ebook img

Using recursive algorithms for the efficient identification of smoothing spline ANOVA models PDF

22 Pages·2010·0.72 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Using recursive algorithms for the efficient identification of smoothing spline ANOVA models

AStAAdvStatAnal(2010)94:367–388 DOI10.1007/s10182-010-0148-8 ORIGINAL PAPER Using recursive algorithms for the efficient identification of smoothing spline ANOVA models MarcoRatto·AndreaPagano Received:4September2009/Accepted:26July2010 ©Springer-Verlag2010 Abstract In this paper we present a unified discussion of different approaches to theidentificationofsmoothingsplineanalysisofvariance(ANOVA)models:(i)the “classical”approach(inthelineofWahbainSplineModelsforObservationalData, 1990; Gu in Smoothing Spline ANOVA Models, 2002; Storlie et al. in Stat. Sin., 2011)and(ii)theState-DependentRegression(SDR)approachofYounginNonlin- earDynamicsandStatistics(2001).Thelatterisanonparametricapproachwhichis very similar to smoothing splines and kernel regression methods, but based on re- cursive filtering and smoothing estimation (the Kalman filter combined with fixed interval smoothing). We will show that SDR can be effectively combined with the “classical”approachtoobtainamoreaccurateandefficientestimationofsmoothing splineANOVAmodelstobeappliedforemulationpurposes.Wewillalsoshowthat suchanapproachcancomparefavorablywithkriging. Keywords SmoothingsplineANOVAmodels·Recursivealgorithms·Backfitting· Sensitivityanalysis 1 Introduction In the analysis of data from computer experiments, approximation models are built toemulatethebehavioroflargecomputationalmodels.Smoothingsplinemodelsare (cid:2) M.Ratto( )·A.Pagano JointResearchCentre,EuropeanCommission,TP361IPSC,ViaFermi2749,21027Ispra(VA),Italy e-mail:[email protected] A.Pagano e-mail:[email protected] Presentaddress: A.Pagano Euro-MediterraneanCentreforClimateChange,Milano,Italy 368 M.Ratto,A.Pagano a useful tool for this kind of analysis (Levy and Steinberg 2010). In this paper we presentaunifieddiscussionofdifferentapproachestotheidentificationofsmoothing splineanalysisofvariance(ANOVA)models.The“classical”approachtosmoothing splineANOVAmodelsisalongthesamelinesastheworkofWahba(1990)andGu (2002).Recently,Storlieetal.(2011)presentedtheAdaptiveCOmponentSelection and Selection Operator (ACOSSO), “a new regularization method for simultaneous modelfittingandvariableselectioninnonparametricregressionmodelsintheframe- workofsmoothingsplineANOVA.”ThismethodisanimprovementtoCOSSO(Lin and Zhang 2006), penalizing the sum of component norms, instead of the squared normemployedinthetraditionalsmoothingsplinemethod.InACOSSO,anadaptive weight is used in the COSSO penalty which allows for more flexibility in estimat- ingimportantfunctionalcomponentswhilegivingaheavierpenaltyto unimportant functionalcomponents. Ina“parallel”streamofresearch,usingtheState-Dependent(Parameter)Regres- sion(SDR)approachofYoung(2001),Rattoetal.(2007)havedevelopedanonpara- metric approach, very similar to smoothing splines and kernel regression methods, based on recursive filtering and smoothing estimation (the Kalman filter combined with fixed interval smoothing). Such a recursive least-squares implementation has somekeycharacteristics:(a)itispluggedwithoptimalmaximumlikelihoodestima- tion, thus allowing for an objective estimation of the smoothing hyper-parameters, and(b)itprovidesgreaterflexibilityinadaptingtolocaldiscontinuities,heavynon- linearity,andheteroscedasticerrorterms.Theuseofrecursivealgorithmsinsmooth- ing splines is not new in statistical literature: the works of Weinert et al. (1980) andWeckerandAnsley(1983)demonstratedtheapplicabilityofastochasticframe- work for recursive computation of smoothing splines. However, such works were limitedtotheunivariatecase,whilethesubsequenthistoryoftensorproductsmooth- ing splines developed in the “standard” nonrecursive form. The recursive approach of Young (2001) can be seen as an extension and generalization of such earlier pa- pers,whichisapplicabletothemultivariatecase,andRattoetal.(2007)discussedits possibleextensionfortheestimationofinteractiontermsoftheANOVA. Thepurposesofthispaperare: 1. todevelopaformalcomparisonanddemonstrateequivalencesbetweenthe“clas- sical” tensor product smoothing spline with reproducing kernel Hilbert space (RKHS) algebra and the SDR, extending the results derived in Weinert et al. (1980)andWeckerandAnsley(1983)tothemultivariatecase; 2. todiscusstheadvantagesanddisadvantagesoftheseapproaches; 3. toproposeaunifiedapproachtosmoothingsplineANOVAmodelsthatcombines thebestofthediscussedmethods:theuseoftherecursivealgorithmsinparticular can be very effective in detecting the important functional components, adding valuableinformationintheACOSSOframework;atthesametime,suchacom- bined approach improves the first extension of the SDR approach to interaction termsproposedbyRattoetal.(2007); 4. tocompareresultsofanalysisofcomputerexperimentscarriedoutusingkriging- based techniques, e.g., Design and Analysis of Computer Experiments (DACE) andtheproposedunifiedmethod. RecursivealgorithmsforsmoothingsplineANOVAmodels 369 Concerning item 1 above, for the sake of parsimony we concentrate here on the specialcaseofcubicsmoothingsplines.Thiscaseis,infact,themostwidelyapplied splinemethodaswellasthebasiccoreintheACOSSOframework.However,simi- larlytothediscussioninWeckerandAnsley(1983),afullclassofequivalencescan bederivedbetweentheSDRrecursiveapproachandpolynomialsplinesofanyorder. In this context, we also note that Young and Pedregal (1999) already discussed the equivalence between the recursive and en bloc formulation of the smoothing prob- lem,whentheenbloccaseiscastinthe“discrete”form,asintheHodrick–Prescott filter(HodrickandPrescott1981;Leser1961).Hereweextendsuchequivalenceto the“continuous”integralformtypicaloftheRKHSalgebra. 2 State-dependentregressionsandsmoothingsplines 2.1 Additivemodels We denote the generic mapping as z(X) and assume without loss of generality that X ∈ [0,1]p, where p is the number of input variables. The simplest example of smoothingsplinemappingestimationofzistheadditivemodel: (cid:2)p f(X)=f + f (X ). (1) 0 j j j=1 Toestimatef wecanuseamultivariate(cubic)smoothingsplineminimizationprob- lem,thatis,givenλ=(λ ,...,λ ),findtheminimizerf(X )of: 1 p k (cid:5) 1 (cid:2)N (cid:3) (cid:4) (cid:2)p 1(cid:6) (cid:7) z −f(X ) 2+ λ f(cid:3)(cid:3)(X ) 2dX , (2) N k k j j j j k=1 j=1 0 whereaMonteCarlo(MC)sampleofdimensionN isassumed. This statistical estimation problem requires the estimation of the p hyper- parameters λ (also denoted as smoothing parameters). Various ways of doing that j areavailableintheliterature,byapplyinggeneralizedcross-validation(GCV),gen- eralized maximumlikelihood(GML) procedures and so on (see, e.g., Wahba1990; Gu 2002). Here we discuss the recursive estimation approach, where the additive model is put into the State-DependentParameter Regression(SDR) form of Young (2001)asappliedtotheestimationofANOVAmodelsbyRattoetal.(2007). We highlight here the key features of Young’s recursive algorithms of SDR by considering the case of p =1 and z(X)=g(X)+e, with e∼N(0,σ2); i.e., we rewrite the smoothing problem as z =s +e , where k =1,...,N and s is the k k k k estimateofg(X ).Tomaketherecursiveapproachmeaningful,theMCsampleneeds k to be sorted in ascending order with respect to X: i.e., k and k−1 subscripts are adjacent elements under such ordering (see Fig. 1), implying 0≤X <X <···< 1 2 X <···<X ≤1. k N To recursively estimate the s in SDR, it is necessary to characterize it in some k stochastic manner, borrowing from nonstationary time series processes. In general 370 M.Ratto,A.Pagano Fig.1 Exampleofthesorted k-ordering:therecursive algorithmspanstheoutputdata zkfromthelefttotherightof theplot thisisaccomplishedbyassumingthattheevolutionofs followsonememberofthe k