Wladek Walukiewicz Lawrence Berkeley National Laboratory, Berkeley CA In collaboration with EMAT-Solar group http://emat-solar.lbl.gov/ Valence Band Anticrossing in III-Bi-V Alloys J. Ager, K. M. Yu, Liliental-Weber, J. Denlinger, O. Dubon, E. E. Haller, J. Wu LBNL and UC Berkeley K. Alberi, X. Li, D. Speaks, M. Mayer, R. Broesler, A. Levander Students, UC Berkeley Collaborations • J. Geisz, NREL (InGaAs(N)) • C. Tu, UCSD (GaP(N), InP(N)) • C. Skierbiszewski, Unipres (InGaAs(N)) • A. Ramdas, Purdue University (ZnTe(Se), ZnTe(S)..) • I. K. Sou, UST, Hong Kong (ZnSe(Te), ZnS(Te)) • I. Suemune, (Hokkaido University) (InGaAs(N)) • T. Kuech, University of Wisconsin (GaN(As)) • Y. Nabetani, University of Yamanashi (ZnSe(O), ZnTe(O)) • J. A Gupta, NRC, Canada (GaAs(Sb)) • S. Watkins, Simon Frasier (GaAs(Sb)) • A. Krotkus, SRI, Vilnius (GaAs(Bi) • J. Blacksberg, JPL (Ge(Sn)) • T. Foxon, S. Novikov, University of Nottingham (GaN(As)) • J. Furdyna, University of Notre Dame (GaAs(Mn)) Outline Highly Mismatched Semiconductor Alloys Conduction and Valence Band Anticrossing Key examples of highly mismatched alloys (HMAs) GaN As x 1-x ZnO Se x 1-x Group III-Bi-V highly mismatched alloys Electronic Band Structure Engineering of HMAs Potential applications of HMAs (including bismides) Conclusions and outlook Normal alloying: well matched alloys 2.8 3.6 2.6 GaAs P 1-y y ZnSe S 3.4 1-y y 2.4 ) V e ( ) y V 2.2 g 3.2 e r ( e y n g E E re 2 X p n a 3 E G d 1.8 n E a E B 2.8 1.6 1.4 2.6 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 GaAs GaP Composition, y ZnSe Composition, y ZnS Relatively easy to grow in the whole composition range Small deviations from linear interpolation between end point compounds Anion Site Alloys Electronegativities, X and atomic radii, R IV V VI • A large variety of C N O potential alloys. 2.6 X=3.0 X=3.4 R=0.075 nm R=0.073 nm • Well matched alloys: Si P S replacing atoms with 1.9 X=2.2 X=2.6 similar properties R=0.12 nm R=0.11 nm • What happens when As Ge As Se is replaced with very X=2.2 X=2.6 1.9 much different N or Se R=0.13 nm R=0.12 nm with O? Sn Sb Te 2.0 2.1 2.1 R=0.14 nm R=0.14 nm III-Vs and II-VIs HMAs 2.70 ZnO Se 2.68 x 1-x VCA 295 K VCA ) V 2.66 e ( 2.64 y g r 2.62 e n E 2.60 p a 2.58 g - d 2.56 n a Exp.Data 2.54 B BAC 2.52 2.50 0.000 0.005 0.010 0.015 0.020 Oxygen Concentration (x) Drastic deviation from linear interpolation between end point compounds W. Shan, et. al., J. Phys.: Condens Matter, 16 S3355 (2004) W. Shan, et. al., Appl. Phys. Lett., 83, 299 (2003) Band Anticrossing in HMA: Dilute nitride alloys: GaAs N 1-x x • Interaction of localized N levels with extended states of the conduction band. • Homogenous broadening within coherent potential approximation 1 C L C L 2 2 E k E k E E k E 4C x NM 2 W. Shan etl al., Phys. Rev. Lett. 82, 1221-1224 (1999); J. Wu et al. Semicon. Sci. Technol. 17, 862 (2002). Highly mismatched Alloys Electronegativities, X and atomic radii, R IV V VI • A large variety of potential C N O highly mismatched alloys. 2.6 X=3.0 X=3.4 III-N -V R=0.075 nm R=0.073 nm x 1-x II-O -VI Si P S x 1-x • Compared to normal alloys, 1.9 X=2.2 X=2.6 they are difficult to synthesize R=0.12 nm R=0.11 nm • Require non-equilibrium Ge As Se synthesis X=2.2 X=2.6 1.9 R=0.13 nm R=0.12 nm Sn Sb Te 2.0 2.1 2.1 R=0.14 nm R=0.14 nm Synthesis of HMAs by ion implantation and pulsed laser melting (II-PLM) N ions Time Resolved Reflectivity ion induced damage GaAs Pulsed laser melting (PLM) Homogenized excimer laser pulse (=248 nm, 30 ns FWHM, ~0.2-0.8 J/cm2) ion indGuLcaiqeNudAi ddsamage GaAs RTA Lliquid phase epitaxy at submicrosecond time scales GaNAs Supersaturation of implanted species GaAs Suppression of secondary phases Alloys with local level below the direct CBE III-V II-VI E oxy E N E FS G G I Z Z M C n a a P n n n d P A S T T T s e e e e Oxygen level in ZnTe and MnTe is ~0.2 eV below the conduction band (CB) edge Can it be used to form a sparate band?
Description: