ebook img

Validation of meteorological analyses and trajectories in the Antarctic lower stratosphere using ... PDF

33 Pages·2017·4.7 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Validation of meteorological analyses and trajectories in the Antarctic lower stratosphere using ...

Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2017-71,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Discussionstarted:17February2017 c Author(s)2017.CC-BY3.0License. (cid:13) Validation of meteorological analyses and trajectories in the Antarctic lower stratosphere using Concordiasi superpressure balloon observations LarsHoffmann1,AlbertHertzog2,ThomasRößler1,OlafStein1,andXueWu1,3 1JülichSupercomputingCentre,ForschungszentrumJülich,Jülich,Germany 2LaboratoiredeMétéorologieDynamique,ÉcolePolytechnique,IPSL,Palaiseau,France 3InstituteofAtmosphericPhysics,ChineseAcademyofSciences,Beijing,China Correspondenceto:L.Hoffmann([email protected]) Abstract. In this study we validated temperatures and horizontal winds of meteorological analyses in the Antarctic lower stratosphere, a region of the atmosphere that is of major interest regarding chemistry and dynamics of the polar vortex. The validationwasperformedwithlong-durationobservationsfrom19superpressureballoonflightsduringtheConcordiasifield campaigninSeptember2010toJanuary2011.OurintercomparisoncoverstheEuropeanCentreforMedium-RangeWeather 5 Forecasts(ECMWF)operationalanalysis,theERA-Interimreanalysis,theModern-EraRetrospectiveanalysisforResearchand Applications(MERRA),andtheNationalCentersforEnvironmentalPredictionandNationalCenterforAtmosphericResearch (NCEP/NCAR)reanalysis.Wefoundthatlarge-scaletemperaturesoftheanalyseshaveameanprecisionof0.4–1.4Kanda warm bias of 0.4–2.1K at about 17–18.5km altitude and 60–85 S. Zonal and meridional winds have a mean precision of ◦ 0.9–2.3ms 1 and a bias below 0.5ms 1 in the same region. Standard deviations related to small-scale fluctuations such − − ± 10 as gravity waves are reproduced at levels of 15–60% for temperature and 30–60% for the horizontal winds. We also used the balloon observations to validate trajectory calculations, where vertical motions of simulated trajectories were nudged to pressuremeasurementsoftheballoonstotakeintoaccountchangesintheoverallmassconfigurationoftheballoon-gondola system.Wefoundrelativehorizontaltransportdeviationsof4.5–12%anderrorgrowthratesof60–170kmday 1for15-day − trajectories.Dispersionsimulationsrevealedsomedifficultieswiththerepresentationofsubgrid-scalewindfluctuationsinour 15 Lagrangiantransportmodel,asthespreadofairparcelssimulatedwithdifferentanalyseswasnotconsistent.Althoughcase studiessuggestthattheaccuracyoftrajectorycalculationsisinfluencedbymeteorologicalcomplexity,diffusiongenerallydoes notcontributesignificantlytotransportdeviationsinouranalysis.Overall,validationresultsaresatisfactoryandcomparewell to earlier studies using superpressure balloon observations. In most cases, best performance was achieved by the ECMWF operationalanalysis,havingthebestspatiotemporalresolution,followedbyERA-Interim,MERRA,andfinallyNCEP/NCAR, 20 havingthelowestspatiotemporalresolution.FutureworkapplyingEulerianorLagrangianmodelstostudythechemistryand dynamicsofthepolarvortexmayuseourvalidationresultsasadditionalguidelineforerroranalyses. 1 Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2017-71,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Discussionstarted:17February2017 c Author(s)2017.CC-BY3.0License. (cid:13) 1 Introduction The seasonal formation and decay of the polar vortex is likely the most prominent feature of the extratropical stratospheric circulation (e.g., Schoeberl and Hartmann, 1991; Newman and Schoeberl, 2003; Waugh and Polvani, 2010). The structure anddynamicsofthepolarvortexplayakeyroleinthewinterandspringstratosphericcirculationandcouplingbetweenthe 5 stratosphereandtroposphere.Anumberofstudiesdemonstratedthatthepolarvortexcaninfluencetroposphericweatherand climate(BaldwinandDunkerton,1999;PolvaniandKushner,2002;Thompsonetal.,2002;Baldwinetal.,2003).Furthermore, the polar vortex acts as a cold trap for stratospheric air, which plays a critical role in polar ozone depletion and the annual formationoftheAntarcticozonehole(Solomon,1999,andreferencestherein).Thesetopicsmotivatedvariousobservational andmodelingstudiesinrecentyearstobetterunderstandthestructureanddynamicsofthepolarvortexaswellasimplications 10 onpolarozonelossinthestratosphere. Lagrangian particle dispersion models are indispensable tools to study atmospheric transport processes (e.g., Lin et al., 2012).TrajectorycalculationsinLagrangiantransportsimulationsarecommonlydrivenbywindfieldsfromglobalmeteoro- logical reanalyses. The accuracy of trajectory calculations depends on various factors, including interpolation and sampling errors related to the finite spatial resolution of the meteorological data as well as errors of the wind field itself, which are 15 introduced during the data assimilation process (e.g., Stohl, 1998; Bowman et al., 2013). In this study we aimed at direct validationoftemperatureandwinddataaswellastrajectorycalculationsfortheAntarcticlowerstratosphereusingdifferent meteorologicaldatasets.Weassessedtheperformanceofthreemeteorologicalreanalyses,includingtheEuropeanCentrefor Medium-RangeWeatherForecasts(ECMWF)ERA-Interimreanalysis(Deeetal.,2011),theModern-EraRetrospectiveanal- ysisforResearchandApplications(MERRA)reanalysis(Rieneckeretal.,2011),andtheNationalCentersforEnvironmental 20 PredictionandtheNationalCenterforAtmosphericResearch(NCEP/NCAR)reanalysis(Kalnayetal.,1996).Furthermore, wecomparewiththeECMWFoperationalanalysis(OA),whichisproducedwithsignificantlyhigherspatialresolution. ForvalidationweutilizedsuperpressureballoonobservationsduringtheConcordiasifieldcampaign(Rabieretal.,2010)in September2010toJanuary2011.Duringthecampaign19superpressureballoonswerelaunchedfromMcMurdostation(78 S, ◦ 166 E), Antarctica. Each balloon flew in the mid- and high-latitude lower stratosphere for a typical period of three months. ◦ 25 The sensors aboard the balloons provide position, pressure, and temperature at high accuracy and high temporal sampling. Variousstudiesdemonstratedthatsuperpressureballoonobservationsconstituteanexcellentsourceofdataforthevalidation ofmeteorologicalanalyses(Knudsenetal.,1996,2002;Hertzogetal.,2004,2006;Knudsenetal.,2006;Boccaraetal.,2008; Podglajen et al., 2014; Friedrich et al., 2017). This paper presents an update on earlier work, in particular to Boccara et al. (2008), who performed a validation analysis based on superpressure balloon observations during the Vorcore campaign in 30 AntarcticainSeptember2005toFebruary2006.TheresultsarealsocomparedwithfindingsofthePreConcordiasicampaign (Podglajenetal.,2014),whichtookplaceattropicallatitudesinFebruary2010. Ournewstudymaycontributedirectlytocurrentresearchactivitiesthatfocusonintercomparisonsofdifferentreanalyses, e.g.,theStratosphere–troposphereProcessesAndtheirRoleinClimate(SPARC)ReanalysisIntercomparisonProject(S-RIP) (Fujiwara et al., 2016). Here we applied the Lagrangian particle dispersion model Massive-Parallel Trajectory Calculations 2 Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2017-71,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Discussionstarted:17February2017 c Author(s)2017.CC-BY3.0License. (cid:13) (MPTRAC)(Hoffmannetal.,2016a)toconductthetrajectorycalculationsfortheballoonobservations.MPTRACisarather new model and our study also serves the purpose of validating the model. However, the results are transferable to other Lagrangianmodelsforthestratosphereaswell,e.g.,theChemicalLagrangianModeloftheStratosphere(CLaMS)(McKenna et al., 2002a, b) or the Alfred Wegener Institute Lagrangian Chemistry/Transport System (ATLAS) (Wohltmann and Rex, 5 2009).Theresultsofthedirectvalidationofthetemperatureandwinddataofthemeteorologicalanalysesareofinterestfor studiesusingchemistry-transportmodelstoassesspolarozonelossinthestratosphere(e.g.,Chipperfield,1999;Grooßetal., 2002,2005;Wohltmannetal.,2013).Theresultsofthetrajectoryvalidationareofparticularinterestforstudiesapplyingthe ‘Match’technique(vonderGathenetal.,1995;Rexetal.,1997)toassesspolarozoneloss.Inordertodistinguishbetween chemicallyandtransport-inducedchangesofozoneabundance,theMatchapproachusestrajectorycalculationstorelateozone 10 observationswithinthesameairmassatdifferentlocationstoeachother. In Sect. 2 we introduce the superpressure balloon observations during the Concordiasi campaign. We also describe the fourmeteorologicaldatasetsanddiscussthemeteorologicalconditionsduringthecampaign.Furthermore,weintroducethe LagrangianparticledispersionmodelMPTRACandtheapproachusedfortrajectoryvalidation.Theresultsofourstudyare provided in Sect. 3. In the first part we compare temperatures and horizontal winds of the different meteorological data sets 15 directlyatthepositionoftheballoonmeasurements.Inthesecondpartwefocusonthevalidationoftrajectorycalculations. Finally,Sect.4providesasummaryandconclusions. 2 Dataandmethods 2.1 Superpressureballoonobservations Superpressure balloons are aerostatic balloons, which are filled with a fixed amount of lifting gas, and where the maximum 20 volume of the balloon is kept constant by means of a closed, inextensible, spherical envelope. After launch, the balloons ascendandexpanduntiltheyreachafloatlevelwheretheatmosphericdensitymatchestheballoondensity.Onthisisopycnic surface a balloon is free to float horizontally with the motion of the wind. Hence, superpressure balloons behave as quasi- Lagrangiantracersintheatmosphere.Inthisstudyweanalyzedsuperpressureballoonobservationsinthelowerstratosphere duringtheConcordiasifieldcampaigninAntarcticainSeptember2010toJanuary2011.TheConcordiasifieldcampaignaimed 25 atmakinginnovativeatmosphericobservationstostudythecirculationandchemicalspeciesinthepolarlowerstratosphereand toreduceuncertaintiesindiversefieldsinAntarcticscience(Rabieretal.,2010).Duringthefieldcampaign19superpressure balloons with 12m diameter were launched from McMurdo station (78 S, 166 E), Antarctica by the French space agency, ◦ ◦ Centre National d’Etudes Spatiales (CNES). Balloons of this size typically drift at pressure levels of 60hPa and altitudes ∼ of 18km. The balloons were launched between 8 September and 26 October 2010, and each balloon flew in the mid- and ∼ 30 high-latitudelowerstratosphereforatypicalperiodoftwotothreemonths.TheflightdatesaresummarizedinTable1andthe balloontrajectoriesareshowninFig.1. The positions of the balloons were tracked over time by means of global positioning satellite (GPS) receivers. At each observation time the components of the horizontal wind are computed by finite differences between the GPS positions. The 3 Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2017-71,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Discussionstarted:17February2017 c Author(s)2017.CC-BY3.0License. (cid:13) uncertainty is about 1m for the GPS horizontal position and 0.1ms 1 for the derived winds (Podglajen et al., 2014). Each − balloon launched during Concordiasi was equipped with a meteorological payload called Thermodynamical sensor (TSEN). TSENmakesin-situmeasurementsofatmosphericpressureandtemperatureevery30sduringthewholeflight.Thepressure ismeasuredwithanaccuracyof1Paandaprecisionof0.1Pa.Theairtemperatureismeasuredviatwothermistors.During 5 daytime, the thermistors are heated by the sun, leading to daytime temperature measurements warmer than the real air tem- perature.Anempiricalcorrectionhasbeenusedtocorrectforthiseffect(Hertzogetal.,2004).Theprecisionoftemperature observationsis 0.25Kduringdaytimeand 0.1Kduringnighttime.Notethattechnicalissuesaboardthescientificgondola ∼ ∼ causedafewdatagapsintheTSENdataset,butmostofthemwereshorterthan15min. Inordertoquantifythecoverageoftheballoonobservationsduringthefree-flyingphases,weindependentlycalculatedthe 10 5%and95%quantilesofvariousparameterdistributions.Allstatisticspresentedinthispaperaremostrepresentativeforthe parameter ranges reported below. Any findings for parameters outside these ranges need to be considered carefully, because only few measurements are available to support them. We found that most of the measurements (i.e., more than 90%) took place between 25 September and 22 December 2010, at an altitude range of 17.0–18.5km, and within a latitude range of 59–84 S.Thepressuremeasurementsaremostlywithinarangeof58.2–69.1hPaandthetemperaturemeasurementswithin ◦ 15 189–227K. The density of air, calculated from pressure and temperature, varies between 0.099–0.120kgm−3. The zonal winds are predominately westerly and mostly within a range of 1–44ms 1. The meridional wind distributions are nearly − symmetric,withmeridionalwindsbeingintherangeof 17ms 1.Horizontalwindspeedsaremostlywithin5–47ms 1. − − ± Asanexample,Fig.2showstimeseriesofdensity,temperature,zonalwind,andmeridionalwindasmeasuredduringflight number4oftheConcordiasicampaign.Thedensitytimeseriesshowsdecreasingdensityduringthefirst20days,butremains 20 ratherstablethereafter.Thisinitialdecreaseindensityisduetothereleaseofdropsondes,whichareanotherpartoftheballoon payloads on flight number 1–13. The release of dropsondes changes the overall mass configuration of the balloon-gondola system,whichiscompensatedbychangesindensity.Acloserinspectionofthetimeseriesrevealsalsodiurnalvariationsin theballoondensity.Duringthedaytheballoonenvelopisheatedbythesun,whichincreasesthetemperatureandpressureof thegasinsidetheballoon.Theballoonslightlyexpandsinreturn,whichdecreasesitsequilibriumdensity.Inadditiontothis 25 regulardailypattern,thetimeseriesshownotablevariabilityonevenshortertimescales,includingsemi-diurnaloscillations of the horizontal winds, which are attributed to near-inertial gravity waves and semi-diurnal tides. As we do not expect the reanalysestoreproducethosefluctuationswithgreataccuracy,weappliedalow-passfilterwith15hcut-offperiodtosuppress alloscillationscausedbypureandinertia-gravitywaves,sothatonlyperturbationsduetolarge-scaledynamicsremainvisible inthetimeseries(cf.Fig.2).Thecut-offperiodofthelow-passfilterwasselectedtocoverthelongestinertialperiodinthe 30 balloondataset,T =2πf−1,withCoriolisparameterf,rangingfromabout12.0hat85◦Sto13.9hat60◦S. 2.2 Meteorologicaldata Inthisstudyweconsideredfourmeteorologicaldatasets,theECMWFoperationalanalysis,ERA-Interim(Deeetal.,2011), MERRA (Rienecker et al., 2011), and the NCEP/NCAR reanalysis (Kalnay et al., 1996). Fujiwara et al. (2016) provides a reviewofkeyaspectsofthesedatasets.Table2summarizesinformationonspatialandtemporalresolutionandcoverage.The 4 Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2017-71,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Discussionstarted:17February2017 c Author(s)2017.CC-BY3.0License. (cid:13) four data sets considered here vary substantially in resolution, i.e., by a factor of 2 in temporal resolution, by a factor of 5 inverticalresolution,andbyafactorof20 20inhorizontalresolution.Notethatweretrievedthedatasetsatthetemporal × andspatialresolutionatwhichtheyaretypicallyprovidedtotheusersbytherespectivecenters.Thesamedatasetshavebeen consideredbyHoffmannetal.(2016a),whoprovideamoredetaileddescriptionofdatapreprocessing. 5 The Concordiasi balloon measurements covered the final stratospheric warming and decay of the polar vortex during 2010/2011australspringtosummer.Althoughamid-winterminorsuddenstratosphericwarmingduringJulyandearlyAugust 2010 resulted in an off-pole displacement and weakening of the stratospheric polar vortex (De Laat and van Weele, 2011; Klekociuketal.,2011),thepolarvortexreturnedtoberelativelystablefrommid-AugusttoOctober,exceptforasecondshort warmingthatbeganinearlySeptember.Thispatternwasprimarilyattributedtothequasi-biennialoscillationbeinginastrong 10 positive phase that helped to maintain a persistent polar vortex. According to NASA Ozone Watch and the World Meteoro- logical Organisation Antarctic Ozone Bulletins (see http://www.wmo.int/pages/prog/arep/gaw/ozone/index.html; last access: 30 September 2016), the longitudinally averaged poleward eddy heat flux between 45 S and 75 S, which is an indicator of ◦ ◦ disturbanceinpolarstratosphere,wasmuchsmallerthanthelong-termmean(Fig.3),indicatingthatthevortexwasrelatively unperturbedfrommid-SeptembertoDecember. 15 Figure4illustratesthatthepolarvortexwastypicallysymmetricandstableinSeptemberandOctober.Afterwards,thepolar vortexelongatedandweakenedgraduallythroughNovember,wasdisplacedoffthepoleinmid-Decemberandbrokedownby mid-January2011.Thevortexbreakupwasmarkedwhenthewindsaroundthevortexedgedecreasedbelow15ms 1 onthe − 475Kpotentialtemperaturesurface.Fromananalysisoftemperaturesonthelevelswheremostoftheballoonmeasurements were attained (about 50–60hPa, 475K), the final warming started from mid-October with development of strong zonal ∼ 20 asymmetriesintemperature.ThecoldpoolovertheSouthPoledeclinedanddisplaced,anduntilendofNovember,minimum temperaturesoverAntarcticaincreasedfromaround180to220K.Awarmpoolwithtemperaturesof230–240Kdominated AntarcticafromendofDecember.Consistentwiththewarmingprocess,thepolarjetshowedapronouncedreductioninwind speed from 70ms 1 at the beginning of September to 40ms 1 in early December and then further weakened to less than − − 20ms 1frombeginningofJanuary. − 25 2.3 Trajectorycalculations We conducted the trajectory calculations for the Concordiasi balloon observations with the Lagrangian particle dispersion model MPTRAC (Hoffmann et al., 2016a). MPTRAC has been developed to support analyses of atmospheric transport pro- cessesinthefreetroposphereandstratosphere.Inpreviousstudiesitwasusedtoperformtransportsimulationsforvolcanic eruptions and to reconstruct time- and height-resolved emission rates for these events (Heng et al., 2016; Hoffmann et al., 30 2016a). Transport is simulated by calculating trajectories for large numbers of air parcels based on given wind fields from globalmeteorologicalreanalyses.Turbulentdiffusionandsubgrid-scalewindfluctuationsaresimulatedbasedontheLangevin equation,closelyfollowingtheapproachimplementedintheFlexibleParticle(FLEXPART)model(Stohletal.,2005).Addi- tionalmodulesallowustosimulatesedimentationandthedecayofparticlemass,buttheywerenotusedhere.Themodelis 5 Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2017-71,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Discussionstarted:17February2017 c Author(s)2017.CC-BY3.0License. (cid:13) particularlysuitedforlarge-scalesimulationsonsupercomputersduetoitsefficientMessagePassingInterface(MPI)/Open Multi-Processing(OpenMP)hybridparallelization. Trajectorycalculationsarebasedonnumericalintegrationofthekinematicequationofmotion, dx =v(x,t), (1) dt 5 wherexdenotesthepositionandv thevelocityofanairparcelattimet.Theairparcelpositionxisdefinedbygeographic latitude φ and longitude λ as horizontal coordinates as well as pressure p as vertical coordinate. The horizontal wind (u,v) and vertical velocity (ω=dp/dt) at position x and time t are obtained by linear spatial and temporal interpolation of the meteorologicaldata.Thekinematicequationofmotionissolvedwiththeexplicitmidpointmethod, ∆t ∆t x(t+∆t)=x(t)+v x(t)+ v(x(t),t),t+ ∆t. (2) 2 2 (cid:18) (cid:19) 10 Thetimestep∆tmainlycontrolsthetrade-offbetweenaccuracyandspeedofthecalculations.Foroursimulationsweselected ∆t=30s, which is sufficiently small so that truncation errors can be neglected. This time step is also consistent with the samplingrateoftheballoondata. The diffusion module of MPTRAC considers two processes. Turbulent diffusion is modelled by means of uncorrelated, Gaussianrandomdisplacementsoftheairparcelswithzeromeanandstandarddeviations√D ∆tand√D ∆t,whereD x z x 15 andDz arethehorizontalandverticaldiffusioncoefficients,respectively.TypicalvaluesforthestratosphereareDx=0and D =0.1m2s 1, according to choices made for the FLEXPART model (Legras et al., 2003; Stohl et al., 2005). Unresolved z − subgrid-scalewindfluctuationsaremostrelevantforlong-rangesimulations.Thesefluctuationsarecorrelatedovertimeand simulatedwithaMarkovmodel,followingtheapproachofMaryon(1998)andStohletal.(2005).Forexample,thezonalwind fluctuationsu ofeachairparcelarecalculatedaccordingto 0 u0(t+∆t)=ru0(t)+ (1−r2)ασu2ξ, (3) p 20 withr=exp( 2∆t/∆tmet)beingacorrelationcoefficientdependingonthemodeltimestep∆tandthetimeinterval∆tmet − ofthemeteorologicaldata(3or6h),αbeingascalingfactorusedfordownscalingofgrid-scalevariancesσ2 tosubgridscales, u and ξ being a Gaussian random variate with zero mean and unity variance. The FLEXPART model uses a default value of α=0.16fordownscalingofthegrid-scalevariances(or40%intermsofstandarddeviations).Meridionalwindandvertical velocityfluctuationsarecalculatedinthesameway. 25 For this study we implemented a new module in MPTRAC that allows usto simulate the vertical motions of the balloons morerealistically.Thismoduleiscalledateachtimestepandadjuststhepressureoftheairparcelssothatverticalmotionsare constrainedtoeither(i)anisobaricsurface(constantpressure),(ii)anisopycnicsurface(constantdensity),(iii)anisentropic surface(constantpotentialtemperature),or(iv)thepressuretimeseriesmeasuredbytheballoon.Inafirstapproximationthe balloonsmoveonisopycnicsurfaces,whichisrepresentedbyoption(ii).However,therealdynamicsoftheballoonsaremore 30 complex,inparticulariftheyencountersmall-scalestructuressuchasgravitywaves(VincentandHertzog,2014).Onlonger timescalesitneedstobeconsideredthattherearediurnalvariationsintheballoondensityaswellasoverallmassvariations 6 Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2017-71,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Discussionstarted:17February2017 c Author(s)2017.CC-BY3.0License. (cid:13) duetothereleaseofdropsondes(Sect.2.1).Theseissuesarepartlycircumventedbyconstrainingtheverticalmotionstothe balloonpressuredata,whichisrepresentedbyoption(iv). 2.4 Validationapproach Although some of the Concordiasi balloon flights can be used to validate trajectory calculations for time periods as long as 5 threemonths,wefocusedonshortertimewindows.Bysplittingtheballoonflightsintosmallersubsetsofdata,eachcontaining 15daysofobservations,wesignificantlyincreasedthenumberofsamplesandimprovedthestatisticalaccuracyoftheresults oftheshort-termvalidation.Tofurtherincreasethenumberofsampleswealsoallowedforoverlapofthetimewindows,i.e., weshiftedthe15-daywindowsinstepsof5days.Ashiftof5daysbetweenthewindowswasselected,becausetrajectoryerrors areusuallylargerthantheeffectiveresolutionofthemeteorologicaldatasetsafterthattime.Thismeanswecanconsiderthe 10 resultsofoverlappingwindowsasbeingstatisticallyindependent.Wevariedthestartingdaysfortheanalysisofthedifferent