Vanadium and Molybdenum Complexes with Amino Acid Functionalized Ligands DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Chemisch-Geowissenschaftlichen Fakulta¨t der Friedrich-Schiller Universit¨at Jena von Food Chemist Manjola Mancka geboren am 17.04.1978 in Devoll, Albania Gutachter 1. Prof. Dr. Winfried Plass 2. Prof. Dr. Matthias Westernhausen Tag der o¨ffentlichen Verteidigung: October 18th 2006 For my beloved parents and my Family Acknowledgements • I would like to express my heartfelt gratitude to my supervisor Prof. Dr. Winfried Plass for giving me the opportunity to work in this interesting field, I thank him for support, advises and guidance. • I also thank to Dr. Axel Buchholz, for many valuable suggestions, for much help in the single crystal analysis, and for his help in the arrangement of the thesis. • I am grateful to our research group with whom I had the pleasure of working, for their friendship, helpful discussions, and the good co-operative atmosphere. I also thank to my colleague Arne Roth for helping me in solving LATEX problems. I would like to thank Ines Seidel for many valuable discussions about the kinetic experiments. • I moreover thank all Technical assistants of the Institut fu¨r Anorganische und Ana- lytische Chemie (IAAC) and NMR department for analyses of the samples: Dr. Popitz, Frau Scho¨nau und Frau Heineck (MS), Frau Rambach und Dr. Friedrich (NMR, EPR), Frau Lentvogt und Frau Scho¨nfeld (CHN). • Many thanks to Lotte Neupert for the HPLC measurements. • I am especially pleased to acknowledge Dr. Helmar Go¨rls for measuring my X-ray crystal structures. • Finally, I would like to thank my parents Seri and Hava, my sisters Anila and Amoleza, as well as my brother Ardi, especially my husband, Anton, for their con- tinued moral support, patience and encouragement. They are the most important people in my life and they have been with me every step of the way. Contents 1 Introduction 11 1.1 History of vanadium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Vanadium haloperoxidases . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3 Phosphate-Vanadate-Analogy . . . . . . . . . . . . . . . . . . . . . . . . 19 1.4 Structural models for vanadium-dependent haloperoxidases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5 Design of new ligand system . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.6 History and occurrence of molybdenum . . . . . . . . . . . . . . . . . . . 23 2 V(v)-Complexes with Boc-L-α-amino acid ligands 27 2.1 Synthesis and Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.2 Structural characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3 Spectroscopic Characterization . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4 Reactivity of the complexes . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.4.1 Bromination reaction of TMB/MCD . . . . . . . . . . . . . . . . 39 2.4.2 Catalytic oxidation of sulfides catalyzed by cis-dioxovanadium(v) complexes . . . . . . . . . . . . . . . . . . 40 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.6 Experimental Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.6.1 Synthesis of the Schiff base ligands with Boc-L-α-serine residue . 45 2.6.2 Synthesis of N-salicylidene-Boc-L-α-histidine-hydrazide (HsalhyBochis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.6.3 Synthesis of the Schiff base ligands with Boc-L-α-tryptophan residue . . . . . . . . . . . . . . . . . . . . . 48 5 6 CONTENTS 2.6.4 Synthesis of the Schiff base ligands with Boc-L-α-phenylalanine residue . . . . . . . . . . . . . . . . . . . . 50 2.6.5 Synthesis of cis-dioxovanadium(v)-complexes with Boc-L-α-serine residue ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.6.6 Synthesisofcis-dioxovanadium(v)-complexeswithBoc-L-α-histidine residue ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.6.7 [VO (HsalhyBochis)] (5) . . . . . . . . . . . . . . . . . . . . . . . 56 2 2.6.8 Synthesisofcis-dioxovanadium(v)-complexeswithBoc-L-α-tryptophan residue ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.6.9 Synthesisofcis-dioxovanadium(v)-complexeswithBoc-L-α-phenylalanine residue ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.6.10 SynthesisofmonooxovanadiumcomplexeswithphenylalanineSchiff base ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 2.6.11 Catalytic oxidative bromination of TMB/MCD . . . . . . . . . . 63 2.6.12 General procedure for preparation of chiral sulfoxides: . . . . . . . 64 3 V(v)-complexes with free L-α-amino acid ligands 65 3.1 Synthesis and Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.2 Structural characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.2.1 Complexes with phenylalanine residue (18) . . . . . . . . . . . . . 71 3.2.2 Complexes with tyrosine residue (20a and 20b) . . . . . . . . . . 76 3.2.3 Comparison of the structures 18 and 20b . . . . . . . . . . . . . . 81 3.2.4 Unprecedented complex 21 . . . . . . . . . . . . . . . . . . . . . . 81 3.3 Spectroscopic Characterization . . . . . . . . . . . . . . . . . . . . . . . . 88 3.4 Reactivity of the complexes . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.4.1 Oxidative bromination of 1,3,5-trimethoxybenzene/monochlordimedone . . . . . . . . . . . 92 3.4.2 Oxidation of sulfides catalyzed by cis-dioxovanadium complexes with free amino acid functionalized ligands . . . . . . . . . . . . . 94 3.4.3 Spectrophotometric titration . . . . . . . . . . . . . . . . . . . . . 95 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 CONTENTS 7 3.6 Experimental Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 3.6.1 Synthesis of the Schiff base ligands with L-α-leucine residue . . . 97 3.6.2 Synthesis of the Schiff base ligands with L-α-phenylalanine residue 99 3.6.3 Synthesis of the Schiff base ligands with L-α-tyrosine residue . . . 103 3.6.4 Synthesisofcis-dioxovanadium(v)-complexeswithL-α-leucineresidue ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.6.5 Synthesisofcis-dioxovanadium(v)-complexeswithL-α-phenylalanine residue ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 3.6.6 Synthesisofcis-dioxovanadium(v)-complexeswithL-α-tyrosineresidue ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 3.6.7 Unprecedented obtaining complexes . . . . . . . . . . . . . . . . . 114 3.6.8 Catalytic oxidative bromination of TMB/MCD . . . . . . . . . . 117 3.6.9 Catalytic oxidation of methyl phenyl sulfide: . . . . . . . . . . . . 118 4 V(v)-complexes with L-β-alanine ligands 119 4.1 V-complexes with Boc-L-β-alanine . . . . . . . . . . . . . . . . . . . . . 120 4.1.1 Spectroscopic Characterization . . . . . . . . . . . . . . . . . . . 121 4.1.2 Reactivity of the complexes . . . . . . . . . . . . . . . . . . . . . 123 4.2 Complexation studies using free β-alanine ligand . . . . . . . . . . . . . . 126 4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.4 Experimental part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 4.4.1 Synthesis of Schiff base ligand with Boc-L-β-alanine . . . . . . . . 128 4.4.2 Synthesis of vanadium complexes with Boc-L-β-alanine . . . . . . 130 4.4.3 Synthesis of Schiff base ligand with L-β-alanine . . . . . . . . . . 131 4.4.4 Attempted synthesis of vanadium complexes with L-β-alanine . . 133 4.4.5 Catalytic oxidative bromination of TMB/MCD . . . . . . . . . . 134 4.4.6 Catalytic oxidation of methyl phenyl sulfide . . . . . . . . . . . . 134 5 Mo(VI)-complexes with Boc-amino acid ligands 136 5.1 Molecular structure of complex 36 . . . . . . . . . . . . . . . . . . . . . 137 5.2 Spectroscopic Characterization . . . . . . . . . . . . . . . . . . . . . . . . 140 5.3 Sulfoxidation reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 8 CONTENTS 5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.5 Experimental part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 5.5.1 [MoO (salhyBocser)] (31) . . . . . . . . . . . . . . . . . . . . . . 144 2 5.5.2 [MoO (salhyBoctrp)]·Et O (32) . . . . . . . . . . . . . . . . . . . 145 2 2 5.5.3 [MoO (salhyBocphe)] (33) . . . . . . . . . . . . . . . . . . . . . . 146 2 5.5.4 [MoO (BrsalhyBocphe)] (34) . . . . . . . . . . . . . . . . . . . . . 147 2 5.5.5 [MoO (MesalhyBocphe)] (35) . . . . . . . . . . . . . . . . . . . . 147 2 5.5.6 [MoO (salhyBocala)(MeOH)]·2MeOH (36) . . . . . . . . . . . . . 148 2 5.5.7 Catalytic oxidation of methyl phenyl sulfide: . . . . . . . . . . . . 149 6 Mo(VI)-complexes with free amino acid ligands 151 6.1 Structural characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.1.1 Mo-complex with leucine residue (37) . . . . . . . . . . . . . . . . 152 6.1.2 Mo-complex with phenylalanine residue (39) . . . . . . . . . . . . 155 6.1.3 Mo-complex with tyrosine residue (42) . . . . . . . . . . . . . . . 157 6.2 Spectroscopic Characterization . . . . . . . . . . . . . . . . . . . . . . . . 163 6.3 Sulfoxidation Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 6.5 Experimental part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6.5.1 [MoO (Brsalhyleuacac)(MeOH)] (37) . . . . . . . . . . . . . . . . 167 2 6.5.2 [MoO (Mesalhyphe)] (38) . . . . . . . . . . . . . . . . . . . . . . 167 2 6.5.3 [MoO (Mesalhypheacac)(MeOH)]·2MeOH (39) . . . . . . . . . . . 168 2 6.5.4 [MoO (Brsalhyphe)(MeOH)]·H O (40) . . . . . . . . . . . . . . . 169 2 2 6.5.5 [MoO (Mesalhytyr)]·2H O (41) . . . . . . . . . . . . . . . . . . . 169 2 2 6.5.6 [MoO (Mesalhytyracac)(MeOH)]·2MeOH·Et O (42) . . . . . . . . 170 2 2 6.5.7 Catalytic oxidation of methyl phenyl sulfide . . . . . . . . . . . . 171 7 Summary 172 8 Characterization techniques 180 8.1 Elemental analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 8.2 NMR spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 CONTENTS 9 8.3 Mass spectrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 8.4 Infrared spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 8.5 UV-Vis measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 8.6 HPLC analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 8.7 Crystal structure analyses . . . . . . . . . . . . . . . . . . . . . . . . . . 181 8.8 General Remarks: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 I Crystallographic data 183 II Abbreviations 193 10 CONTENTS
Description: