1 An intuitive introduction . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 A brief history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 Organization of this monograph . . . . . . . . . . . . . . . . . . . . 7 1.5 A word on proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Properties of Variable Lebesgue Spaces 11 2.1 Exponent functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 The modular and the norm . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Convergence and completeness . . . . . . . . . . . . . . . . . . . . 18 2.4 Embeddings and dense subsets . . . . . . . . . . . . . . . . . . . . 22 2.5 H¨older’s inequality, the associate norm and duality . . . . . . . . . 25 2.6 The Lebesgue differentiation theorem. . . . . . . . . . . . . . . . . 33 3 The Hardy–Littlewood Maximal Operator 35 3.1 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 The maximal operator on Lp, 1≤p<∞ . . . . . . . . . . . . . . 36 3.3 The maximal operator on variable Lebesgue spaces . . . . . . . . . 41 3.4 The necessity of the hypotheses in Theorem 3.15 . . . . . . . . . . 46 3.5 Weakening the hypotheses in Theorem 3.15 . . . . . . . . . . . . . 52 3.6 Modular inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4 Extrapolation in Variable Lebesgue Spaces 57 4.1 Convolution operators and approximate identities . . . . . . . . . . 58 4.2 The failure of Young’s inequality in Lp(·) . . . . . . . . . . . . . . . 59 4.3 Approximate identities on variable Lebesgue spaces . . . . . . . . . 61 4.4 Muckenhoupt weights and weighted norm inequalities . . . . . . . 65 4.5 Rubio de Francia extrapolation . . . . . . . . . . . . . . . . . . . . 68 4.6 Applications of extrapolation . . . . . . . . . . . . . . . . . . . . . 74 vii viii Contents Bibliography 83 Asymptotic Behaviour of Solutions to Hyperbolic Equations and Systems Michael Ruzhansky and Jens Wirth 91 1 Introduction 93 1 Energy and dispersive estimates. . . . . . . . . . . . . . . . . . . . 93 2 Equations with constant coefficients . . . . . . . . . . . . . . . . . 94 3 Stationary phase estimates . . . . . . . . . . . . . . . . . . . . . . 96 2 Equations with constant coefficients 99 1 Formulation of the problem . . . . . . . . . . . . . . . . . . . . . . 99 2 Combined estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 100 3 Properties of hyperbolic polynomials . . . . . . . . . . . . . . . . . 104 4 Estimates for oscillatory integrals . . . . . . . . . . . . . . . . . . . 107 3 Some interesting model cases 111 1 Scale invariant weak dissipation . . . . . . . . . . . . . . . . . . . . 111 1.1 Reduction to special functions . . . . . . . . . . . . . . . . 111 1.2 High frequency asymptotics . . . . . . . . . . . . . . . . . . 113 1.3 Low frequency asymptotics . . . . . . . . . . . . . . . . . . 114 1.4 Notions of sharpness . . . . . . . . . . . . . . . . . . . . . . 115 2 Scale invariant mass terms . . . . . . . . . . . . . . . . . . . . . . . 116 4 Time-dependent hyperbolic systems 119 1 Motivating examples . . . . . . . . . . . . . . . . . . . . . . . . . . 119 2 Symbol classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 3 Uniformly strictly hyperbolic systems . . . . . . . . . . . . . . . . 122 4 Diagonalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.1 Initial step . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.2 The diagonalisation hierarchy . . . . . . . . . . . . . . . . . 125 4.3 Zone constants and invertibility . . . . . . . . . . . . . . . . 126 5 Solving the diagonalised system . . . . . . . . . . . . . . . . . . . . 127 5.1 Treating the diagonal terms . . . . . . . . . . . . . . . . . . 127 5.2 Generalised energy conservation . . . . . . . . . . . . . . . 128 5.3 Perturbation series arguments . . . . . . . . . . . . . . . . . 129 6 Examples and resulting representations of solutions . . . . . . . . . 131 6.1 Symmetric hyperbolic systems . . . . . . . . . . . . . . . . 132 6.2 Second-order equations . . . . . . . . . . . . . . . . . . . . 133 7 Dispersive estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.1 Contact indices for families of surfaces . . . . . . . . . . . . 135 7.2 Estimates for t-dependent Fourier integrals . . . . . . . . . 136 Contents ix 7.3 Extensions to fully variable setting . . . . . . . . . . . . . . 139 8 An alternative low-regularity approach: asymptotic integration . . 140 5 Effective lower order perturbations 143 1 The diffusion phenomenon . . . . . . . . . . . . . . . . . . . . . . . 143 2 Diagonalisation for small frequencies . . . . . . . . . . . . . . . . . 145 2.1 Initial step . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 2.2 The diagonalisation hierarchy . . . . . . . . . . . . . . . . . 148 3 Asymptotic integration and small frequency expansions . . . . . . 150 4 Lyapunov functionals and parabolic type estimates . . . . . . . . . 151 5 A diffusion phenomenon for partially dissipative hyperbolic systems 153 6 Examples and counter-examples 157 1 Parametric resonance phenomena . . . . . . . . . . . . . . . . . . . 157 2 Construction of coefficients and initial data . . . . . . . . . . . . . 159 7 Related topics 163 Bibliography 165

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.