flightstohomogenizetemporalcoverage.AstherearedatagapsintheGPSandTSENdataoftheballoonmeasurements,we imposedtherequirementthateachsampleshouldhaveatleast90%coverage.Basedonthesecriteriaweobtainedasetof104 samplesof15-daytimewindowsfromthe19Concordiasiballoonflights. Absolutehorizontaltransportdeviations(AHTDs)andrelativehorizontaltransportdeviations(RHTDs)arestandardmea- 15 surestocomparetrajectorycalculationswithobservationsortoevaluateresultsfordifferentmodelconfigurations(Kuoetal., 1985;RolphandDraxler,1990;Stohletal.,1995;Stohl,1998).Whileothermeasuresoftrajectoryerrorhavealsobeende- fined,AHTDsandRHTDsaremostoftenreportedbecausetheycanbecomparedeasilytootherstudies.TheAHTDattravel timetofthetrajectoriesiscalculatedas 1 Ns Ne AHTD(t)= [X (t) x (t)]2+[Y (t) y (t)]2, (4) i,j i i,j i N N − − s e i=1j=1q XX 20 whereNs referstothenumberofreferencetrajectoriesandNe referstothesizeoftheensembleoftesttrajectoriesthatisto beevaluatedforeachreferencetrajectory.Thecoordinates(X ,Y )and(x ,y )withi=1,...,N andj=1,...,N refer i,j i,j i i s e tothehorizontalpositionsofthetestandreferencetrajectories,respectively.Equation(4)isappliedindifferentwaysinthis study. For instance, it is used to evaluate transport deviations between a single model trajectory and a balloon trajectory for justonesample(N =1andN =1),betweenmodelandballoontrajectoriesforallsamples(N =104andN =1),orfor s e s e 25 dispersionsimulations(Ns=104andNe=1000).NotethatwecalculatedhorizontaldistancesasEuclideandistancesofthe airparcelpositionsprojectedtotheEarth’ssurface.RHTDsarecalculatedbydividingtheAHTDofindividualairparcelsby thelengthofthecorrespondingreferencetrajectory.Absoluteandrelativeverticaltransportdeviations(AVTDsandRVTDs) aredefinedsimilarly,basedonpressuredifferencesconvertedintoverticaldistancesbymeansofthebarometricformula. 7 Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2017-71,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Discussionstarted:17February2017 c Author(s)2017.CC-BY3.0License. (cid:13) 3 Results 3.1 Directvalidationofmeteorologicaldata In this section we focus on the validation of temperatures and horizontal winds directly at the positions of the Concordiasi balloons.Forthisanalysisthemeteorologicaldataareinterpolatedtotheballoonpositionsbymeansofa4-Dlinearinterpo- 5 lationinspaceandtime.Thisinterpolationschemeismostcommonlyappliedinstate-of-the-artLagrangiantransportmodels (Bowmanetal.,2013).Table3presentsthesummarystatisticsofmeteorologicaldataminusConcordiasiballoonobservations. Notethatwefirstdiscusstheresultsforlow-passfiltereddata,toexcludetheeffectsofsmall-scalefluctuationsduetogravity wavesandturbulence(Sect.2.1).Theseeffectswillbediscussedseparatelyattheendofthissection.Ouranalysisshowsthat all data sets have a positive temperature bias, which is in the range of 0.4K (ECMWF OA) to 2.1K (NCEP/NCAR). Zonal 10 windbiasesareintherangeof 0.3ms−1(NCEP/NCAR)to0.5ms−1(MERRA).Meridionalwindbiasesareabout0.1ms−1 − foralldatasets.Standarddeviationsvarybetween0.5K(ECMWFOA)and1.4K(NCEP/NCAR)fortemperature,0.9ms 1 − (ECMWFOA)and2.3ms 1(NCEP/NCAR)forthezonalwind,and0.9ms 1(ECMWFOA)and1.9ms 1(NCEP/NCAR) − − − forthemeridionalwind.Skewnessandexcesskurtosisvaluesfoundhereindicatethatthedistributionsarequitesymmetricand notaffectedbymanyorratherlargeoutliers.Weconfirmedthesefindingsbycalculatingadditionallymorerobustandresistant 15 statisticalmeasuresoflocation,spread,andsymmetry,namelythemedian,theinterquartilerange,andtheYule-Kendallindex (Wilks,2011).Theserobustmeasuresprovidedaquitesimilarpicturetothestandardmeasures. Figure 5 shows bias and standard deviations of temperature and horizontal winds at different latitudes averaged over the entire time period of the campaign. All meteorological data sets show an increasing temperature bias from mid to high lati- tudes.Thetemperaturewarmbiasat80–85 SislargestforNCEP/NCAR(3.1K),followedbyMERRA(1.4K),ERA-Interim ◦ 20 (1.1K),andECMWFOA(0.5K).At60–65◦Sthetemperaturebiasesrangefrom0.2to1.2K.Temperaturestandarddevia- tionsdonotshowvariationwithlatitude(ECMWFOAandERA-Interim)orjustaslightdecreasefrommidtohighlatitudes (MERRAandNCEP/NCAR).Zonalwindbiasesarebelow 0.7ms 1 andmeridionalwindbiasesarebelow 0.3ms 1 for − − ± ± alllatitudebandsconsideredhere.Standarddeviationsofthezonalandmeridionalwinddonotvarysignificantlywithlatitude forECMWFOAandERA-Interim.MERRAshowslatitudinalvariationintherangeof1.3–1.9ms 1 forthezonalwindand − 25 1.2–1.6ms−1forthemeridionalwind.NCEP/NCARmostlyshowsincreasingstandarddeviationsfromhightomidlatitudes, rangingfrom1.8to3.0ms 