ebook img

Utilizing ASP for Generating and Visualizing Argumentation Frameworks PDF

0.38 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Utilizing ASP for Generating and Visualizing Argumentation Frameworks

Utilizing ASP for Generating and Visualizing Argumentation Frameworks Gu¨ntherCharwat,JohannesPeterWallner,andStefanWoltran ViennaUniversityofTechnology,InstituteofInformationSystems184/2, Favoritenstraße9-11,1040Vienna,Austria {gcharwat,wallner,woltran}@dbai.tuwien.ac.at 3 1 0 Abstract. Withintheareaofcomputationalmodelsofargumentation,theinstan- 2 tiation-basedapproachisgainingmoreandmoreattention,notatleastbecause n meaningful input for Dung’s abstract frameworks is provided in that way. In a a nutshell, the aim of instantiation-based argumentation is to form, from a given J knowledgebase,asetofargumentsandtoidentifytheconflictsbetweenthem. 8 Theresultingnetworkisthenevaluatedbymeansofextension-basedsemantics onanabstractlevel,i.e.ontheresultinggraph.Whileseveralsystemsarenowa- ] daysavailableforthelatterstep,theautomationoftheinstantiationprocessitself I A hasreceivedlessattention.Inthiswork,weprovideanovelapproachtoconstruct . and visualize an argumentation framework from a given knowledge base. The s system we propose relies on Answer-Set Programming and follows a two-step c [ approach.Afirstprogramyieldsthelogic-basedargumentsasitsanswer-sets;a secondprogramisthenusedtospecifytherelationsbetweenargumentsbasedon 1 theanswer-setsofthefirstprogram.Asitturnsout,thisapproachnotonlyallows v foraflexibleandextensibletoolforinstantiation-basedargumentation,butalso 8 providesanewmethodforanswer-setvisualizationingeneral. 8 3 1 1 Introduction . 1 0 Instantiation-based argumentation [7] is a central paradigm in nonmonotonic reason- 3 1 ingsinceitgivesaformalhandletoseparatethelogicalandnon-classicalcontentsof : reasoninginthepresenceofcontradictinginformation.Hereby,onestartswithaknowl- v i edgebaseandconstructsargumentsfromit.Argumentstypicallyconsistoftwoparts, X namelyasupport,whichisgroundedintheknowledgebaseandaclaimderivedfrom r it.In[4]theprocessisdescribedwithanunderlyingpropositionalknowledgebaseus- a ingminimalsetsofconsistentsupportclassicallyentailingtheclaim.Inasecondstep, conflicts between these arguments have to be identified. The obtained arguments and therelationbetweenthemyieldaso-calledargumentationframework[9].Thissimple, yetexpressiveformalismisbasicallyadirectedgraphwherebytheargumentsarerepre- sentedviaverticesandtheconflictswithdirectededges.Argumentationframeworksare thenevaluatedwithoneofthenumeroussemanticsforabstractargumentationavailable, resultinginpotentiallymultipleacceptablesetsofarguments[3]. Hereweareonlyinterestedintheinstantiationpart,however,whichreceivedless attention wrt. realized systems. Notable exceptions are the Carneades system, which can construct arguments using heuristics [16] and the recent TOAST implementation 2 G.Charwatetal. for the ASPIC+ framework [27]. The reason for the lack of implementations is po- tentially twofold: First, due to the inherent high complexity of the problem; already constructingasingleargumentishardforthesecondlevelofthepolynomialhierarchy [23]. Secondly, standard instantiation schemes for propositional knowledge bases re- sultininfiniteargumentationframeworksevenforfiniteknowledgebases[1].Thefirst obstaclecallsforhighlyexpressivelanguages,makinganswer-setprogramming[6,21, 22] (ASP, for short) a well suited candidate. For the second obstacle, we restrict our- selvesheretoargumentsthathavetheirclaimscomingfromanapriorispecifiedsetof formulae. Tosummarize,weaimhereforasystemwhichtakesasinputaknowledgebaseas wellasasetofpotentialclaimsandproducestheinstantiatedargumentationframework, suchthatthelattercanbeprocessedbyotherargumentationtools,e.g.ASPARTIX[11] orCEGARTIX[10].Morespecifically,ourcontributionsareasfollows: – We provide ASP programs1 to encode the construction of arguments as well as the construction of the conflicts. For the second task, the answer-sets of the first encodingareusedasinput.Thuswecanmakeuseofthehighsophisticationmodern ASPsystemshavereached[15,20].Moreover,sincetheargumentconstructionand conflictidentificationaredeclarativelydescribedviaASPcode,thesystemiseasily adaptabletoothernotionsofargumentsorconflicts. – We present a system that, on the one hand, takes care of passing the answer-sets from one program to another. On the other hand, the system uses the answer-sets ofthetwoprogramsforvisualizationinformofagraph.Inourcaseweobtainan argumentation framework. Finally, this result can be exported and used by other systemsforabstractargumentation. As a by-product, we observed that this method is by no means restricted to the argumentation domain. Ultimately, it allows for a user-driven graph representation of the collection of answer-sets of a given input program, thus acting as a tool for ASP visualization in general. The most interesting feature of the tool is that the concrete specificationfortwoanswer-setsbeinginrelationisgivenbyanASPprogramitself.In recentyears,ASPhasbenefitedfromtherisingnumberofdevelopmentandvisualiza- tiontools,e.g.ASPViz[8],ASPIDE[14],Kara[19]andIDPDraw[29].Thesetoolsso farhavefocusedonpresentationsofsingleanswer-setsofthegivenprogram.However, incertainapplicationsitisnotonlythesingleanswer-setswhichareofinterest,butthe relationbetweenthem. WhilevisualizationisarathernewresearchbranchinASP,ithasgainedmoreat- tentionintheargumentationcommunity,wherededicatedvisualizationtoolshavebeen proposed already in the late 90s (e.g. [2,5,11,18,24–26,28], including Debategraph2 andRationale3).Manyofthesesupporttheargumentconstructionbyauserviadifferent means,suchasautomatedreasoning,inputmasksanddatabasequerying.Comparedto these systems, our approach combines the computational power of high-sophisticated ASPsystemswithvisualizationaspects.Moreover,thankstothedeclarativenatureof 1http://dbai.tuwien.ac.at/proj/argumentation/vispartix/ 2http://debategraph.org 3http://rationale.austhink.com/ UtilizingASPforGeneratingandVisualizingArgumentationFrameworks 3 theASPencodingsspecifyingtheinstantiationstep,webelievethatthestrengthofour approachliesinitsflexibilityanditsexpandabilitytonewargumentationformalisms. Thispaperisstructuredasfollows:WebrieflyintroduceargumentationandASPin Section2.Then,inSection3,wepresentASPencodingsforconstructinganargumen- tationframework.InSection4weoutlineanovelvisualizationtoolwhichisusedfor representingrelationsbetweenanswer-sets.AfinaldiscussionisgiveninSection5. 2 Preliminaries We provide the necessary background from argumentation theory and ASP for this work.Inparticularwewillexplaintheargumentationprocessbasedonargumentation frameworks[9]aswellasbrieflyrecalltheconceptsfordisjunctivelogicprograms. 2.1 Argumentation Inthissectionweintroduceformalargumentation.Westartwiththeunderlyingprocess [7], which we will utilize in our context. The general process consists of three steps. First,givenaknowledgebase,argumentsandtheirrelationshipsareinstantiated.After thisinstantiationtheargumentsaretreatedasabstractentities,withoutconsideringtheir concrete content. Secondly conflicts are resolved using appropriate semantics on the abstractinstantiationandfinallyconclusionsaredrawn. In this work the knowledge base K is a (potentially inconsistent) set of proposi- tionallogicformulae.Weconstructtheformulaewiththeusualconnectives¬,∨,∧,→, thenegation,disjunction,conjunctionandimplication,respectively.Furthermoreentail- mentandlogicalequivalenceofformulaeisdenotedby|=and≡,respectively.Wewrite formulaewithlowercaseGreeklettersα,β,γ,.... Example1. Considerthefollowingsimpleandinconsistentexampleknowledgebase: K={a,a→b,¬b} Theinstantiationstepnowconstructsargumentsandrelationsamongthembasedon theinformationavailableinK accordingto[4].Theabstractrepresentationweutilize forthispurposeisthewidelystudiedargumentationframework[9].Anargumentation framework(AF)isadirectedgraphF =(Args,Att),withthevertices(Args)beingab- stractargumentsandthedirectededges(Att)denoteattacksbetweenthemtorepresent conflicts. The instantiation of an AF now consists of two parts, namely the argument con- struction and the attack relation construction. An argument A = (S,C) consists of a supportfortheargumentandaclaim.ThesupportisasubsetoftheknowledgebaseK andtheclaimisasinglelogicalformula.Thesupportmustbeaconsistentandsubset minimalsetofformulae,whichentailstheclaim. Heretheargumentsarepairsofsupportandclaimtoprovideaformalbasisforar- gumentconstruction.Whenpluggedintheargumentationframeworkweabstractfrom this “inner” structure and collapse every pair of support and claim into one abstract argument.Thisistheabstractionprocedureoftheoverallprocess. 4 G.Charwatetal. Wenotethatargumentconstructionherediffersfromtheusualargumentdefinition in the literature. In particular the claim can be taken only from a pre-defined set C. Using a pre-defined set of claims, we can restrict ourselves to reasonable claims, e.g. not involving tautologies. In this way we prohibit the construction of infinitely many arguments thatcould otherwise result frominfinitely many syntactically differentfor- mulae which are semantically equivalent. This restriction comes with a disadvantage however,asthesetofpre-definedclaimsmustbechosenwithcare,sinceinconsistent conclusionsmightbedrawnotherwise.Indeed,[17]identifyconditionsforrationaland consistent end results, which require the existence of specific arguments, which must beincludedinC.Ontheotherhand,thisrestrictionisinlinewiththeconceptofcores ofargumentationframeworks[1],whichtrytopreservedesiredpropertieswhileusing onlyasubsetofallpossiblearguments. Example2. ContinuingExample1,letthesetofclaimsbeC = K∪{¬a,b,a∧¬b}. Thenwecanconstructthefollowingarguments: a =({a},a) a =({¬b,a→b},¬a) 1 4 a =({a→b},a→b) a =({¬b},¬b) 2 5 a =({a,a→b},b) a =({a,¬b},a∧¬b) 3 6 Fortheconstructionoftheattackrelationseveraloptionswerestudiedinliterature. The basic idea for attacks between arguments underlying all of these options is that some sort of inconsistency occurs between them. We take the attack definitions from [17] and illustrate two types, defeat and directed defeat. An argument A = (S,C) attacksanargumentA(cid:48) =(S(cid:48) ={φ(cid:48),...,φ(cid:48) },C(cid:48))usingdefeatifC |=¬(φ(cid:48)∧...∧φ(cid:48) ). 1 m 1 m TheformerdirectlydefeatsthelatterifC |=¬φ(cid:48) foronei,1≤i≤m. i Example3. Continuing Example 2, the AF in Figure 1 illustrates the result using the directdefeatontheargumentsbuiltfromKandtheclaimsC.Notethate.g.a anda 3 5 are not mutually attacking each other, since the claim of a does not entail a negated 5 supportformulaofa . 3 Fig.1.Argumentationframework a 1 a 4 a a 3 6 a a 5 2 This completes the first step of the argumentation process, namely the AF con- struction out of the knowledge base. For the conflict resolution a plethora of argu- mentation framework semantics exist. A basic property for semantics is the conflict- free property, which states that a set M of arguments in an AF F is conflict free if there are no attacks between them in F. A set of arguments M is stable in an AF UtilizingASPforGeneratingandVisualizingArgumentationFrameworks 5 F = (Args,Att) if it is conflict free and all arguments outside are attacked from M, i.e.∀a∈(Args\M)∃b∈M with(b,a)∈Att. Example4. If we take the argumentation framework from Example 3, then the stable (cid:8) (cid:9) semanticsselects {a ,a ,a },{a ,a ,a },{a ,a ,a } asacceptablesubsetsofar- 1 5 6 1 2 3 2 4 5 guments. Thelaststepoftheargumentationprocessdealswithdrawingconclusionsfromthe sets of acceptable arguments. One can look at the content of the abstract arguments whichwereaccepted,e.g.onecanderivethedeductiveclosureofthiscontent. In general every step of this process is intractable. Hence we need sophisticated systemsfortacklingthesesteps,whichmakesASPasuitablechoiceforembeddingthe processin.Amoredetailedcomputationalcomplexityanalysiscanbefoundin[23]. 2.2 Answer-SetProgramming Inthissectionwerecallthebasicsofdisjunctivelogicprogramsundertheanswer-sets semantics[6,22]. WefixacountablesetU of(domain)elements,alsocalledconstants.Anatomisan expression p(t ,...,t ), where p is a predicate of arity n ≥ 0 and each t is either a 1 n i variableoranelementfromU.Anatomisgroundifitisfreeofvariables.B denotes U thesetofallgroundatomsoverU. A(disjunctive)rulerisoftheform a ∨ ··· ∨ a ←b ,...,b , notb ,..., notb 1 n 1 k k+1 m with n ≥ 0, m ≥ k ≥ 0, n+m > 0, where a ,...,a ,b ,...,b are atoms, and 1 n 1 m “not” stands for default negation. The head of r is the set H(r) = {a ,...,a } and 1 n the body of r is B(r) = {b ,...,b , notb ,..., notb }. Furthermore, B+(r) = 1 k k+1 m {b ,...,b }andB−(r)={b ,...,b }.Aruler isaconstraint ifn = 0.Aruler 1 k k+1 m issafeifeachvariableinroccursinB+(r).Arulerisgroundifnovariableoccursin r.Afactisagroundrulewithoutdisjunctionandemptybody.Aprogramisafiniteset ofdisjunctiverules. Foranyprogramπ,letU bethesetofallconstantsappearinginπ.Gr(π)isthe π set of rules rσ obtained by applying, to each rule r ∈ π, all possible substitutions σ fromthevariablesinrtoelementsofU .AninterpretationI ⊆B satisfiesaground π U ruleriffH(r)∩I (cid:54)=∅wheneverB+(r)⊆I andB−(r)∩I =∅.I satisfiesaground programπ,ifeachr ∈ π issatisfiedbyI.Anon-groundruler(resp.,aprogramπ)is satisfiedbyaninterpretationI iffI satisfiesallgroundingsofr(resp.,Gr(π)).I ⊆B U isananswer-setofπiffitisasubset-minimalsetsatisfyingtheGelfond-Lifschitzreduct πI ={H(r)←B+(r)|I∩B−(r)=∅,r ∈Gr(π)}. 3 Instantiation-basedArgumentation InthissectionweprovideourASPencodingsfortheconstructionofargumentsfroma knowledge-baseKandasetCofclaims.Asinput,eachformulainKandCisgivenby theunarypredicatekb(·)andcl(·),respectively. 6 G.Charwatetal. Example5. Theinput,asgiveninExample1and2,isspecifiedby: {kb(a).kb(imp(a,b)).kb(neg(b)). cl(a).cl(imp(a,b)).cl(neg(b)).cl(neg(a)).cl(b).cl(and(a,neg(b))).} First,weintroducetheASPencodingsforcheckingwhetheracertainvariableas- signmentisamodelforagivenformula(ornot).Modelcheckingplaysacrucialrole forourinstantiation-basedapproach.Then,wepresentencodingsforthecomputation of arguments. Finally, we provide ASP code for some types of attack relations. Note thatanargumentationframeworkisobtainedbytwoseparateASPprogramcallswhere thefirstonetakesasinputKandC andreturnsaseparateanswer-setforeachresulting argument.Thesecondprogramreceivesasinputa“flattened”versionofallarguments andcomputestheattacksbetweenargumentsbasedondifferentattacktypeencodings. 3.1 ModelChecking Propositional formulae provide the basis for the construction of arguments and their attack relations. In fact, we can express most of the defining properties of arguments (suchasentailmentofthesupporttotheclaim)andattacksbymeansofpropositional formulae.InthissectionweprovideanASPencodingthatallowsustocheckwhether a formula α is true under a given interpretation I, i.e. I is a model for α. First, the formula is split into sub-formulae until we obtain the contained atoms or constants. Due to brevity, the following encodings only exemplify this for the connectives ∧, ¬ and→.Notethat∨,(cid:54)↔and↔aresupportedaswell. πsubformula =(cid:8)subformula(F)←subformula(and(F, )); (1) subformula(F)←subformula(and(,F)); (2) subformula(F)←subformula(neg(F)); (3) subformula(F)←subformula(imp(F, )); (4) subformula(F)←subformula(imp(,F)).(cid:9) (5) Theatomsandconstantsofαarethenobtainedviatheencodingπ .Considerrule atom (1)whichdenotesthataformulaisnotanatomincaseitisoftheformand(·,·)4. πatom =(cid:8)noatom(F)←subformula(F;F1;F2),F :=and(F1,F2); (1) noatom(F)←subformula(F;F1),F :=neg(F1); (2) noatom(F)←subformula(F;F1;F2),F :=imp(F1,F2); (3) atom(X)←subformula(X),notnoatom(X).(cid:9) (4) Nowwecomputewhethertheinterpretationisamodelbyfirstevaluatingtheatoms andconstants.Incaseanatomgetsassignedtrue(false)wederivethattheinterpreta- tionforthissub-formulaisamodel(notamodel).Now,theconnectivesareevaluated bottom-up based on the model information of the sub-formulae. In particular, this al- lowstocheckwhetherI isamodelforouroriginalformulaα,ornot. Theencodingπ exemplifiesthisapproachforsomeoftheconnectives.Inthe ismodel subsequentsectionswehavetoapplymodelcheckingseveraltimeswithinasingleASP encoding.Inordertoavoidsideeffectsofdifferentchecks,weintroduceanadditional 4Notethatthesyntaxofourencodingsisspecifictothegroundergringo[15]. UtilizingASPforGeneratingandVisualizingArgumentationFrameworks 7 parameter,K,whichservesasakeyforidentifyingtheoriginoftheinterpretationthat iscurrentlychecked.Suppose,forexample,thatwewanttochecksatisfiabilityoftwo differentformulae.Astheformulaemayevaluatetotrueunderdifferentinterpretations wehavetodistinguishbetweenthetruthassignments. πismodel=(cid:8)ismodel(K,X)←atom(X),true(K,X); (1) ismodel(K,F)←subformula(F;F1),F :=neg(F1), (2) nomodel(K,F1); ismodel(K,F)←subformula(F),F :=and(F1,F2), (3) ismodel(K,F1;F2); ismodel(K,F)←subformula(F),F :=imp(F1,F2), (4) ismodel(K,F1;F2).(cid:9) Duetobrevityweomittheencodingπ here.Analogoustoπ itderives nomodel ismodel the predicate nomodel(K,F) whenever an atom gets assigned false or a sub-formula isfalseunderthecurrentinterpretation.Thecompleteprogramforcheckingwhethera formulaevaluatestotrueunderagivenvariableassignmentconsistsof π =π ∪π ∪π ∪π modelcheck subformula atom ismodel nomodel Example6. Consider the formula a → b from K of Example 5, i.e. kb(imp(a,b)). Inordertocheckwhetherthereexistsamodelwecanmakeuseofπ inthe modelcheck followingway:Initially,wehavetodefineanadditionalrulesubformula(X)←kb(X) asπ onlyconsidersformulaegivenbythepredicatesubformula(·).Byadding subformula theprogramπ ∪π thefollowinganswer-setisreturned: subformula atom {kb(imp(a,b)).subformula(imp(a,b)).subformula(a).subformula(b). noatom(imp(a,b)).atom(b).atom(a).} Each atom now gets assigned true or false, representing an interpretation. We encode thisbytheruletrue(k,X)∨false(k,X)←atom(X).Notethatthespecificationofa key(inthiscasek)ismandatoryalthoughπ isnotappliedseveraltimesinthis modelcheck example.Byaddingandrunningπ ∪π fouranswer-setsarereturned.Each ismodel nomodel containsthepredicatesfromthepreviouslygivenanswer-setaswellasthetruthassign- mentfortheatomsaandbandeitherismodel(k,imp(a,b))ornomodel(k,imp(a,b)). Theanswer-setobtainedbyfalse(k,a)andtrue(k,b)contains(amongstothers) {false(k,a).true(k,b).ismodel(k,b).nomodel(k,a).ismodel(k,imp(a,b)).} denotingthatI(a)=false,I(b)=trueisamodelfora→b. 3.2 FormingArguments WenowderivetheargumentsfromaknowledgebaseKandasetCofclaims.According to[4],wehavetocheckwhetherthesupportentailstheclaimandifthesupportissubset minimalaswellasconsistent.Inordertoobtainargumentswefirstguessexactlyone claimandasubsetofformulaefromK.Thisguessisencodedasfollows: πarg =(cid:8)1{sclaim(X):cl(X)}1; (1) 1{fs(X):kb(X)}.(cid:9) (2) 8 G.Charwatetal. Theselectedclaimisdenotedbysclaim(·).Thepredicatefs(·)isderivediftherespec- tiveformulafromKiscontainedinthesupportS ofanargumentA=(S,C). Entailment: Inordertobeavalidargument,thesupportmustentailtheclaim,i.e.S |= C musthold.AsS |=C,|=S →C mustholdaswell.Hence,¬(S →C)≡¬(¬S∨ C) ≡ S ∧¬C must be unsatisfiable. Unsatisfiability of the formula S ∧¬C can be checkedbymakinguseofthesaturationtechnique[12]:Wefirstassigntrue(entail,x) or false(entail,x) to each atom x in the formula using a disjunctive rule. This al- lowsbothtrue(entail,x)andfalse(entail,x)tobecontainedintheresultinganswer- set. Furthermore, all formulae in S and the negated claim C are conjunctively con- nected. Hence, in case any of those formulae evaluates to false under a variable as- signment (i.e. nomodel(entail,·) is derived) we know that ¬(S → C) is not satis- fied which implies that S |= C evaluates to true under the given interpretation. In this case we saturate, i.e. we derive true(entail,x) and false(entail,x) for any atom x. On the other hand, if no formula in S and C derives entails claim the constraint ← notentails claim removes the answer-set. If this is the case, due to the definition ofstablemodelsemanticsinanswer-setprogramming,noanswer-setisreturned.Only incasethereexistsnomodelfor¬(S → C)allguessesaresaturatedandweobtaina singleanswer-setrepresentingasupportS andclaimC whereS |=C holds. Inthefollowingtheprogramπ isgiven.Notethatentail issimplyusedas entailment akeyforidentifyingthevariableassignmentandmodelcheck. πentailment =(cid:8)true(entail,X)∨false(entail,X)←atom(X); (1) entailsclaim←nomodel(entail,neg(X)),sclaim(X); (2) entailsclaim←nomodel(entail,X),fs(X); (3) ←notentailsclaim; (4) true(entail,X)←entailsclaim,atom(X); (5) false(entail,X)←entailsclaim,atom(X).(cid:9) (6) Subset minimality: The support S of an argument must be a subset minimal set of formulae,i.e.theremustnotexistanS(cid:48) ⊂ S s.t.S(cid:48) |= C.Here,weapplytheconcept ofaloop(seee.g.[13]).ForacandidatesupportS weconsiderallS(cid:48) ⊂S wherethere existsexactlyoneformulaα∈S butα(cid:54)∈S(cid:48).IncaseanysuchS(cid:48)existswhereS(cid:48) |=C we know that S is not a support for C. Due to monotonicity of classical logic this is sufficient since if S(cid:48) (cid:54)|= C then also for all S(cid:48)(cid:48) ⊂ S(cid:48) it holds that S(cid:48)(cid:48) (cid:54)|= C. First, we defineatotalorderingoverallformulaefs(·)inS: π< =(cid:8)lt(X,Y)←fs(X),fs(Y),X<Y; (1) nsucc(X,Z)←lt(X,Y),lt(Y,Z); (2) succ(X,Y)←lt(X,Y),notnsucc(X,Y); (3) ninf(Y)←lt(X,Y); (4) inf(X)←fs(X),notninf(X); (5) nsup(X)←lt(X,Y); (6) sup(X)←fs(X),notnsup(X).(cid:9) (7) ForanyS(cid:48)wenowassigntrue(m(K),x)orfalse(m(K),x)toallatomsx.m(K) isusedaskeyforidentifyingthetruthassignment.K istheformulaαwhereα (cid:54)∈ S(cid:48). UtilizingASPforGeneratingandVisualizingArgumentationFrameworks 9 The idea is now to “iterate” over the the ordering, beginning at the infimum inf(·). Based on the ordering, we now consider every formula from the support: In case the formulaissatisfiedorcorrespondstotheremovedformulaα(i.e.thekeyK)wederive model upto(m(α),·). If we can derive hasmodel(m(α)) we know that the support S(cid:48) = S \α is satisfiable and can therefore not be a valid support for our claim. On theotherhand,ifanyS(cid:48) isavalidsupportwecannotderivehasmodel(m(α))andthe answer-setisremovedbytheconstraint←nothasmodel(m(α)),fs(α). πminimize=(cid:8)true(m(K),X)←notfalse(m(K),X),atom(X),fs(K); (1) false(m(K),X)←nottrue(m(K),X),atom(X),fs(K); (2) modelupto(m(K),X)←inf(X),ismodel(m(K),X), (3) fs(X),X(cid:54)=K; modelupto(m(K),K)←inf(K),fs(K); (4) modelupto(m(K),X)←succ(Z,X),ismodel(m(K),X), (5) fs(X),modelupto(m(K),Z),X(cid:54)=K; modelupto(m(K),K)←succ(Z,K),modelupto(m(K),Z), (6) fs(K); hasmodel(m(K))←sup(K),modelupto(m(K),X), (7) ismodel(m(K),neg(Z)),sclaim(Z); ←nothasmodel(m(K)),fs(K).(cid:9) (8) Consistency: ThesupportSmustbeaconsistentsetofformulae.Inotherwords,there existsamodelfortheconjunctionofallformulaeinS.Theprogramπ simply consistent consistsofaguesswhichassignstruthvaluestoallatomsandaconstraintthatremoves anyunsatisfiablesupport. πconsistent =(cid:8)1{true(consistent,X),false(consistent,X)}1←atom(X). (1) ←nomodel(consistent,X),fs(X).}.