ebook img

UV-Visible Photocatalysis for Clean Energy Production and Pollution Remediation: Materials, Reaction Mechanisms, and Applications PDF

374 Pages·2023·6.851 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview UV-Visible Photocatalysis for Clean Energy Production and Pollution Remediation: Materials, Reaction Mechanisms, and Applications

UV-VisiblePhotocatalysisforCleanEnergyProduction andPollutionRemediation UV-Visible Photocatalysis for Clean Energy Production and Pollution Remediation Materials, Reaction Mechanisms, and Applications Edited by Xinchen Wang, Masakazu Anpo, and Xianzhi Fu Editors AllbookspublishedbyWILEY-VCHarecarefully produced.Nevertheless,authors,editors,and Prof.XinchenWang publisherdonotwarranttheinformation FuzhouUniversity containedinthesebooks,includingthisbook, StateKeyLab.Photocatalysison tobefreeoferrors.Readersareadvisedtokeep EnergyandEnvironment inmindthatstatements,data,illustrations, No.2,XueyuanRoad proceduraldetailsorotheritemsmay 350116Fuzhou inadvertentlybeinaccurate. P.R.China LibraryofCongressCardNo.:appliedfor Prof.MasakazuAnpo FuzhouUniversity BritishLibraryCataloguing-in-PublicationData StateKeyLab.ofPhotocatalysison Acataloguerecordforthisbookisavailable EnergyandEnvironment fromtheBritishLibrary. No.2,XueyuanRoad 350116Fuzhou Bibliographicinformationpublishedby P.R.China theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists Prof.XianzhiFu thispublicationintheDeutsche FuzhouUniversity Nationalbibliografie;detailedbibliographic StateKeyLab.ofPhotocatalysisand dataareavailableontheInternetat Environment <http://dnb.d-nb.de>. 350116Fuzhou P.R.China ©2023WILEY-VCHGmbH,Boschstraße12, 69469Weinheim,Germany CoverImage:SchemebyProf.Masakazu Anpo Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw. PrintISBN:978-3-527-35050-6 ePDFISBN:978-3-527-83797-7 ePubISBN:978-3-527-83798-4 oBookISBN:978-3-527-83799-1 CoverDesign:ADAMDESIGN,Weinheim, Germany Typesetting Straive,Chennai,India v Contents UV-VisiblePhotocatalysisforCleanEnergyProductionand PollutionRemediation:Materials,ReactionMechanisms,and Applications–APreface xv ListofContributors xix 1 Introduction 1 XinchenWang,MasakazuAnpo,andXianzhiFu 1.1 ChallengesandObjectivesintheUseofSolarEnergy 1 1.2 BriefHistoryoftheProgressinPhotocatalystsandPhotocatalytic Reactions 2 1.3 BriefIntroductionoftheChapters 4 1.4 ConclusionandPerspectives 6 References 6 PartI FundamentalsofPhotocatalysis 9 2 Visible-LightActivePhotocatalystsinPollutantDegradation/ ConversionwithSimultaneousHydrogenProduction 11 AmeneNaseri,MorasaeSamadi,andAlirezaZ.Moshfegh 2.1 Introduction 11 2.2 PrinciplesofSimultaneousPhotocatalysis 13 2.2.1 Dual-Functionalvs.ConventionalPhotocatalysts 13 2.2.2 ReactionEfficiencyEvaluation 15 2.3 CooperationPhotocatalystsforOrganicPollutant Degradation/ConversionandH FuelProduction 16 2 2.3.1 PhotocatalystDesign 16 2.3.2 OrganicSubstrateType 19 2.3.3 ReactionConditions 21 2.4 Conclusions 23 Acknowledgment 24 References 24 vi Contents 3 SelectiveOxidationofAlcoholsUsingCarbonNitride Photocatalysts 27 OleksandrSavateev 3.1 Introduction 27 3.2 Heptazine-BasedGraphiticCarbonNitrides 28 3.3 MechanismofAlcoholsOxidationbyCarbonNitrides 29 3.4 ImprovingSelectivityofAlcoholsOxidation 32 3.4.1 OptimizingReactionTimeandConversionofAlcohol 32 3.4.2 SubstitutingO byOtherOxidants 35 2 3.4.3 CombiningCarbonNitridePhotocatalystwithH EvolvingCatalyst 36 2 3.4.4 EmployingPhoto-ChargeableIonicCarbonNitridesUnderAnaerobic Conditions 36 3.5 Conclusion 38 References 38 4 ApplicationofS-SchemeHeterojunctionPhotocatalyst 41 ChuanbiaoBieandJiaguoYu 4.1 Introduction 41 4.2 HydrogenEvolution 44 4.3 CarbonDioxideReduction 46 4.4 PollutantDegradation 48 4.5 HydrogenPeroxideProduction 50 4.6 DisinfectionandSterilization 52 4.7 OrganicSynthesis 54 4.8 ConclusionandOutlook 55 References 56 5 TheRoleoftheDefectsonthePhotocatalyticReactionson ZnO 59 ZhongmingWang,WenxinDai,andXianzhiFu 5.1 Introduction 59 5.2 TypesofSurfaceDefectsandTheirElectricalStructure 60 5.2.1 OxygenVacancies 60 5.2.2 ZincVacancies 60 5.2.3 InterstitialOxygenandZinc 61 5.3 ControllablePreparationandCharacterizationofSurfaceVacancy Defects 62 5.3.1 ControllablePreparationofSurfaceVacancyDefects 62 5.3.1.1 FormationofVacancyDefectsviaAnnealingatDifferentConditions 62 5.3.1.2 FormationofVacancyDefectsviaMetalandNonmetalDoping 63 5.3.1.3 FormationofZnOwithVacancyDefectsviaHigh-EnergyElectronsand LightIrradiation 64 5.3.2 CharacterizationofSurfaceVacancyDefects 64 5.3.2.1 RamanSpectroscopy 64 5.3.2.2 X-rayPhotoelectron(XPS)Spectroscopy 64 Contents vii 5.3.2.3 ElectronParamagneticResonance(EPR)Spectroscopy 65 5.3.2.4 Photoluminescence(PL)Spectra 66 5.4 MechanismofSurfaceDefectsonPhotocatalyticReactionBehavior 66 5.4.1 RolesofDefectsinGasAdsorption 66 5.4.2 DefectsFunctionasaDouble-EdgedSwordinRegulatingPhotocatalytic Performance 69 5.4.3 DefectEngineeringRegulatesPhotocorrosionofZnO 70 5.4.3.1 RelationshipBetweenDefectsandPhotocorrosion 70 5.4.3.2 ConstructinganElectronChannelThroughElectronTransferuponthe AdsorptionofMoleculesandItsRoleinInhibitingPhotocorrosionof ZnO 70 5.5 ConclusionsandProspects 72 References 73 PartII PhotocatalyticSplittingofWatertoProduce Hydrogen 77 6 StrategiesforPromotingOverallWaterSplittingwith ParticulatePhotocatalystsviaSingle-StepVisible-Light Photoexcitation 79 JiadongXiao,XiaopingTao,andKazunariDomen 6.1 Introduction 79 6.2 SrTiO :Al/Rh/Cr O /CoOOH:AModelParticulateOWS 3 2 3 Photocatalyst 81 6.3 CurrentStrategiesPromotingOWSwithVisible-Light-Activated ParticulatePhotocatalysts 82 6.3.1 DefectControloftheSemiconductorMaterial 83 6.3.1.1 NewPrecursorDesigns 83 6.3.1.2 AliovalentDoping 84 6.3.2 Dual-CocatalystLoading 86 6.3.3 SurfaceNanolayerCoating 88 6.4 ConcludingRemarks 89 Acknowledgments 89 References 90 7 IntegrationofRedoxCocatalystsforPhotocatalyticHydrogen Evolution 93 MuhammadTayyab,YujieLiu,ZehongXu,SummanAman,WenhuiYue, RanaM.Irfan,LiangZhou,andJinlongZhang 7.1 Introduction 93 7.2 FundamentalsofDualCocatalysts 95 7.2.1 ClassificationofCocatalystsontheBasisoftheFunctional Mechanism 95 7.2.2 TheAdvantagesoftheDesignofDualCocatalysts 96 viii Contents 7.2.3 TheEffectofRedoxCocatalystParametersonPhotocatalysis 96 7.2.4 DesignPrinciplesofDualCocatalysts 97 7.3 RecentAdvancesintheConfigurationofDualRedox Cocatalysts/Photocatalyst 98 7.3.1 RandomDistribution 98 7.3.2 SpatiallySeparatedDistribution 99 7.3.2.1 Tip/SideDistribution 99 7.3.2.2 York-ShellDistribution 101 7.3.2.3 Facet-DependentDistribution 102 7.3.2.4 Center/EdgeDistribution 103 7.4 MajorTypesofPhotocatalyticWaterSplitting 103 7.5 Conclusions 105 References 105 8 PolymericCarbonNitride-basedMaterialsinAqueous SuspensionsforWaterPhoto-splittingandPhoto-reformingof BiomassAqueousSolutionstoGenerateH 109 2 E.I.García-López,G.Marcì,andL.Palmisano 8.1 Introduction 109 8.2 g-C N -basedPhotocatalystsforH Production 112 3 4 2 8.3 Conclusions 116 References 116 9 OrganicSupramolecularMaterialsforPhotocatalyticSplitting ofWatertoProduceHydrogen 119 XianjieChenandYongfaZhu 9.1 Introduction 119 9.2 OrganicSupramolecularPhotocatalystsforWaterSplitting 121 9.2.1 PDI-basedSupramolecularPhotocatalystsforHydrogenProduction 123 9.2.2 Porphyrin-basedSupramolecularPhotocatalystsforHydrogen Production 127 9.3 ConclusionandPerspectives 