1forthezonalwindandfrom1.5to2.4ms 1forthemeridionalwind. − − Figure 6 shows bias and standard deviations of temperature and horizontal winds for different months averaged over all latitudes.ThetemperaturebiasisatamaximuminSeptember(1.3KforERA-Interimand0.8KforECMWFOA)orOctober (2.7KforNCAR/NCEPand1.3KforMERRA).Temperaturestandarddeviationsremainratherconstantintherangefrom0.5 30 to0.9K(ECMWFOA,ERA-Interim,andMERRA)orincreasefrom0.9KinSeptemberto1.6KinDecember(NCEP/NCAR). ZonalwindbiasesvarymoreforMERRAandNCEP/NCAR,witharangeof 0.9ms 1,andlessforECMWFOAandERA- − ± Interim,witharangeof 0.3ms 1.Meridionalwindbiasesremainbelow 0.2ms 1forallmonths.Thestandarddeviations − − ± ± ofthezonalandmeridionalwindsremainratherconstantatabout0.8–1.0ms 1forECMWFOAandERA-Interim,buttendto − increasefromSeptembertoDecemberforMERRAandNCEP/NCAR.InDecemberwefoundmaximumstandarddeviationsof 8 Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2017-71,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Discussionstarted:17February2017 c Author(s)2017.CC-BY3.0License. (cid:13) 2.7ms 1(NCEP/NCAR)and1.7ms 1(MERRA)forthezonalwindand2.1ms 1(NCEP/NCAR)and1.6ms 1(MERRA) − − − − forthemeridionalwind. Overall, the direct validation of the large-scale features of the meteorological analyses in the Antarctic lower stratosphere providessatisfactoryresults.Thesummarystatisticspresentedherearesimilartothoseofearliercampaignsusingsuperpres- 5 sure balloons observations, in particular with respect to results presented by Boccara et al. (2008) for the Vorcore campaign in 2005.Temperature biasesof meteorologicalanalyses atthe southernhemisphere winterpole arewell-known phenomena, whichwasreportedalsoforotherwinters(Gobietetal.,2005;Parrondoetal.,2007;Boccaraetal.,2008).UsingGPSradio occultationmeasurementsinJunetoAugust2003,Gobietetal.(2005)showedthattemperaturebiasesofECMWFanalyses over the southern hemisphere winter pole vary with altitude. They found a warm bias of up to 3.5K at 18–19km (close to 10 thealtitudeoftheConcordiasiballoonobservations),acoldbiasofupto 3Kat21–22km,andawarmbiasofupto3.5K − at 26–27km. Gobiet et al. (2005) speculate that the assimilation of microwave radiances from satellite measurements into theECMWFanalysesmaybeareasonforthetemperaturebias.WenotethatawarmbiasisstillpresentinAntarcticwinter 2010 in all data sets, but its magnitude is significantly reduced for ECMWF OA, which may be attributed to improvements of the forecast model, data assimilation scheme, and observations used to produce this analysis. Although many factors in- 15 fluencetheaccuracyandprecisionofmeteorologicalanalyses,Table3indicatesthatthespatiotemporalresolutionisarather importantfactor.BothbiasandstandarddeviationsarelowestforECMWFOA,whichhasthehighestresolution,followedby ERA-Interim,MERRA,andfinallyNCEP/NCAR,whichhasthelowestresolution. Finally,wealsoanalyzedtheeffectsofthelow-passfilterthatwasappliedtoremovesmall-scalefluctuationsfromthedata. Table4providesstandarddeviationsofunfilteredminusfilteredtemperaturesandhorizontalwinds.Forcomparisonwealso 20 provided standard deviations of unfiltered minus filtered balloon data in Table 4, which are considered as a measure of real small-scale fluctuations in the atmosphere. In fact, the balloon observations are an excellent source of data to study gravity waves(e.g.,Hertzogetal.,2008,2012;Plougonvenetal.,2013;VincentandHertzog,2014;Jewtoukoffetal.,2015).While large-scalebiasesarenotaffectedbyfilteringandthereforenotreportedhere,acomparisonofstandarddeviationsallowsusto assesshowwellsmall-scalefluctuationsarerepresentedinthemeteorologicaldatasets.ForthehighresolutionECMWFOA 25 datathestandarddeviationsremovedbyfilteringarelargestandaboutthesamesizeasthestandarddeviationsrelatedtothe differencesofmeteorologicaldataminusballoondata.WefoundthatECMWFOAreproducesabout60%andERA-Interim and MERRA about 30% of the standard deviations of the temperature and wind fluctuations of the balloons. NCEP/NCAR reproduces about 15% for temperature and 30% for the winds. This is in good agreement with the studies of Jewtoukoff etal.(2015),whichfoundthatECMWFanalysesunderestimategravitywavemomentumfluxesderivedfromtheConcordiasi 30 balloonobservationsbyafactorof5,andHoffmannetal.(2016b),whichfoundthatwaveamplitudesintheECMWFanalyses aretypicallyunderestimatedbyafactorof2–3comparedtoAtmosphericInfraRedSounder(AIRS/Aqua)observations. 3.2 Analysisofverticalmotions In the following sections of this paper we focus on the validation of trajectory calculations using the MPTRAC model with Concordiasisuperpressureballoonobservations.AsoutlinedinSect.2.3,weimplementedseveralnewoptionsintheMPTRAC 9 Atmos.Chem.Phys.Discuss.,doi:10.5194/acp-2017-71,2017 ManuscriptunderreviewforjournalAtmos.Chem.Phys. Discussionstarted:17February2017 c Author(s)2017.CC-BY3.0License. (cid:13) modeltoconstraintheverticalmotionsoftheairparcels.Wefirsttriedtoidentifytheapproachthatisbestsuitedtosimulatethe verticalmotionsoftheballoonsinarealisticmanner.Inourcomparisonweconsideredverticalmotionsbasedonprescribed pressure time series as measured by the balloons, isopycnic motions, isentropic motions, and vertical motions prescribed by theverticalvelocitiesofthemeteorologicaldatasets(referredtoas‘omegavelocities’below).Thecomparisonwasconducted 5 usingERA-Interimdataasinputforthetrajectorycalculations.Forillustration,Fig.7showsexamplesoftrajectoriescalculated withdifferenttypesofverticalmotionsandthecorrespondingballoonobservations.Within15daystheballoonisadvectedby thepolarnightjetoveradistanceofnearly30000kmandencirclesthesouthpolemorethantwice.Attheendofthesimulations wefoundhorizontaltransportdeviationsofabout30km(0.1%)usingtheballoonpressure,100km(0.3%)fortheisopycnic approach,350km(1.2%)fortheisentropicapproach,and400km(1.3%)fortheomegavelocity.Inthisparticularexamplethe 10 balloontrajectoryisreproducedwithexcellentaccuracybyallsimulations.Wepickedthisexampleforpresentationbecause the simulations are not strongly affected by any individual, complex meteorological conditions. In the example the balloon trajectory is best reproduced by constraining vertical movements based on the balloon pressure measurements or by using theisopycnicapproach,asexpectedfromtheballoondynamics(Sect.2.1).Largertransportdeviationsarefoundusingomega velocitiesandtheisentropicapproach.However,notethatthetrajectoriesbasedonomegavelocitiesandtheisentropicapproach 15 areingoodagreementwitheachother,whichwasexpectedasatmosphericmotionsareisentropiconshorttimescales. In order to take into account statistical variations, Fig. 8 shows transport deviations calculated from 104 samples of 15- dayballoontrajectoriesoftheConcordiasicampaign,whichweselectedaccordingtotheapproachoutlinedinSect.2.4.The AHTDsincreaserathersteadilytoabout1610–1750kmafter15days.LikeintheexampleshowninFig.7,theresultscluster intwogroups.Trajectoriescalculatedusingtheballoonpressureandtheisopycnicapproacharesimilartoeachotherandyield 20 results at the lower end of the AHTD ranges. Trajectories calculated using omega velocities and the isentropic approach are alsosimilartoeachotherandyieldresultsattheupperendoftheAHTDranges.ThecorrespondingRHTDsareinarangeof 4.1–5.2%after2daysandincreaseto6.8–7.4%after15days.Themeandifferencebetweenthetwogroupsofsimulationsis about0.7percentagepoints.NotethatRHTDsarequitelargeduringthefirst12–24h,whichisnotrepresentative,becausethe calculationsarebasedonrathershortreferencetrajectories.Inaddition,Fig.8alsoshowsverticaltransportdeviationsbased 25 ontheisopycnicandisentropicapproachaswellasomegavelocities.TheAVTDsoftheisopycnicapproachincreasesteadily toabout200mafter15days.ThecorrespondingRVTDsconvergeat6–7%after4days.TheAVTDsusingomegavelocities andtheisentropicapproachincreaserapidlyduringthefirst2daysandthenincreasemoreslowlyupto560–680mafter15 days.ThecorrespondingRVTDsconvergeto17–21%.Apossiblereasonforlargerinitialerrorsusingomegavelocitiesand theisentropicapproachareuncertaintiesintheinitialpressurevaluesusedtodefinethetrajectoryseeds.Simulationsbasedon 30 omegavelocitiesortheisentropicapproacharemorestronglyaffectedbyshort-termfluctuationsoftheinitialpressurevalues than simulations based on the isopycnic approach. To mitigate uncertainties caused by short-term fluctuations, we used the meanpressureofthefirst3hofeachballoontrajectoryforinitialization.However,ouranalysisindicatesthatverticalmotions arebestcalculatedusingeithertheballoonpressuremeasurementsortheisopycnicapproach.Fortheremaininganalyseswe decidedtocalculatethetrajectoriesusingtheballoonpressuremeasurementsbecausethesetakeintoaccountanychangesin 35 theoverallmassconfigurationoftheballoon-gondolasystem(Sect.2.1). 10

Description:
Forecasts (ECMWF) operational analysis, the ERA-Interim reanalysis, the not contribute significantly to transport deviations in our analysis. J., Birner, T., Davis, S., Gerber, E. P., Harvey, V. L., Hegglin, M. I., Homeyer, . McKenna, D. S., Grooß, J.-U., Günther, G., Konopka, P., Müller, R.,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.