(cid:9) (2) Thefollowingprogramthengivesallargumentsthatcanbecomputedfromaknowl- edgebaseKandasetofclaimsC: π =π ∪π ∪π ∪π ∪π ∪π arguments modelcheck arg entailment < minimize consistent Each answer-set obtained by π contains the predicate sclaim(·) and a set of arguments predicatesfs(·),representingclaimandsupport. Example7. ConsidertheinputasgiveninExample5.Theprogramπ returns arguments thefollowinganswer-sets(werestrictourselvestotherelevantpredicates): a : {fs(a).sclaim(a).} 1 a∗ : {fs(imp(a,b)).sclaim(imp(a,b)).} 2 a : {fs(a).fs(imp(a,b)).sclaim(b).} 3 a : {fs(neg(b)).fs(imp(a,b)).sclaim(neg(a)).} 4 a : {fs(neg(b)).sclaim(neg(b)).} 5 a : {fs(a).fs(neg(b)).sclaim(and(a,neg(b))).} 6 10 G.Charwatetal. Note that due to the definition of program π and π several resulting minimize consistent answer-sets may represent the same derived argument: This is the case for a∗ where 2 actually three models are derived by the program π . They only differ in the consistent respectivetruthassignmentstrue(consistent,·)andfalse(consistent,·).Weeliminate duplicatesinanadditionalpost-processingstepinordertoremoveredundantinforma- tion. 3.3 IdentifyingConflictsbetweenArguments We now want to compute attacks between arguments. Therefore we first specify en- codings that are used by every attack type (such as defeat and direct defeat). We then presentencodingsforthecomputationoftheseattacktypes. Inordertoreasonoverallargumentswefirsthaveto“flatten”theanswer-setsob- tainedbyπ .Wespecifythisbythepredicatesas(A,fs,·)andas(A,claim,·). arguments Aisanumerickeyidentifyingtheargument. Example8. We illustrate this by the answer-sets a , a and a from Example 7. This 1 2 3 inputisgivenbythefollowingfacts: {as(1,fs,a).as(1,sclaim,a).as(2,fs,imp(a,b)).as(2,sclaim,imp(a,b)).as(3,fs,a). as(3,fs,imp(a,b)).as(3,sclaim,b).} In order to identify conflicts between arguments we first guess two arguments. selected1(·)andselected2(·)containthekeysoftheselectedarguments. πatt =(cid:8)1{selected1(A):as(A, , )}1. (1) 1{selected2(A):as(A, , )}1.(cid:9) (2) Furthermore,weconstructonesinglesupportformulaforeachargumentAbycon- junction of all formulae in as(A,fs,·). As in the previous section we first define an orderingoverallformulaethatarecontainedinthesupport.Theonlydifferenceisthat weaddtheargument’skeyAtothepredicatesinf(A,·),sup(A,·)andsucc(A,·,·).Due tobrevity,thecorrespondingprogramπ isomitted.Wecanthenconstructthesup- <key portformulabyiteratingovertheorderingandconnectingtheformulaebyconjunction. Notethatthelastparameteroffs conj(A,·,·)issimplyusedasanidentifierforthecur- rentpositionintheiteration.Whenthesupremumisreachedwederivesupport(A,·) forAcontainingthesupportformula. πsupport =(cid:8)fsconj(A,X,X)←inf(A,X),sup(A,X); (1) fsconj(A,and(X,Y),Y)←inf(A,X),succ(A,X,Y); (2) fsconj(A,and(O,N),N)←succ(A,C,N),fsconj(A,O,C); (3) support(A,X)←fsconj(A,X,C),sup(A,C).(cid:9) (4) For the computation of attacks we again apply the saturation technique. The pro- gramπ isusedtosaturateallattackcomputations.First,wederiveallattacktype attsat keystfromthetruthassignmentstrue(t,·)andfalse(t,·)oftheappliedattacktypepro- grams. Note that the corresponding assignments are defined separately in each attack program. In case attack is derived for all truth assignments in some attack program

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.