133 References 134 10 VisibleLight-responsiveTiO Thin-filmPhotocatalystsforthe 2 SeparateEvolutionofH andO fromWater 137 2 2 AswathyRajan,BernaurdshawNeppolian,andMasakazuAnpo 10.1 Introduction 137 10.1.1 FabricationofVisibleLight-responsiveTiO ThinFilms 138 2 10.1.2 CharacteristicsoftheVisibleLight-ResponsiveTiO ThinFilms 2 FabricatedbyRF–MSDepositionMethod 138 Contents ix 10.1.2.1 EffectoftheDistanceBetweentheTargetandSubstrate(D )and T–S SubstrateTemperature(T ) 139 S 10.1.2.2 EffectofthePressureofSputteringArGas 141 10.1.2.3 EffectofSurfaceTreatmentsontheTiO ThinFilms 142 2 10.2 PhotoelectrochemicalPropertiesofTiO ThinFilmsFabricatedby 2 RF–MSMethod 144 10.2.1 SetuptheReactorforSeparateEvolutionofH andO inthe 2 2 PhotocatalyticSplittingofH O 144 2 10.3 SeparateEvolutionofPureH andO UsingaVisibleLight-responsive 2 2 TiO Thin-filmPhotocatalystFabricatedbyRF–MSDepositionMethod 2 andtheFactorsAffectingtheEfficiency 145 10.4 TowardGreenerPathway:IntegrationoftheReactionSystemofthe PhotocatalyticSplittingofWaterwithanArtificialPlantFactory 149 10.5 ConclusionandPerspective 150 References 151 11 DevelopmentofHighlyEfficientCdS-BasedPhotocatalystsfor HydrogenProduction:StructuralModification,Durability,and Mechanism 153 WeiLiandChuanyiWang 11.1 Introduction 153 11.2 CdS-BasedPhotocatalysis 154 11.2.1 Constructionofp–ntypeBi O /CdSHeterostructure 154 x y 11.2.2 ConstructionofCdS@h-BNHeterostructureonrGONanosheets 156 11.2.3 N-dopedCdSNanocatalyst 158 11.2.4 PdSingle-AtomDecoratedCdSNanocatalyst 163 11.3 SummaryandProspect 167 References 167 12 TheoreticalStudiesonPhotocatalyticH Productionfrom 2 H O 171 2 KangkangLian,ZhonghuiWang,andSenLin 12.1 Introduction 171 12.2 3DPhotocatalysts 172 12.2.1 BandStructureEngineering 172 12.2.2 CarrierSeparation 174 12.3 2DPhotocatalysts 177 12.3.1 BandStructureEngineering 177 12.3.2 CarrierSeparation 181 12.4 SummaryandPerspectives 183 Acknowledgments 184 References 184 x Contents PartIII PhotocatalyticReductionofCO andFixationof 2 N 187 2 13 ProgressinDevelopmentofCocatalystsforthePhotocatalytic ConversionofCO UsingH OasanElectronDonor 189 2 2 XuanwenXu,TsunehiroTanaka,andKentaroTeramura 13.1 Background 189 13.1.1 Photocatalysis 189 13.1.2 PhotocatalyticConversionofCO usingH OasanElectronDonor 189 2 2 13.2 CocatalystsMatter:HighlySelectivePhotocatalyticConversionofCO 2 UsingH OastheElectronDonor 191 2 13.2.1 MetalCocatalysts 191 13.2.1.1 ComparisonofPt,Pd,Au,Cu,Zn,andAg 191 13.2.1.2 AgNanoparticles 191 13.2.2 FactorsinfluencingthePerformanceofAgNanoparticlesas Cocatalysts 192 13.2.2.1 Additives 192 13.2.2.2 PhotocatalystSurfaceProperties 192 13.2.2.3 Sizes,Location,andMorphologiesofAgNanoparticles 193 13.2.3 DualCocatalystsBasedonAgNanoparticles 193 13.3 NonmetalCocatalysts 194 13.4 ConclusionandPerspectives 194 References 195 14 Preparation,Characterization,andPhotocatalysts’Application ofSilicas/SilicateswithNanospacesContainingSingle-site Ti-oxoSpecies 199 MasashiMoritaandMakotoOgawa 14.1 Introduction 199 14.2 MaterialsVariationofSingle-siteTi-oxoSpeciesinNanospace Materials 200 14.2.1 CharacterizationofTi-oxoSpecies 200 14.2.2 Ti-ContainingZeolitesandMesoporousSilicas/Silicates 200 14.2.3 MolecularClusterofTiSingle-SiteinSilica-BasedMaterials 204 14.2.4 OtherTi-ContainingNanospaceMaterials 205 14.3 Applications 207 14.3.1 PhotocatalyticReductionofCO withH O 207 2 2 14.3.2 OtherApplication 209 14.4 ConclusionsandFuturePerspectives 210 References 210 15 SurfaceCoordinationImprovedPhotocatalyticFixationofCO 2 over2DOxideNanosheets 213 ZhiwenWangandYujieSong 15.1 Introduction 213

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.