ebook img

Vacuum thin shell solutions in five-dimensional Lovelock gravity PDF

0.17 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Vacuum thin shell solutions in five-dimensional Lovelock gravity

Vacuum thin shell solutions in five-dimensional Lovelock gravity C. Garraffo1,2, G. Giribet3,4, E. Gravanis4, S. Willison4 1 Instituto de Astronom´ıa y F´ısica del Espacio, CONICET, Argentina. Ciudad Universitaria, IAFE, C.C. 67, Suc. 28, 1428, Buenos Aires, Argentina. 2 Brandeis Theory Group, Martin Fisher School of Physics, Brandeis University, Brandeis University, Waltham, MA 02454-9110, USA. 3 Departamento de F´ısica, FCEN, Universidad de Buenos Aires, Argentina, 0 1 Ciudad Universitaria, Pabello´n 1, 1428, Buenos Aires, Argentina. 0 4 Centro de Estudios Cient´ıficos CECS, 2 Casilla 1469, Valdivia, Chile. n a J Abstract 8 Junctionconditionsforvacuumsolutionsinfive-dimensionalEinstein-Gauss-Bonnetgravity 1 are studied. We focus on those cases where two spherically symmetric regions of space-time are joined in such a way that the induced stress tensor on the junction surface vanishes. So a ] c spherical vacuum shell, containing no matter, arises as a boundary between two regions of the q space-time. Suchsolutionsareageneralizedkindofsphericallysymmetricemptyspacesolutions, - described by metric functions of the class C0. New global structures arise with surprising r g features. In particular, we show that vacuum spherically symmetric wormholes do exist in this [ theory. Thesecanberegardedasgravitationalsolitons,whichconnecttwoasymptotically(Anti) de-Sitter spaces with different masses and/or different effective cosmological constants. We 1 provetheexistence of both static and dynamical solutions and discuss their (in)stability under v 6 perturbations that preserve the symmetry. This leads us to discuss a new type of instability 9 that arises in five-dimensional Lovelock theory of gravity for certain values of the coupling of 0 theGauss-Bonnet term. 3 . 1 0 0 1 : v i X r a 1 A higher dimensional theory which has attracted much interest is Lovelock gravity [1]. This is because the theory, having field equations of second order in derivatives of the metric, intuitively has the right ingredients for a classicaltheory of gravity. In particular, the linearised perturbations about physically sensible backgrounds are well-behaved and are of the same second derivative form as in General Relativity (GR). Equivalently, the quadratic part of the perturbed Lagrangian is of the general form h∂∂h so there are no corrections to the propagator and no extra (ghost) fields corresponding to higher derivatives [2, 3]. There are however some exotic features of Lovelock gravity which certainly do not arise in GR. One such feature is the problem of (non-)determinism [4, 5, 6]. Given an initial data surface and a specified intrinsic metric and its first time derivative (or extrinsic curvature) one can try to integrate the Lovelock equations to evolve the metric through time. There one runs into a theoretical problem: There are solutions with spacelike surfaces on which the extrinsic curvature may be suddenly discontinous. It can not be determined from the initial data if the extrinsic curvature will jump or if the metric will evolve smoothly. This is equivalent to the nonuniqueness problem in inverting the canonical momentum which is polynomial in the curvature [4]. Even for more smooth metrics there can be a problem of indeterminism, where components of the metric become arbitrary. This second kind of nondeterminism, with arbitraryfunctions of time appearing, only occurs in a regime where the curvature is large enough that the higher order Lovelock tensors become appreciable compared to the Einstein tensor. However the first kind of indeterminism, for metrics of class C0, is quite generic in Lovelock gravity. This means that one has to be careful in interpretingLovelocktheoryasaneffectivetheory. Itistoosimplistictosaythatthe theoryisvalid when the curvature is small w.r.t. a certain characteristic scale. A natural question arises: can we look at the same phenomenon in the context of timelike sur- faces. Thatis,discontinuitiesallowedinintegratingtheequationsofmotioninaspacelikedirection. The nonsmoothsolutions we shallpresenthere (firstfound in Ref. [7])are the timelike analoguesof the first kind of nondeterminism. These objects are not a priori pathological objects in the theory: they can be everywhere non-spacelike (they can even be static as we shall see) and so in principle they do not violate determinism. One of the original motivations for this work was to see whether stable solitonic objects can exist in a space which at large distances looks like a positive mass so- lution of GR (such objects might be interpreted as branes of the Lovelock theory itself). It seems that the answer is no and the reasons why they do not exist are interesting in their own right. The essentialfeatures canbe seen inthe quadraticLovelocktheory,often calledEinstein-Gauss- Bonnet (EGB) theory. We shall therefore restrict ourselves to this theory and to the minimum number of dimensions, i.e. five. The action is given by the Einstein-Hilbert term, plus the Einstein cosmologicaltermandadditionallytheGauss-Bonnetcombinationofquadraticcurvatureinvariants: 1 S = d5x√ g 2Λ+α 2+ ABCD 4 AB , (1) 2κ2 − R− R RABCDR − RABR Z where κ2 = 8πG and α represen(cid:0)ts the coupli(cid:0)ng constant of the Gauss-Bonnet te(cid:1)r(cid:1)m. In five di- mensions, this is in fact the most general Lovelock theory since the Lovelock combination of cubic terms O( 3) identically vanishes (in D = 6 they combine to a quantity which is locally a total ∼ R derivative; they contribute to the equations of motion for D 7; see for instance [8]). Likewise, the ≥ nth order Lovelock terms only become relevant in 2n+1 or more dimensions. The field equations associated with the action (1) coupled to some matter action take the form GA +ΛδA+αHA =κ2TA, (2) B B B B where TA is the stress tensor, GA 1δACD EF = A 1δA is the Einstein tensor, and B B ≡−4 BEF RAB R B − 2 BR 1 HA δAC1...C4 D1D2 D3D4 , B ≡−8 BD1...D4R C1C2R C3C4 and where the antisymmetrized Kronecker delta is defined as δA1...Ap p!δA1 δAp. B1...Bp ≡ [B1··· Bp] ThesphericallysymmetricsolutioninthistheorywithT =0,i.e. theanalogtotheSchwarzschild AB black hole in Einstein’s Theory, is the Boulware-Deser solution, which reads [9, 10, 11] 1 r2 4Λα 16Mα ds2 = f(r)dt2+ dr2+r2dΩ2, f(r)=k+ 1+ξ 1+ + (3) − f(r) 3 4α r 3 r4 ! 2 wheredΩ2 =sin2χdθ2+sin2χsin2θdφ2+dχ2 isthelineelementofthethree-spherewithnormalized 3 curvature k =1 (solutions also exist with planar and hyperbolic horizon geometry, i.e. with k =0, 1, respectively. For simplicity, we will focus here on the spherical case k =1) and ξ2 =1. − WeseehereatypicalfeatureoftheEGBtheory: theBoulware-Deser[9]metrichastwobranches. The minus branch (ξ = 1) reduces to the corresponding solution of GR in the limit α 0, as − → expected. However, for the plus branch (ξ = +1) this limit is ill defined. Thus, the plus branch is calledthe “exoticbranch”ofthe Boulware-Desermetricsanditis usually thoughtofasanunstable vacuum of the theory, with ghost excitations [9, 2], and a naked singularity instead of a black hole. Just as for Schwarzchild’s metric, M is here a constant of integration and it is associated with the mass of the solution. Let us also point out that the Boulware-Deser solution is unique only under a certain assumption about the coupling constants (in the case of 5-dimensional EGB theory the assumption is 4α/3Λ = 1) discussed in1 Refs. [10, 12, 13, 14] and also the assumption that the 6 metricisofclassC2 [13]. Itistherelaxationofthis lastassumptionwhichweexploreinthis article. The spherically symmetric situation givesa simple setting in whichto constructsome intriguing vacuumgeometrieswhicharespecialtoLovelockgravity: wecanconstructthin-shellvacuumworm- holesandotherobjectsbygluingtogetherdifferentBoulware-Desermetrics. Inordertostudythese geometries we will start by discussing the junction conditions in this theory, workedout in [16, 17]. These are the analogues of the Israel conditions in GR [18]. In particular, they will be employed to join two different spherically symmetric spaces. LetΣ be a timelike hypersurfaceseparatingtwo bulk regionsofspacetime, region andregion L V (“left” and “right”). We introduce, for convenience, the coordinates (t ,r ) and (t ,r ) and R L L R R V the metrics dr2 ds2 = f dt2 + L +r2dΩ2, (4) L − L L f L 3 L dr2 ds2 = f dt2 + R +r2dΩ2, (5) R − R R f R 3 R in the respective regions. We are interested in the case where both f (r ) and f (r ) are vacuum L L R R solutions,sotheywillbeoftheformgiveninequation(3). Ingeneral,themassparameterM willbe R differentfromM ,andξ differentfromξ sothatthetwodifferentbranchesoftheBoulware-Deser L R L solution can be joined. Itisalsoconvenientto parameterizethe shell’s motioninthe r tplane usingthe propertime τ − onΣ. Inregion wehaver =a(τ), t =T (τ) andinregion wehaver =a(τ), t =T (τ). L L L L R R R R V V The induced metric on Σ induced from region is the same as that induced from region , and L R V V is given by dsˆ2 = dτ2+a(τ)2dΩ2. (6) − 3 This guarantees the existence of a coordinate system where the metric is continuous (C0). Let us set some conventions: The hypersurface Σ has a single unit normal vector n which points from left to right; and the orientation factor η of each bulk region is defined as follows: η = +1 if the radial coordinate r points from left to right, while η = 1 if the radial coordinate r points from right to − left. Wearenowinpositiontoclassifythe shellsaccordingto thefollowingdefinitions: η η >0will L R be called the standard orientation; η η <0 will be called the wormhole orientation2. L R Integrating the field equations from left to right in an infinitesimally thin region across Σ one obtainsthe junctionconditions. This relatesthe discontinuouschangeofspacetimegeometryacross Σ with the stress tensor Sb (see Refs. [16, 17, 19] for details). a (Q )b (Q )b = κ2Sb , (7) R a− L a − a Above, the subscripts L, R signify the quantity evaluated on Σ induced by regions and L R V V respectively. The symmetric tensor Qa is given by b 2 Qa = δacKd+αδacde KfRgh + KfKgKh , (8) b − bd c bfgh − c de 3 c d e (cid:16) (cid:17) 1Seealso[15],werethenon-uniquenessofthesolutionatthepointofthespaceparametersΛα=−3/4isanalysed. 2Noticethatthisgeometrycouldcorrespondtojoiningtwo“exteriorregions”ofasphericalsolutionaswellastwo “interiorregions”. 3 where a, b,... are indices on the tangent space of the world-volume of the shell. The symbol Ka b refers to the extrinsic curvature, while the symbol Rab appearing here corresponds to the four- cd dimensional intrinsic curvature (see [7] for details). Once applied to the spherically symmetric case the tensor Qb turns out to be diagonal with components a 2 1 Qτ = 3 a 3 η a2 a˙2+f + 4αη a˙2+f k+ a˙2 f , (9) τ − − 3 − 3 (cid:18) (cid:19) Qθ =Qχ =Qϕ. p p (cid:0) (cid:1) (10) θ χ ϕ It can be verify that the following equation is satisfied d a3Qτ =a˙3a2Qθ ,. (11) dτ τ θ (cid:0) (cid:1) This equation expresses the conservation of Sb, i.e. no energy flow to the bulk, which always holds a when the normal-tangential components of the energy tensor in the bulk is the same in both sides of the junction hypersurface [16, 19]. The main point here is that non-trivial solutions to (7) are possible even when Sb = 0. That a is, the extrinsic curvature can be discontinuous across Σ with no matter on the shell to serve as a source. The discontinuity is then self-supported gravitationally and this is due to non-trivial cancelations between the terms of the junction conditions. Similar configurations are impossible in Einstein gravity (in that case the junction conditions are linear in the extrinsic curvature). Since we are interested in vacuum solutions, we will consider Sb =0 . (12) a From equation (11) we see that in the case a˙ =0, the components of the junction condition are not 6 independent: (Q )τ (Q )τ = 0 (Q )θ (Q )θ = 0 . So it suffices to impose only the first R τ − L τ ⇒ R θ − L θ condition, which can be factorized as follows, η a˙2+f η a˙2+f R R L L − × (cid:16) p p 4α(cid:17) a2+4α(k+a˙2) f +f +2a˙2+η η f +a˙2 f +a˙2 =0. (13) R L R L R L × − 3 (cid:26) (cid:16) p p (cid:17)(cid:27) All the information concerning the spherically symmetric vacuum shells is contained in (13). There existseveralpossibilities tobe explored,correspondingto differentchoicesinthe Bolware-Deserpa- rametersk, M andξ,combinedwiththetwopossibleorientationsη. Thispermitsaveryinteresting catalogue of geometries which we survey later and is further explored in [7]. The first factor in (13) vanishes for the smooth metric. Thus, for non-smooth solutions we demand that the second factor vanishes. From the second factor, squaring appropriately,we obtain 2 f +f 3(k+a2/4α) f f R L R L a˙2 = σ − − =: V(a), (14) (cid:16) 3 f +f 2(k+a2(cid:17)/4α) − R L − (cid:16) (cid:17) This is essentially a one-dimensional problem, given by an ordinary differential equation (14), like the equationfor a particle of a given energy moving radially in a sphericalpotential. Now, since we havesquaredthejunctioncondition,wemustsubstitute(14)backinto(13)tochecktheconsistency. When doing so we find the following restrictions η η (2f +f 3(k+a2/4α)) (2f +f 3(k+a2/4α)) 0; (15) R L R L L R − − − ≥ (f +f 2(k+a2/4α))>0 . (16) R L − So, for a dynamical vacuum shell with a timelike world-volume Σ, the scale factor of the metric (6) on Σ is governed by (14), under the inequalities (15) and (16). Usingtheinequalitiesweimmediatelyobtainthefollowinggeneral results for dynamical or static shells: 4 G1)Vacuumshellswiththestandardorientationalwaysinvolvethegluingofaplusbranch(ξ =+1) metric with a minus branch (ξ = 1) metric. − G2) Vacuum shells which involve the gluing of two minus branch (ξ = 1) metrics exist only − when the Gauss-Bonnetcoupling constant α satisfies α<0. They always have the wormhole orien- tation. In the analysis above it has been explicitly assumed that a˙ = 0. It can be checked that, as 6 expected, all the information about the constant a solutions can be obtained from the dynamical case by imposing both V(a ) = 0 and V (a ) = 0. Nevertheless, since the case a˙ = 0 describing 0 ′ 0 static shells is of considerable interest, we shall treat it here explicitly. So, let us now discuss the solutions for constant a, a = a . The bulk metric in each of the two 0 region is assumed to be of the Boulware-Deser form (3). In this case the shell is located at fixed radius r =r =a . The proper time on the shell’s world-volumeis τ =t f (a)=t f (a) so L R 0 L L R R that the induced metric on Σ turns out to be dsˆ2 = dτ2+a2dΩ2. Then, the extrinsic curvature components are Kτ = η f′ , Kθ = Kχ = Kϕ = η√f−and the0int3rinsic curpvature compponents are τ 2√f θ χ ϕ a Rθϕ =k/a2, etc. The junction conditions with Sa =0 give: θϕ 0 b 4α Sτ =0 η f η f a2+ 3k f f η η f f =0 , (17) τ ⇒ R R− L L 0 3 − R− L− L R L R (cid:0) p p (cid:1)(cid:16) η (cid:8)η Λa2 p (cid:9)(cid:17) Sθ =0 R L k 0 η η f f =0 , (18) θ ⇒ √f − √f − 3 − L R L R R L (cid:16) (cid:17)(cid:16) p (cid:17) In both equations (17) and (18), the first factor vanishes if and only if the metric is smooth. Again, rejecting this as the trivial solution, we demand that the second factor vanishes in both equations (under the condition f ,f >0). L R LetusfirstconsiderΛ=0. Solvingtheequationsweseethatf andf obeythesamequadratic L R 6 equationwhereonef hasthe+rootofthesolutionandtheotherhasthe root. Wewillcallthese − solutions f and f respectively with correspondingparameters ξ , ξ and M , M . Substituting + + + − − − the explicit expression for f , evaluated at r =a , we find L,R 0 3 12 9x2M 1+x±√3sx(1+x) x + Λa20 −1 =2ξ(±)s1+x+ αΛ2a(±40) , (19) (cid:16) (cid:17) where we have found it convenient to define the dimensionless parameter3 4αΛ x . ≡ 3 For a solution to exist, the square root in the l.h.s. of (19) must be real, and since we have squared the equations we must substitute back to check the consistency. So we get (19) along with the following inequalities: 3 (3+x)+2>0 (Timelike shells); (20) xΛa2 0 3 3 <1 (Standard orientation), >1 (Wormhole orientation). (21) Λa2 Λa2 0 0 These admit solutions for a wide range of the coupling constants Λ, α and parameters ξ , M , which is described exhaustively in ref [7]. Here we mention some general results for static sh±ells:± S1) Static shells with wormhole orientation only exist for Λ>0. 3ThisparameterisimportantindeterminingthenatureoftheBoulware-Desersolutions. Forx<−1bothbranches are pathological, with branch singularities where the metric becomes complex. In particular there is no asymptotic regionsincethemetricalwaysbecomescomplexforr→∞. x=−1isthespecialcase, relatedtotheChern-Simons theoryofgravityinfivedimensions,wheretheeffectivecosmologicalconstantsofthetwobranchesarethesame. For x>−1the(−)branchsolutionissomewhatsimilartotheSchwartzschild/Schwartzchild-(A)dS blackhole. 5 i+ (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)i+ i+ (cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) + + (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) r=0 (cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) i0 r=0 r=a i0 (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:1) (cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1)(cid:0)(cid:0)(cid:0)(cid:1)(cid:1)(cid:1) − − (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1) i− (cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)(cid:0)(cid:1)i− i− (a) (b) (c) Figure 1: An example of a solution with standardorientation,for Λ=0. a) (+) branchspacetime: naked singularity, asymptotically AdS; b) (-) branch spacetime: black hole, asymptotically flat; c) By cutting out shaded regions and joining we obtain a C0 vacuum solution with a “false vacuum bubble” containing a naked singularity (singularities are shown as dashed lines; the faint timelike line is the shell worldvolume). S2) Static shells with wormhole orientation containing two asymptotic regions only exist for α>0. At least one region will be asymptotically Anti-de Sitter. S3) Let Λ 0. Then static shells exist (with standard orientation) joining (+) with (-) branches. ≤ InS2)weusedthefactthatthemetriciswelldefinedasr onlyfor1+4αΛ/3>0. Also,in →∞ S1-S3)we havepreemptivelywritten the resultfor Λ=0whichwe nowshow. This isaninteresting special case, in which the equations reduce to 3a2 f +f =2+ 0 , (22) L R 4α η η f f =1 . (23) L R L R Weseefromthesecondequationthatη η pmustbe+1,i.e. staticwormholesdonotexistforΛ=0. L R One can also check that the consistency of the solutions leads to the condition α>0 as well as the Λ=0 case of S3). Summarizing,forthestandardorientationgeometries,η η >0,branchesarealways(ξ ,ξ )= L R ( ) (+) − ( 1,+1), so region has a different effective cosmological constant to region , as can be seen L R − V V from the expansion of the metric for large r. In this sense the shell is like the false vacuum bubbles studied in Refs. [20], but for a false vacuum which is of purely gravitational origin (see [7]). These kindofsolutionsmightleadtocuriousimplicationsforthe globalspacetimestructure. Forinstance, wecanconstructavacuumsolutionwhosegeometry,fromthe pointofviewofanexternalobserver, would coincide with that of a black hole but, instead, would not possess a horizon. A particle in free fall wouldnot find a horizonbut rathera nakedsingularity as soonas it passes throughthe C0 junction hypersurface located at r =a>r . This is depicted in Fig. 1 for the case Λ =0 (similar H solutionsalsoexistforΛ=0). However,asonewouldexpect, suchcosmic-censorship-spoilingshells 6 are unstable with respect to small perturbations, as we shall see below. On the other hand, there are two different classes of wormhole orientation geometries. The first class describes actual wormholes, presenting two different asymptotic regions which are connected through a throat located at radius r = r = a; the radius of the throat being larger than the L R radius where the event horizons (or naked singularities) would be. This type of geometry is an example of a vacuum spherically symmetric wormhole solution in Lovelock theory and its existence is a remarkable fact on its own. The second class of wormhole-like geometry has no asymptotic regions, and is obtained by cutting away the exterior region of both geometries and gluing the two interior regions together. Finally, we discuss dynamical shells and the issue of stability of the static shells. In general, vacuum shells will be dynamical objects. In order to discuss their dynamics and stability let us briefly recapitulate upon the equation (14), which governs the dynamics of the shells. It takes the form: a˙2+V(a)=0; (24) 6 i+ i+  i− i− a) (−) branch dS black hole b) (+) branch AdS naked singularity i+ shell  i− c) Vacuum thin shell wormhole. The naked singularity is removed. Figure 2: diagram c) shows a static wormhole joining two asymptotic dS/AdS regions. This is a vacuum solution of Einstein-Gauss-Bonnet theory. (see (14) above). It is useful to introduce the non-negative quantity Y = 1+ 4αΛ + 16Mα, with 3 a4 which the effective potential reads q a2 a2 3(ξ Y +ξ Y )2+(ξ Y ξ Y )2 R R L L R R L L V(a)= 1+ − . (25) 4α − 4α 12(ξ Y +ξ Y ) (cid:18) (cid:19) (cid:18) R R L L (cid:19) In addition to the differential equation, the solution must obey the inequalities (15) and (16). To analyzethe motion of a shellwe need to know the derivatives ofthe potential (this is worked out in the appendix of [7]). Differentiating the potential we get the following expression for the acceleration of a moving shell, a 1+4αΛ/3 a¨= 1 . (26) −4α − ξ Y +ξ Y R R L L h i Consideringthesignofthisacceleration,wecanmakesomegeneralobservations: When1+4αΛ 0 3 ≥ and α < 0 a vacuum shell always experiences a repulsive force away from r = 0; conversely when 1+ 4αΛ 0 and α>0 a vacuum shell alwaysexperiences an attractive force towardsr =0. Which 3 ≤ means that if Σ is a timelike shell it will either be in an (unstable) static state, or, if it is moving, will either expand or collapse, it can not be bound. 1 Combining with results derived from the inequalities we can state further results for dynamical shells in the regime 1+4αΛ/3>0: D1) When α<0 a vacuum shell always experiences a repulsive force away from r =0. D2) A shell joining two minus branches always experiences a repulsion away from r =0. D3) A shell joining a minus branch with a plus branch region will either: i) be in an (unstable) staticstateor,afteratmostonebounce: ii)collapsewithoutreexpandingoriii)expandindefinitely. It will not perform oscillations or any other bounded motion. A corollory of D3) is that shells with standard orientation are unstable (Fig. 3). Soinsummary,wehavefoundsomegeneralresultsfortherangeofparameters1+4αΛ 0. This 3 ≥ rangeisofimportanceasitincludesthecase αΛ <<1andthereforeapplieswhentheGauss-Bonnet | | 7 i + h  + S (−) branch i 0 Σ (+) branch − i− Figure 3: A typical example for Λ = 0. Collapse of a vacuum shell with worldvolume represented by the line Σ. The (+) branch region shrinks inside the horizon h. “Cosmic censorship” is restored in the future domain of dependence of the spacelike initial data surface S. term is a small correction. Combining these results, we conclude that, in this range of parameters, alltimelikevacuumshellsinvolvingthe minusbranchareunstable. The onlyvacuumshellsolutions which canbe static or oscillatoryarewormholeswhich matchtwo regionsof the exotic plus branch. Herewehavefocusedonthecasewheretheshellisa3-sphereevolvingthoughtimeinaspherically symmetricbackground. Howeverthis analysiscanbe straightforwardlyextendedtothe casesofany constant curvature 3-manifold shell and to shells of either spacelike or timelike signature. This generalization and a more complete analysis of the space of solutions can be found in Ref. [7]. This paper is an extended version of the authors’ contribution to the proceedings of the 12th Marcel Grossman Meeting, held in Paris, 12-18 July 2009. This work was supported in part by Fondecyt grant 1085323, by UBA grants UBACyT-X861 UBACyT-X432, and by ANPCyT grant PICT-2007-00849. TheworkofC.G.issupportedbyCONICET.TheCentrodeEstudiosCient´ıficos CECS is funded by the Chilean Government through the Millennium Science Initiative and the Centers of Excellence Base Financing Program of Conicyt. CECS is also supported by a group of private companies which at present includes Antofagasta Minerals, Arauco, Empresas CMPC, Indura, Naviera Ultragas and Telefo´nica del Sur. References [1] D. Lovelock,J. Math. Phys. 12, 498 (1971). [2] B. Zwiebach, Phys. Lett. B 156 (1985) 315. [3] B. Zumino, Phys. Rept. 137 (1986) 109. [4] C. Teitelboim and J. Zanelli, Class. Quant. Grav. 4, L125 (1987). [5] Y. Choquet-Bruhat, J. Math. Phys. 29, 1891 (1988). 1 [6] N. Deruelle and J. Madore, [arXiv: gr-qc/0305004]. [7] C. Garraffo, G. Giribet, E. Gravanis and S. Willison, J. Math. Phys. 49 (2008) 042503, [arXiv:0711.2992]. [8] C. Garraffo and G. Giribet, Mod. Phys. Lett. A23 (2009) 1801, [arXiv:0805.3575] [9] D. G. Boulware and S. Deser, Phys. Rev. Lett. 55, 2656 (1985). [10] J. T. Wheeler, Nucl. Phys. B268, 737 (1986); Nucl. Phys. B273, 732 (1986). 8 [11] R. G. Cai, Phys. Rev. D 65, 084014 (2002), [arXiv:hep-th/0109133]. [12] C.CharmousisandJ.F.Dufaux,Class.Quant.Grav.19,4671(2002),[arXiv:hep-th/0202107]. [13] R. Zegers, J. Math. Phys. 46, 072502(2005), [arXiv:gr-qc/0505016]. [14] S. Deser and J. Franklin, Class. Quant. Grav. 22, L103 (2005), [arXiv:gr-qc/0506014]. [15] G. Dotti, J. Oliva and R. Troncoso, Phys. Rev. D 76, 064038 (2007), [arXiv:0706.1830]; Phys. Rev. D 75, 024002(2007) [arXiv:hep-th/0607062]. [16] S. C. Davis, Phys. Rev. D 67, 024030(2003), [arXiv:hep-th/0208205]. [17] E. Gravanis and S. Willison, Phys. Lett. B 562, 118 (2003), [arXiv:hep-th/0209076]. [18] W. Israel, Nuovo Cim. B44S10 (1966) 1 [Erratum, Nuovo Cimento B48 (1967) 463]. [19] E. Gravanis and S. Willison, Phys. Rev. D 75, 084025(2007), [arXiv:gr-qc/0701152]. [20] V.A.Berezin,V.A.KuzminandI.I.Tkachev,Phys.Lett.120B,(1983)91;K.Maeda,Gen.Rel. Grav.18,(1986)931;H.Sato,Prog.Theor.Phys.76(1986)1250;S.T.Blau,E.I.Guendelman and A. Guth, Phys.Rev. D 35, 1747(1987);A. Aguirre and M. C. Johnson,Phys. Rev. D 72, 103525(2005) [arXiv:gr-qc/0508093]; S. V. Chernov and V. I. Dokuchaev, [arXiv:0709.0616]. 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.