Bonnerzoologische Beiträge Band 55 (2006) Heft 3/4 Seiten 191-202 Bonn, November2007 Utility of H3-Genesequences for phylogenetic reconstruction - a case study of heterobranch Gastropoda -* Angela Dinapoli", Ceyhun Tamer", Susanne Franssen", Lisha Naduvilezhath" & Annette Klussmann-Kolb" )DepartiTient ofEcology, Evolution and Diversity - Phylogeny and Systcmatics, .1. W. Goethc-Univcrsity, Frankfurt am Main, Gemiany *Paperpresentedto the2nd Intemational Workshop on Opisthobranchia, ZFMIv, Bonn, Germany, September20th to 22nd, 2006 Abstract. In the present study we assessedthe utility ofH3-Genesequences forphylogenetic reconstruction ofthe He- terobranchia(Mollusca,Gastropoda).ThereforehistoneH3 datawerecollected for49species includingmostofthema- jorgroups.Thesequencealignmentprovidedatotal of246sitesofwhich 105 werevariableand96parsimony infonna- tive. Twenty-four(of82) fust base positions were variable as were 78 ofthe third base positions but only 3 ofthe se- condbase positions. H3 analyses showed ahigh codon usage bias. The consistency index was low (0,210) and a substitLition saturation was observedinthe3"^codonposition.ThealignmentwiththetranslationoftheH3 DNAsequencestoamino-acidsequences hadno sitesthat were parsimony-informative within the Heterobranchia. Phylogenetic trees were reconstructed using maximum parsimony, maximum likelihood and Bayesian methodologies. Nodilittorina iiuifascicitci was used asoutgroup. Theresolutionofthedeepernodes was limited in this molecularstudy. The data themselves were not sufficient toclar- ifyphylogenetic relationships within Heterobranchia. Neitherthemonophyly ofthe Euthyneura nora step-by-step evo- lutionbythe"basal"groupswassupported.AconclusionaboutthemonophylyofOpisthobranchiaandPulmonatacould notbeextracted fromourdata becausewedid nothaveany resolution at this point. Webelieve histone H3 alone provides nonew marker forstudyingdeep molecularevolution ofthe Heterobranchiadue tothehigh grade ofconservation and the low phylogenetic signal. Surprisinglytherewasagoodresolutiononthegeneralevel.Analysesconductedwithmaximumparsimonyand Bayesian inference(usingalldata)recoveredall (ornearlyall)generamostlywith statistically significantlysupportednodes. Fur- therstudiesfocusingon thepossibleutilityofhistone H3 forthe resolutionofrecent splits will be necessary. Keywords. Heterobranchia, Opisthobranchia, histone H3, molecularphylogeny. INTRODUCTION 1. Many questions regardinggastropodphylogeny have not 2003; Knudsen et a!. 2006) in others not (Thollesson yetbeen answered such as the molecularconfinnation of 1999). The Pulmonata and Opisthobranchia can be sepa- theHeterobranchiaconceptbasedonmoiphological stud- ratedbycharactersrespectiveofthenervous system(pres- ies from Haszprunar (1985, 1988). This taxon contains ence ofa procerebiaim and cerebral bodies in pulmonates the Pentaganglionata Haszprunar, 1985 also known as and presence ofa rhinophoral nerve in Opisthobranchia Euthyneura Spengel, 1881 (withtheOpisthobranchiaand and Pyramidclloidea). However the molecular confirma- Pulmonata)andseveral mostly littleknown"basal"groups tion regarding the monophyly of the Opisthobranchia (e.g. Valvatoidea, Omalogyroidea, Architectonicoidea, (VoNNEMANN et al. 2005; Grande et al. 2004a) and the RissoelloideaandPyramidclloidea)whichpresentastep- Puhnonata(Tillieretal. 1996, Dayratetal. 2001) isstill by-stepevolutiontowardstheeuthyneuran leveloforgan- a inatterofdebate. There is no coinprehensive investiga- isation(Haszprunar 1988). Thehyperstrophyofthepro- tion concerning the "basal" groups. Only a few represen- toconch is the most important autapomorphous character tative taxa (e.g. Valvatoidea- Coniirosti-apelliicida,Ar- ofthe Heterobranchia. The Euthyneura are characterised chitectonicoidea - Pliilippea lutea, Pyramidclloidea - bythepresenceoftwoadditional (so-calledparietal) gan- Pyramidelladolabrata) havebeen included incurrentmo- glia. However, the monophyly ofthe Euthyneura has not lecularstudies(Colgan etal. 2000; Grande etal. 2004a, been clarified by molecular studies, yet. In some studies 2004b). they are recovered tnonophyletic (Colgan et al. 2000, 192 Angela Dinapoli et al.: Utility ofH3-Gene in Heterobranchia In recent years molecular systematic analyses in gas- In the present study we wanted to test the utility ofH3 tropods have utiliseda varietyofgenetic markers,e.g. nu- genesequences forphylogeneticreconstnictionwithinthe clear 28S ribosomal RNA and/or 18S ribosomal RNA or Heterobranchia (focusing primarily on the Opistho- mitochondrial 16Sribosomal RNAand/orcytochromeox- branchia). We were especially interested in testing idase subunit I (TiLLiER et al. 1994, 1996; Dayrat et al. whetherH3 is suitabletoresolvedeepernodeswithinhet- 2001; VoNNEMANN et al. 2005; Thollesson et al. 1999; erobranch phylogeny. Therefore, partial histone H3 data Remigio & Hebert 2003). Nevertheless, new genetic were collected for 49 species including most ofthe ma- markers are needed forthe resolution ofcertain phyloge- jor groups (Euthyneura with Opisthobranchia and Pul- netic relationships (especially regarding deeper nodes). monataand"basal"groupswithValvatoidea,Architecton- Pailial fragmentsofthegenecodingforthe extremelycon- icoidea, Omalogyroidea, Rissoelloidea and Pyramidel- servative H3 protein(Maxson etal. 1983)were first used loidea). to clarify arthropod molecular evolution (Colgan et al. 1998) and later polychaete (Brown et al. 1999), gastro- MATERIALSAND METHODS pod(Colgan ctal. 2000,2003), polyplacophoran (Okusu 2. etal. 2003),cephalopod(Lindgren etal. 2004) andhexa- pod (Kii R et al. 2006) phylogcny.All studiesusedacom- 2.1. Specimens and DNA extraction bined datasct in their approaches. In their study ofgas- tropod phylogeny, Colgan et al. (2000) did not find a The studied taxa and the accession numbers are listed in nionophyletic Heterobranchia while within the Euthyneu- Table Twenty ofthe49 sequences are taken from Gen- I. ra, the Opisthobranchia arc paraphyletic with respect to Bank. Opisthobranchiaare representedby26 species (in- the pulmonates. Very similar phylogenetic relationships cluding 11 suborders). Nodilittoriua uuifasciata were shown in Colcían et al. (2003). The Heterobranchia (Caenogastropoda Cox, 1960) was used as an outgroup. as well as the Opisthobranchia and Pulmonata are rarely recovered as monophylctic in these studies. DNAwasextractedfromethanol-preservedindividualsus- ing the DNeasy Tissue Kit from Qiagen (Hilden, Ger- many). Table 1 . Taxonomicpositionsand collecting locationsofthe sampled taxa.Accessionnumbers ofsequences included in theana- lyses (ZSM = Zoologische Staatssammiung); published sequences taken from GenBank arc marked with an asterisk. MajorTaxon Species Locality GenBankAccessionNumber Caenofjastropoda Littorinoidea Littorinidae Nodililtorinunnifusciala(Gray. 1S26) Genbank AF033705* Conidae Conusmiles Linnaeus, 175X Genbank AF033684* Campanilidae Cainpaiiilcsvmlialicum Iredale. 1917 Genbank AF033683* Opisthobranchia NudibiaiK'hia Tethydidae Tclhystliiihria Linne. 1767 Blanes, Spain EF133468 Discodorididae Discodnrisalniiuaculala(Bergh, lXi<0) Genbank DQ280013* Arminidae Armiiui ncaptililana (DelleChiaje. 1824) Banyuls-sur-Mer. Franee EF133469 Pleurobranchoidea Pleurobranchidac Pli-iirohninclHiCiimcckeli Leue, 1X13 Blanes, Spain EF133470 Tylodinoidea Unibraciilidae Uinhnuiiliiiii iimhraciiluiu (Lightfoot. 17S6) AtlantieOeean. MeteorBank EF133471 Ccphalaspidea Scaphandi'idae Scaphanderlignariiis (Linne, 175X) Blanes, Spain EF133472 Philinidae Philineapena(Linnaeus. 1767) Genbank DQ0935O8* Gastropteridae GastropleronmeckeliKosse, 1813 Blanes, Spain EF133473 Anaspidea Akcridae Akera Inillata Müller, 1776 Kattegat, Denmark EF133474 Aplysiidae Aplysiaeaiiforniea Cooper, 1863 Miami, USA EF133475 Aplysiidae Aplysiacf.juliana Quoy& Gaimard, 1832 Genbank AF033675* Aplysiidae Bursaielhi leaehiide Blainville. 1817 Dingo Beach,Australia EF133476 Thecosomata Cavoliniidae Cliopvraniidala Linne. 1767 Canai7 Islands; Spain EF133477 Creseidae Creseissp. Genbank DQ280012* Gymnosomata Pneumodermatidae Pnewnodennaej. allanliea(Okcn, 1815) USA,Atlantic EF133478 ) Bonnerzoologische Beiträge 55 (2006) 193 IVliiini"TüYnn Sp6CÍ6S vJCIIUcl11tV AAlUII l^UIIIUCI Sscoglosss Plscobränchidtic Eh'siaíitíudo(Risso, 1818) Blanes, Spain EF133479 PlapnhriinpViiHap EhsiapnsiUa (Bergh. 1872) ("ipnHnnk [5QS14792* Pläcobr3nchidac Elvsicicrispüfü Morch. 1863 Genbank DQ534790* Piäcobrsnchidiic Eh'siü viridis{Montagu, 1804) Genbank r)O5'í4790* i^vlinHrnhnlliHnf C^yliiidrohiillübcütiiiFischer 18^7 Florida USA FFI^(480 Acochlidis Hedylopsidae Hedvlopsisspiculifera(Kovvalewsky, 1901) Rovinj,Croatia EF133481 Microhedylidae Unelagiandulifera(Kowalewsky. 1901) Rovinj, Croatia EF133482 Architcctibranciiia Hydatinidae Micf'oiueloundatus(Brucuiere, 1792) Genbank DQ093513* Actconoidca ArtpnniHíip Piipcisoliditlü(Linné. 1758) DiH'^o Bcach Australia FFI^^483 Actconidac Rictüxispiiuctocaclütus(Cai'penter, 1864) Cayucos, Calitornica, USA. EFl33484 Bullinidac Bidliuüliucatü(Gray, 1825) Gcnbank AF033680* Pulmonata Systellommaiophora Onchidiidac OucJiidiiiftisp. Genbank AF033706* Onchidiidac Onchidellafloridana(Dali, 1885) Florida,USA EFl33485 Onchidiidae Onchidella sp. Genbank DQ093511* Stylommatophora Charopidae Hedleyoconchadelta(Pfeiffer, 1857) Genbank AF033693* Siphonariidae Siphonariaserrata(Fischer, 1807) SouthAfrica EFl33486 Siphonariidae Siphonariaconcinna Sowerby,1824 SouthAfrica EFl33487 Siphonariidae Siphonariazelandica(Quoy& Gaimard, 1832) Genbank AF0337n* Amphibolidae Salinatorsolida (Schacko, 1878) Genbank AF033712* Eupulmonata EUobiidae Ophicardelitsornatiis(Ferussac, 1821 Genbank AF033707* "basal"Heterobranchia/Triganglionata Pyramidelloidea Pyramidellidae Titrbonillaláctea(Linné. 1758) Roscoff France EFl33488 Pyramidellidae Tiirbonillasp. WellnT^^ton NewZealand EFl33489 Architectonicoidea Architectonicidae Heliacusvariegatus(Gmelin, 1791) Tropical aquarium (ZSM 200121^)3) EFl33490 Architectonicidae Philippealutea(Lamarck, 1822) Genbank AF033708* Valvatoidea Comirostridae Cornirostrapellucida(Laseron, 1954) VJV.11LiCL111\ AF033685* Orbitestellidae Orbitestella vera Powell, 1940 Wellington,NewZealand EF56I623 Orbitestellidae Orbitestella sp. Leigh,NewZealand EF56I624 Omalogyroidea Omalogyridae Omalogyrahurdwoodiana Strebel, 1908 Antarctic (ZSM Mol-20021228) EFl33491 Rissoelloidea Rissoelidae Rissoelluelongalospira Ponder, 1966 Wellington,NewZealand EF56I622 Rissoelidae RissoellamieraFinlay, 1924 Wellington, NewZealand EF561620 Rissoelidae RissoellacystophoraFinlay, 1924 Wellington,NewZealand EF561621 2.2. DNA amplification and sequencing (Krefeld, Germany). First we sequenced only one frag- ment per specimen. Moreover, to avoid mistakes accord- The following degenerated primers were used: H3-F: 5'- ing to the conservative character ofthe H3 gene, we se- ATG GCT CGTACC AAG CAG AC(ACG) GC-3' and quenced a random sample of 5 species a second time H3-R: 5'-ATATCCTT(AG)GGCAT(AG)AT(AG)GTG whereby no varieties could be detected. AC-3' (Colgan et al. 1998) and produced a 246 bp prod- uct.ThePGRprofilewasasfollows: 95 °C for5 min, fol- 2.3. Sequence alignment lowed by 35 cycles of30 s at 95 °C, 25 s at 52 °C, 45 s at 72 °C and a final extension at 72 °C for 5 min and Taq Sequenceswerealignedmanually usingthesoftwarepack- Polymerase, recombinant from Invitrogen (Karlsruhe, ageBioEditversion 7.0.5 (Hall 1999). The H3 DNAse- Germany) was used.All products werepurified usingthe quences were translated into the amino acid sequences in QIAquick Gel Extraction Kit from Qiagen (Hilden, Ger- GeneDoc version 2.6.002 (Nicholas & Nicholas 1997). many)andsequencedinbothdirectionswithaCEQ2000 Thealignment isavailablefrom theauthors uponrequest. Beckmann Coulterusingthe CEQ DTCS Quick Start Kit 194 Angela Dinapoli et al.: Utility ofH3-Gene in Heterobranchia 2.4. Statistical tests Bootstrapping (Felsenstein 1985) was performed for maximum parsimony with 1000 replicates and formaxi- Codon usage statistics were calculated using GCUAver- mum likelihood with 100 replicates. sion 1.2 (McInerney 1997). The purpose ofthis function istocalculatetheNumber(N) oftimesaparticularcodon The following analyses were conducted using MrBayes is observed in an alignment and also to calculate the Rel- version 3.1.2 (Ronquist& Huelsenbeck2003): Bayesian ative Synonymous Codon Usage (RSCU) values for the inference: a) all data (with one model forall three codon dataset. RSCU values defme the number oftimes a par- positions), b) all data (with codon specific models) and ticular codon is observed relative to the number oftimes c) only codon position one and two (third codonposition that the codon would be observed in the absence ofany excluded;withonemodel forcodonpositiononeandtwo). codon usage bias. Without any codon usage bias, the RSCU value wouldbe 1.00.Acodon that is used less fre- For Bayesian inference a Metropolis Chain Monte Carlo quently than expected will have a value ofless than 1.00 analysis with four chains and 1 000 000 generations was and a codon that is used more frequently than expected performed with the first 1000 trees ignored as bum-in. will haveavolumeofmorethan 1.00 (McInerney 1997). RESULTS Thedegreeofbias(^X"/''') which isthe sum oftheX" val- 3. ues for the individual amino acids divided by the total numberofinferredresidues (n) forthecombination ofda- 3.1. Statistical tests ta from all species (Shields et al. 1988) was determined. The sequences provided atotal of246 sites ofwhich 105 The substitution saturation wascalculated forall 3 codon werevariableand96parsimonyinformative.Twenty-four positions usingthe methoddevelopedby XiAetal. (2003) (of82) firstbasepositionswerevariableaswere78 ofthe DAMBE implemented in the software package version third base positions but only 3 ofthe second base posi- 4.2.13 (XlA & XlE 2001). tions. Inseilion/deletionevents(indels)werenotobserved in any ofthe groups. The amino acid alignment had no 2.5. Phylogciietic reconstruction sites thatwere parsimony-informative within the Hetero- branchia. Appropriate models for the analyses were selected after running Modeltest version 3.4 (Posada & Crandall H3 analyses showedahighcodon usagebias(Tab. 3).The 1998) and using the Akaikc information criterion (AlC) biaswasprincipally againsttheuseofAandU in thethird (see tab. 2). codonposition. X" testswereperfonnedforall aminoacids and revealed thatthe null hypothesiswhich isthe expect- The followinganalyseswereconducted using PAUP* ver- edequal usageofthe codonscanberejectedforallamino sion4.0 blO(SwoFEoRD, 2002) (settings: heuristic search acids with a significance level of0,001 excepting histi- strategy; tbr; gaps were treated as fifth bases): a) Maxi- dine (p<0,05). For aspartic acid the null hypothesis can mum parsimony for all data and b) Maximum likelihood not be rejected (p=0.2l). The degree of bias (21X"M for all data. showed a high value of0,617. Table 2.Information on used models. C'odoii-P(»siti(»ii Model Gamma distribution shape parameter Proportion ofinvariable sites 1st Position GTR+I a=equal Pinvar=0.5692 2"^' Position TVMcf+I a=eqiial Pinvai-=0.8647 3'"^' Position TVM+G a=0.8835 Pinvai"=equal 1"' and 2"^' Position GTR+I+G a=0.9167 Pinvai-=0.6909 ls',2"^' and 3'^' Position GTR+l+G a=1.0265 Pinvai-=0.5408 ) Bonnerzoologische Beiträge 55 (2006) 195 Table3. Codon Usage Bias. N = number oftimes a particular codon is observed in a datasct (alignment). RSCU values = num- beroftimesaparticularcodon isobserved, relativetothe numberoftimesthatthecodon would beobserved in theabsenceofany codonusagebias.Amino acids (AA) are indicated by the three letter abbreviations. AA Codon N RSCU ' AA Codon N RSCU Phe uuu 6 (0.08) Ser ucu 45 (1.38) Phe uuc 142 (1.92) Ser ucc 34 (1.04) Leu UUA 3 (0.05) Ser UCA 13 (0.40) Leu UUG 43 (0.66) Ser UCG 8 (0.24) Tyr UAU 2 (0.04) Cys UGU 0 (0.00) Tyr UAC 96 (1.96) Cys UGC 0 (0.00) UAA UGG Ter 0 (0.00) Trp 0 (1.00) Ter UAG 0 (0.00) Pro ecu 83 (1.36) Ter UGA 0 (0.00) Pro ccc 107 (1.75) Leu CUU 48 (0.74) Pro CCA 42 (0.69) Leu cue 81 (1.24) Pro CCG 13 (0.21) Leu CUA 2 (0.03) Arg CGU 233 (2.59) Leu CUG 214 (3.28) Arg CGC 127 (1.41) His CAU 31 (1.27) Arg CGA 18 (0.20) His CAC 18 (0.73) Arg CGG 9 (0.10) Gin CAA 41 (0.28) Thr ACU 53 (0.87) Gin CAG 252 (1.72) Thr ACC 146 (2.38) lie AUU 21 (0.43) Thr ACA 45 (0.73) lie AUC 126 (2.57) Thr ACG 1 (0.02) He AUA 0 (0.00) Ser AGU 8 (0.24) Asn A AII U iñ r\r\\ öer OßOö \J..Oy Asn AAC 0 (0.00) Arg AGA 74 (0.82) Lys AAA 135 (0.61) Arg AGG 78 (0.87) Lys AAG 306 (1.39) Ala GCU 201 (1.49) Val GUU 9 (0.18) Ala GCC 279 (2.07) Val GUC 89 (1.82) Ala GCA 47 (0.35) Val GUA 4 (0.08) Ala GCG 12 (0.09) Val GUG 94 (1.92) Gly GGU 32 (0.87) Asp GAU 38 (0.78) Gly GGC 38 (1.03) Asp GAC 60 (1.22) Gly GGA 72 (1.96) Glu GAA 69 (0.70) Gly GGG 5 (0.14) Glu GAG 128 (1.30) Met AUG 49 (1.00) 3.2. Phyiogenetic analyses The consistency index in maximum parsimony analyses The maximum parsimony 50 % majority-nale consensus waslow(0,210)aswell astheretention index (0.444). Us- tree(Fig. 1) showedall genera(Aplysia, Elysia. Ouchidcl- ing the method developed by XiA et al. (2003) a substi- la, Siphonaria, Orbitestella, TurbonillaandRissoella)re- tutionsaturationwasobservedinthethirdcodonposition coveredasmonophyletic. However,someofthebootstrap (Ijs0,543 >¡ss.j.0,298).Tosupportthisobservationtheen- suppoils were lowandtherewasnobootstrap suppoitfor tropyforeachpositioninthealigninentwascalculatedus- a monophyletic Rissoella. Beyond the genera level, only ing BioEdit Version 7.0.5.2. Codon position one showed Architectonicoidea were detected as monophyletic. All an average entropy value of0,09 whereas the value for other nodes lacked support. thesecondcodonpositionwas0,009 and0,69forthethird codonposition. Ifthenucleotidesoccurmoreorlessequal- The genera Orbitestella, Turbonilla, Ouchidella and ly at a ceilain position within the alignment the entropy Aplysiaandagain, theArchitectonoicoideawerefoundto is highest with the value of 1,36. bemonophyletic inthemaximum likelihoodanalyses.The 196 Angela Dinapoli et al.: Utility ofH3-Gene in Heterobranchia Fig. 1. 50 % majoiity-rulc consensus tree ofmaximum parsimony of 14 most parsimonious trees based on histone H3 data set (nucleotides), numberofparsimony infonnative characters = 96, consistency index (CI) = 0,210. Nodilittorina unifasciata Campanile symbolicum Conusmiles Cliopyramidata Omalogyra burdwoodiana Akera bullata 106 Bursatella leachii Unela glandulifera Pneumodermaof. atlántica Cylindrobulla beauil Aplysia californica 781 Aplysiacf.juliana Philine aperta Creseissp. Cornirostrapellucida Elysia timida Elysiapusilla Elysia crispata Elysia viridis Gastropteron meckeli Orbitestella vera Orbitestella sp. Tethysfimbria Heliacus variegatus Philippealutea Salinatorsolida Pleurobranchaea meckeli Scaphanderlignarius Umbraculum umbraculum Hedleyoconcha delta Onchidium sp. Hedylopsisspiculifera Pupa solidula Rictaxispunctocaelatus Micromelo undatus Bullinalineata Turbonilla láctea Turbonilla sp. Ophlcardelusornatus Armina neapolitana Discodorisatromaculata RIssoella elongatospira Rissoella miera RIssoella cystophora Onchidella floridana Onchidella sp. Siphonaria concinna Siphonaria serrata Siphonaria zelandica Bonnerzoologische Beiträge 55 (2006) 197 Fig. 2. 50 % majorityrule consensus Bayesian inference cladograni forthe histonc H3 dataset (based on nucleotides); Bayesian posteriorprobabilities provided at the branches. Nodilittorina unifasciata Conusmiles Omalogyraburdwoodiana Campanilesymbolicum Creseissp. Unelaglandulifera Philineaperta 0.771 Bursatellaleachii Aplysiacalifornica Aplysia of. Juliana E Cliopyramidata 0.56 Heliacus variegatus Philippealutea Akerabúllate 0.73 Pneumodermaof. atlántica 0 Cylindrobullabeauii Cornirostrapellucida Pupa solidula Rictaxispunctocaelatus 0.1)7 Micromeloundatus Bullinalineata Turbonillaláctea Turbonillasp. Gastropteronmeckeli Orbitestella vera Orbitestella sp. Elysiapusilla Elysiatímida Elysiacrispata Elysia viridis Tethysfimbria Salinatorsolida Ophicardelusornatus Hedleyoconcha delta Onchidiumsp. Hedylopsisspicullfera Scaphanderlignarius Umbraculum umbraculum Pleurobranchaeameckeli Discodorisatromaculata Armina neapolitana Onchidella floridana Onchidellasp. Rissoellaelongatospira Rissoellamiera Rissoellacystophora Siphonaria concinna Siphonaria serrata Siphonariazelandica 198 Angela Dinapoli et al.: Utility ofH3-Gene in Heterobranchia Fig. 3. 50 % majority rule consensus Baycsian inference phylogram forthe histone H3 dataset (based on nucleotides, 3^'^ codon position excluded); Bayesian posteriorprobabilities provided at the branches. —'Nodilittorina unifasciata Campanile symbolicum Omalogyraburdwoodiana 0.571 Conus miles — Discodorisatromaculata — Comirostrapellucida ————— Micromelo undatus •Sal—ina—torsolida ^— Ophicardelus ornatus Siphonana zelandica Siphonaria concinna Siphonaria serrata • — — ^—Hedleyoconcha delta —^Onc—hidella sp. ———Onchidella floridana — Onchidium sp. Bullina lineata •Rictaxispunctocaelatus Pupa solídala — Unela glandulifera Hedylopsisspiculifera •Cylindrobulla beauii •Elysia viridis Elysiapusilla Creseis sp. Cliopyramidata 0.99 Aplysia cf.juliana -Gastropteron meckeli — Scaphanderlignarius — Umbraculum umbraculum Pleurobranchaea meckeli Elysia tímida I 0.62 •Elysia crispata Tethys fimbria • 0.701 •Armina neapolitana Philine aperta 0.72 —Pneumoderma cf. atlántica Heliacus variegatus • 0.781 'Philippea lutea Orbitestella vera ' 0.811 — Orbitestella sp. Turbon^illa láctea —— 1.00 Turbonilla sp. Akera bullata — — Bursatella leachii 0.53 Aplysia californica Rissoella elongatospira 0.99 •Rissoella miera •Rissoella cystophora 0.1 Bonnerzoologische Beiträge 55 (2ÜU6) 199 basis ofthe 50 % majority-rule bootstrap tree (tree not In this study we wanted to present a primary molecular shown)resembledacomb. Therewasnoresolution ofthe insight into heterobranch phylogeny while simultaneous- deep nodes. ly testingtheutilityofthegenecoding forthe highlycon- served protein histone H3 for resolving the deepernodes % The 50 majority-rule consensus Bayesian inference within this taxon. cladogram (with one model forall threecodon positions) (Fig. 2) also recovered all genera as monophyletic. Only Unfortunately, the present study did not provide a robust the Bayesianposteriorprobability ioxSiphonaria was low phylogenetic hypothesis for the relationships among dif- (0.58)becauseonlyvaluesabove0.95 arestatisticallysig- ferent lineages ofHeterobranchia based on H3-Genese- nificant. Beside thegenera level Architectonicoideawere quences. Neither the monophyly ofthe Euthyncura nora monophyleticandtheCaenogastropodafomiedacladeto- step-by-stepevolution bythe"basal"groups wassupport- gether with Omalogyra. All other nodes had no statisti- ed.Aconclusion aboutthemonophylyofOpisthobranchia cally significant support. and Pulmonata could not be extracted from our data be- cause we did not have any resolution at this point. % The 50 majority-rule consensus Bayesian inference cladogram(withcodon specific models) (treenotshown) The firstto investigatethevalueofhistone H3 wereCol- was quite similarto Figure. 2. All genera exceptRissoel- gan et al. (1998). They wanted to combine small nuclear la andArchitectonicoidea were found to be monophyle- ribonucleic acid U2 data and histone H3 to investigate tic.TheremainingnodesweresupportedbyBayesianpos- arthropod molecularevolution. However, partitioned da- teriorprobabilities below 0.95. ta for H3 and U2 were incongment according to Incon- gruence Length Difference tests. Using H3 data only, % The50 majoritymleconsensus Bayesianinferencephy- anomalous nodes appeared in their phylogenies while logram (with 3'''' codon position excluded and with one some possessed decay indices of 1. Therefore, their data model forcodonposifiononeand two) (Fig. 3)recovered were not sufficient to clarify relationships within major only the genera Rissoella and Turhonilla as monophylet- arthropod groups. ic while the Caenogastropoda together with Oiualogyra weregroupedseparatelyfromtherestofthetaxa.All oth- Brown et al. (1999) investigated the DNA sequence da- er nodes had no statistically significant support. taof34Polychaeta speciesforpartial histone H3, U2 snR- NA and two segments of28S rDNA (Dl and D9-10 ex- pansion regions). When using H3 only. Brown et al. DISCUSSION 4. 1999) found a lack ofconcordance with morphological ( results and argued that the inclusion ofall H3 data is in- Molecularinvestigationsofdeep-level relationshipswith- appropriate for the phylogenetic levels under investiga- in the Gastropoda have been made difficult due to a lack tions. ofslowly evolving genes. Hence, a number ofdifferent markers have been utilized to solve this problem. Analy- Colgan etal. (2000) and laterColgan et al. (2003) used ses ofnuclear genes like the 28S ribosomal RNA and/or partialhistone H3 (327bp)fortheinvestigationofgastro- the 18S ribosomal RNA have provided a number ofim- podphylogeny. InColganetal. (2000),wheretheauthors portantinsights intogastropodrelationshipsatseveral lev- used 36 sequences ofhistone H3 only, using the chiton els (TiLLiER et al. 1994, 1996; Dayrat et al. 2001; Von- Ischnochito)} ciiistralis as an outgroup, no cladeswere re- NEMANN et al. 2005). The same applies to mitochondrial tained in the bootstrap analyses. H3 with the third codon genes like the 16s ribosomal RNA (Thollesson et al. position excluded, retained only the higherVetigastropo- 1999) or the cytochrome oxidase subunit I (Remigio & da (bootstrap support = 68 %). Hebert 2003). Colgan et al. (2000, 2003) used the his- tone H3 protein in combination with other genes to clar- In Colgan et al. (2003) in which H3 alone was used to ifygastropodmolecularevolution. However,manyaspects recoverphylogenetic relationshipswithinGastropoda, on- ofgastropod phylogeny remain unclear such as the mo- lythe clade ofthe Patellogastropodawith a support of52 lecularconfirmationoftheHeterobranchiaconceptbased % was recovered. When thethird codonpositionwas ex- on morphological studies from Haszprunar (1985, cluded, none ofthe expected groups were recovered. 1988). At the moment there is no comprehensive molec- ular study ofheterobranch phylogeny especially one in- Okusoetal. (2003)werethe firsttoapply DNAsequence cludingthe"basal"taxa(e. g. Pyramidelloidea,Architec- data to reconstruct the phylogeny ofthe molluscan class tonicoidea, Valvatoidea, Omalogyroidea and Rissoel- Polyplacophora. Theiruse of59 sequences ofhistone H3 loidea). resolved deeper nodes than the mitochondrial genes did while the strict consensus tree nested the two Gastropo- 200 Angela Dinapoli et al.: Utility ofH3-Gene in Heterobranchia da Vivipariis georgianus and Sip/ioaariapectinaia with- (Colgan et al. 2000) and polychaetes (0.665) (Brown et in Polyplacophora. al. 1999) and higher than the values of Drosophila melcmogaster (FiTCH & Strausbaugh 1993) and arthro- A combined approach to the phylogeny ofCephalopoda pods (0.37) (Colgan et al. 1998). (Mollusca) using 18S rRNA, 28S rRNA, histone H3 and CO! underscoredthe aim ofthe study presented by Lind- Another indication suggesting the problems ofH3 as a GREN et al. (2004). The strict consensus tree forthe over- markerforstudyingdeepmolecularevolutionwasthehigh all optimal parameter set for 66 sequences ofhistone H3 grade ofconservation indicated by the lack ofparsimo- alonedidnotshowmonophylyforanyclasses investigat- ny-informative sites in the amino acid alignment. ed. Additional impoilant evidence was the observed substi- KiER et al. (2006) investigated the molecular phylogeny tution saturation at the third codon position. Asaturation of Hexapoda (supcrmatrix approach with 137 taxa; is caused by multiple-hits which render homoplasious 375bp). Theyonlyrecoveredoneordinal levelnodewhen changes. Homoplasy on the basis ofsaturation in substi- using only H3. tution is one ofthe major problems in molecular phylo- genetics(Tillieretal. 1996). Thisproblemgenerallybe- According to our phylogenetic results and the results in comes more relevant at progressively higher taxonomic thepapers listedabovehistone H3 aloneprovides nonew levels(Boore& Brown 1998). Ifnumeroussubstitutions markerforstudyingdeep molecularevolution ofthe Het- occur at the same position, a hiding or completely eras- erobranchiadue to the high gradeofconservation andthe ing ofthe ancient phylogenetic signal could be the result low phylogenetic signal for deeper nodes. (Lopez et al. 1999). In order to avoid a decrease ofthe phylogenetic information contained in the sequences, we There were several indices defined by the results ofour excluded the third codon position in further analyses. statistical tests supporting this assumption. We observed However, thiswasthepositionwiththemostvariablesites ahighcodonusagebias(seetab. 2) inouralignmentwhich (78 of 82 positions) in our data set. With the exclusion was also indicated by an increasing frequency ofC- and there was no phylogenetic information left for a resolu- G-ending codons and fewer A- and U-ending codons tion ofthe deepernodes. Trees which resemble combs at (Shields et al. 1988). High C+G contentat silent sitesre- the base resulted (see fig. 3). The entropy was calculated flects the effect ofselection (Shields et al. 1988) while foreach position in the alignmentto furtherassessthe in- selective constraints against certain codons might reduce fluenceofthe 3 codon positions.Ahighentropyvalueim- theamount ofphylogenetic noise caused by synonymous plies that the nucleotides occuralmost equally atthis po- substitution at either first or third codon positions sition within the alignment. An almost equal distribution (Brown etal. 1999). However, ourdata suggest thatabias ofthe nucleotides at one position indicates a less selec- in codon usage will not necessarily be indicative of the tive constraint allowing a higher frequency of substitu- phylogenetic utility ofa sequence. Despite a high codon tions. The averagevalues foreach ofthe three codonpo- usagebiasourcomputedphylogenetictrees showedapoor sitions indicate a less selective constraint for the third resolution of the deeper nodes. An explanation for this codonpositionhence supportingthepreviousresultofthis could be that the pressure to obtain the favomed codon codon position being saturated. had partially obscured the phylogenetic signal. Colgan etal. (1998,2000) made similarobservationsandconclud- It is questionable ifgiven a larger data set, the noise will ed that apparent, high codon-usage bias as found for the eventuallysuccumbtothesignal. Therearefewexamples H3 data does not necessarily result in high phylogenetic where the expansion ofan ambiguous datasethas result- consistency for DNAsequences. In the studies presented ed in a convincingphylogeny (Boore & Brown 1998). by Brown et al. (1999) a lack of agreement of the H3 analyseswith morphologyoccursdespitevery high codon Suiprisingly, there was a good resolution on genera lev- usage bias. They concluded that whilst selective con- el. Analyses conducted with maximum parsimony and straintsmayhavereducedtheabsoluterateofsynonymous Bayesian inference (with all data) recovered all (ornear- substitutions, the pressure in favorof(homoplastic) resti- ly all)generamostlywith statistically significantsupport- tution ofthe favoured codon has at least a paitially ob- ed nodes. However, our findings should be considerpre- scuredphylogenetic signal. Hence, codon usagebiasdoes liminary and further studies including more genera are not necessarily mean that a gene sequence will be phylo- necessarytotest the possible utility ofhistone H3 forthe genetically useful. resolution ofrecent splits. In otherstudies (Colgan etal. 1998; Okusoetal. 2003; Lindgren etal. 2004)some(but The degree ofbias (^^X"'") showed a high value of0,617. not all) genera were foundto be monophyletic butdue to Itwas similarto the values observed in gastropods (0.60) the question the authors intended to answer, their studies