UV-curable acrylate metal oxide nanocomposite coatings Citation for published version (APA): Posthumus, W. (2004). UV-curable acrylate metal oxide nanocomposite coatings. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Chemical Engineering and Chemistry]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR575148 DOI: 10.6100/IR575148 Document status and date: Published: 01/01/2004 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 18. Mar. 2023 UV-curable acrylate metal oxide nanocomposite coatings Willem Posthumus Druk: Universiteitsdrukkerij Technische Universiteit Eindhoven Kaftontwerp: Willem Posthumus / Paul Verspaget CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN Posthumus, Willem UV-curable acrylate metal oxide nanocomposite coatings / by Willem Posthumus. – Eindhoven : Technische Universiteit Eindhoven, 2004. Proefschrift. – ISBN 90-386-2985-0 NUR 913 Trefwoorden: deklagen; mechanische en elektrische eigenschappen / composietmaterialen / nanocomposieten / acrylic polymers; morfologie / UV- uitharding / silanen / silica / antimoontinoxide; ATO / tinoxide Subject headings: coatings; mechanical and electrical properties / composite materials / nanocomposites / acrylaatpolymeren; morphology / UV-curing / coupling agents; silanes / silica / antimony tin oxide; ATO / tin oxide UV-curable acrylate metal oxide nanocomposite coatings PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magnificus, prof.dr. R.A. van Santen, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op donderdag 6 mei 2004 om 16.00 uur door Willem Posthumus geboren te Wijnjeterp Dit proefschrift is goedgekeurd door de promotoren: prof.dr. R. van der Linde en prof.dr. G. de With Copromotor: mw.dr. J.C.M. Brokken-Zijp Table of contents Chapter 1 Introduction 9 1.1. General introduction 10 1.2. Nanocomposite coatings 11 1.3. Composition of the nanocomposites studied 11 1.4. Scope of this thesis 13 Chapter 2 Grafting of silane coupling agents on the filler nanoparticles 17 2.1. Introduction 18 2.2. Grafting reactions 19 2.3. Experimental 21 2.3.1. Materials 21 2.3.2. Grafting reactions 21 2.3.3. Kinetics measurements 22 2.3.4. Characterisation and quantification of the grafted MPS 23 2.4. Colloidal stability of the particles 23 2.5. Kinetics study by 29Si-NMR 24 2.6. Characterisation of the grafted particles 28 2.6.1. Quantification of the MPS load 28 2.6.2. Solid state 29Si-NMR 32 2.7. Conclusions 33 Chapter 3 Practical aspects of the coating preparation 35 3.1. Introduction 36 3.2. Colloidal stability – theory 36 3.2.1. Thermal energy 37 3.2.2. Particle-particle interactions 37 3.2.3. Particle-matrix interactions 39 3.3. Colloidal stability – consequences for the systems studied 40 3.4. Consequences of colloidal (in)stability for the preparation of the coatings 41 3.5. Drying of the coatings 43 3.6. Adhesion 43 3.7. Selection of the acrylate resins 44 3.8. Example of the preparation of ATO filled coatings 45 Chapter 4 UV-curing of the coatings 49 4.1. Introduction 50 4.2. Theory of the UV curing kinetics 51 4.2.1. General kinetics 51 4.2.2. The effects of crosslinking 52 4.2.3. Copolymerisation of acrylates and methacrylates 52 4.3. Experimental 53 4.3.1. Materials 53 4.3.2. Characterisation techniques 54 4.4. Cure of pure acrylates 55 4.5. Copolymerisation of PEGDA and MPS 56 4.6. Influence of the particles on the curing kinetics 58 4.6.1. Absorption of the UV-light by the oxides 58 4.6.2. Curing of silica filled coatings 59 4.6.3. Curing of ATO and tin oxide filled coatings 62 4.6.4. Proposed mechanisms for the retardation of the curing 64 4.7. Conclusions 66 Chapter 5 Electrical resistivity of the coatings 69 5.1. Introduction 70 5.2. Experimental 70 5.3. Results 73 5.3.1. Electrical resistivity of ATO filled coatings 73 5.3.2. Electrical resistivity of tin oxide filled coatings 78 5.4. Models for the resistivity of composite materials 79 5.4.1. Model for type I behaviour 79 5.4.2. Type II behaviour 83 5.5. Conclusions 84 Chapter 6 Mechanical properties of the coatings 87 6.1. Introduction 88 6.2. Experimental 89 6.3. Hardness and elasticity 90 6.3.1. Coatings with a PEGDA matrix 92 6.3.2. Coatings with a TMPTA matrix 95 6.4. Abrasion resistance 97 6.5. Conclusions 99 Epilogue 103 7.1. Aims of this study 103 7.2. Preparation and composition of the coatings 103 7.3. Properties of the coatings 104 7.4. Suggestions for further research 105 Appendix I Derivation of the curing rate equation 107 Appendix II Electron tunneling 109 Summary 113 Samenvatting 115 Dankwoord 117 Curriculum Vitae 118 Chapter 1 Introduction 9
Description: