ebook img

Valence Band Anticrossing in III-Bi-V Alloys PDF

36 Pages·2010·2.06 MB·German
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Valence Band Anticrossing in III-Bi-V Alloys

Wladek Walukiewicz Lawrence Berkeley National Laboratory, Berkeley CA In collaboration with EMAT-Solar group http://emat-solar.lbl.gov/ Valence Band Anticrossing in III-Bi-V Alloys J. Ager, K. M. Yu, Liliental-Weber, J. Denlinger, O. Dubon, E. E. Haller, J. Wu LBNL and UC Berkeley K. Alberi, X. Li, D. Speaks, M. Mayer, R. Broesler, A. Levander Students, UC Berkeley Collaborations • J. Geisz, NREL (InGaAs(N)) • C. Tu, UCSD (GaP(N), InP(N)) • C. Skierbiszewski, Unipres (InGaAs(N)) • A. Ramdas, Purdue University (ZnTe(Se), ZnTe(S)..) • I. K. Sou, UST, Hong Kong (ZnSe(Te), ZnS(Te)) • I. Suemune, (Hokkaido University) (InGaAs(N)) • T. Kuech, University of Wisconsin (GaN(As)) • Y. Nabetani, University of Yamanashi (ZnSe(O), ZnTe(O)) • J. A Gupta, NRC, Canada (GaAs(Sb)) • S. Watkins, Simon Frasier (GaAs(Sb)) • A. Krotkus, SRI, Vilnius (GaAs(Bi) • J. Blacksberg, JPL (Ge(Sn)) • T. Foxon, S. Novikov, University of Nottingham (GaN(As)) • J. Furdyna, University of Notre Dame (GaAs(Mn)) Outline  Highly Mismatched Semiconductor Alloys  Conduction and Valence Band Anticrossing  Key examples of highly mismatched alloys (HMAs)  GaN As x 1-x  ZnO Se x 1-x  Group III-Bi-V highly mismatched alloys  Electronic Band Structure Engineering of HMAs  Potential applications of HMAs (including bismides)  Conclusions and outlook Normal alloying: well matched alloys 2.8 3.6 2.6 GaAs P 1-y y ZnSe S 3.4 1-y y 2.4 ) V e ( ) y V 2.2 g 3.2 e r ( e y n g E E re 2 X p n a 3 E G d 1.8 n E a E B   2.8 1.6 1.4 2.6 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 GaAs GaP Composition, y ZnSe Composition, y ZnS Relatively easy to grow in the whole composition range Small deviations from linear interpolation between end point compounds Anion Site Alloys Electronegativities, X and atomic radii, R IV V VI • A large variety of C N O potential alloys. 2.6 X=3.0 X=3.4 R=0.075 nm R=0.073 nm • Well matched alloys: Si P S replacing atoms with 1.9 X=2.2 X=2.6 similar properties R=0.12 nm R=0.11 nm • What happens when As Ge As Se is replaced with very X=2.2 X=2.6 1.9 much different N or Se R=0.13 nm R=0.12 nm with O? Sn Sb Te 2.0 2.1 2.1 R=0.14 nm R=0.14 nm III-Vs and II-VIs HMAs 2.70 ZnO Se 2.68 x 1-x VCA 295 K VCA ) V 2.66 e ( 2.64 y g r 2.62 e n E 2.60 p a 2.58 g - d 2.56 n a Exp.Data 2.54 B BAC 2.52 2.50 0.000 0.005 0.010 0.015 0.020 Oxygen Concentration (x) Drastic deviation from linear interpolation between end point compounds W. Shan, et. al., J. Phys.: Condens Matter, 16 S3355 (2004) W. Shan, et. al., Appl. Phys. Lett., 83, 299 (2003) Band Anticrossing in HMA: Dilute nitride alloys: GaAs N 1-x x • Interaction of localized N levels with extended states of the conduction band. • Homogenous broadening within coherent potential approximation 1        C  L C  L 2 2  E k  E k  E  E k  E  4C x    NM 2   W. Shan etl al., Phys. Rev. Lett. 82, 1221-1224 (1999); J. Wu et al. Semicon. Sci. Technol. 17, 862 (2002). Highly mismatched Alloys Electronegativities, X and atomic radii, R IV V VI • A large variety of potential C N O highly mismatched alloys. 2.6 X=3.0 X=3.4 III-N -V R=0.075 nm R=0.073 nm x 1-x II-O -VI Si P S x 1-x • Compared to normal alloys, 1.9 X=2.2 X=2.6 they are difficult to synthesize R=0.12 nm R=0.11 nm • Require non-equilibrium Ge As Se synthesis X=2.2 X=2.6 1.9 R=0.13 nm R=0.12 nm Sn Sb Te 2.0 2.1 2.1 R=0.14 nm R=0.14 nm Synthesis of HMAs by ion implantation and pulsed laser melting (II-PLM) N ions Time Resolved Reflectivity ion induced damage GaAs Pulsed laser melting (PLM) Homogenized excimer laser pulse (=248 nm, 30 ns FWHM, ~0.2-0.8 J/cm2) ion indGuLcaiqeNudAi ddsamage GaAs RTA  Lliquid phase epitaxy at submicrosecond time scales GaNAs  Supersaturation of implanted species GaAs  Suppression of secondary phases Alloys with local level below the direct CBE III-V II-VI E oxy E N E FS G G I Z Z M C n a a P n n n d P A S T T T s e e e e Oxygen level in ZnTe and MnTe is ~0.2 eV below the conduction band (CB) edge Can it be used to form a sparate band?

Description:
Valence Band Anticrossing in III-Bi-V Alloys J. Ager, K. M. Yu, Liliental-Weber, J. Denlinger, O. Dubon, E. E. Haller, J. Wu LBNL and UC Berkeley
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.