generalizedrandomwalk(GRW)classonnonstationaryrandomsequences(see,e.g., YoungandNg1989andNgandYoung1990). In the present context, the integrated random walk (IRW) process provides the samesmoothingpropertiesofacubicspline,intheoverallstate-spaceformulation: ObservationEquation: z =s +e k k k StateEquations: sk =sk−1+dk−1 (3) dk =dk−1+ηk whered isthe“slope”ofs ,η ∼N(0,σ2)andη (“systemdisturbance”insystems k k k η k terminology)isassumedtobeindependentofthe“observationnoise”e ∼N(0,σ2). k Within the framework of the analysis of computer experiments, it seems neces- sarytodiscusstheterme in(3).Normalityandindependencearestrictlyappropri- k atewhenthereisobservationalerrorinthedatabutcanbereasonableforsmoothing observeddataevenincomputerexperimentsbecausetherecanbeapplicationswhere the“computed”valueisproducedwithsomeerrororvariability,dueto,e.g.,conver- gence of numerical algorithms. Moreover, e descends naturally from the standard k smoothingsplineformulation(2):suchapenalizedleast-squaresregressionrulesout a perfect fit for f(X ), thus implying an “observation noise” linked to the nonzero k residual term (z −f(X )). This residual reflects the fact that the present emula- k k tion approach is based on identifying a truncated ANOVA expansion that approxi- matesz(X).Thisisdonebyincludinga“small”subsetofq ANOVAterms(mainef- fectsandinteractions)thatarestatisticallyidentifiablefromtheavailableMCsample. Thus,e canbeseenasthesumofallthetermsthatarenotincludedbyashrinkage k procedure.ThissetofdroppedANOVAtermsusuallyincludesaverylargenumber of elements (namely 2p −q, where q (cid:6)2p), which are orthogonal (independent) by definition. It does not seem out of place to model the sum of a large number of independentvariablesinstatisticalterms(CentralLimitTheorem).Wewillseethat theinclusionofthis“error”term,ratherthanbeingadrawbackofthismethod,turns RecursivealgorithmsforsmoothingsplineANOVAmodels 371 outtobeanadvantage(seetheexamplesinSect.3),sinceitimpliesthatemulation (andtherefore“prediction”atuntriedX values)isperformedonlyusingstatistically significantANOVAterms,enhancingtherobustnessofout-of-sampleperformances. GiventheascendingorderingoftheMCsample,s canbeestimatedbyusingthe k recursive Kalman filter (KF) and the associated recursive fixed interval smoothing (FIS)algorithm(see,e.g.,Kalman1960;Young1999fordetails). First, it is necessary to optimize the hyper-parameters associated with the state- space model (3), namely the white noise variances σ2 and σ2. In fact, by a simple η reformulationoftheKFandFISalgorithms,theIRWmodelcanbeentirelycharac- terized by one noise variance ratio (NVR) hyper-parameter, where NVR=σ2/σ2. η ThisNVRvalueis,ofcourse,unknownapriori andneedstobeoptimized:forex- ample, in the above references, this is accomplished by maximum likelihood (ML) optimizationusingpredictionerrordecomposition(Schweppe1965).TheNVRplays theinverseroleofasmoothingparameter:thesmallertheNVR,thesmootherthees- timate of s (and at the limit NVR=0, s will be a straight line). Given the NVR, k k theFISalgorithmthenyieldsanestimate sˆk|N of sk ateachdatasample,anditcan be seen that the sˆk|N from the IRW process is the equivalent of f(Xk) in the cubic smoothing spline model. At the same time, the recursive procedures provide, in a natural way, standard errors of the estimated sˆk|N that allow for the testing of their relativesignificance. We need to clarify here the meaning of the ML optimization in this recursive context. We first observe that, to avoid a perfect fit solution, a penalty term is used inthe“classical”smoothingsplineestimates.The“penalty”appearsintheobjective function (GCV, GML, etc.) which is used to optimize the λ’s. In this way one may limitthe“degreesoffreedom”ofthesplinemodel. Forexample,inGCV,wehavetofindaλthatminimizes (cid:8) (z −f (X ))2 GCV =1/N· k k λ k , (4) λ (1−df(λ)/N)2 wheredf ∈[0,N]denotesthe“degreesoffreedom”asafunctionofλ.Similarly,in theSDRnotation,welookforanNVRminimizing (cid:8) GCV =1/N· k(zk−sˆk|N)2 , (5) NVR (1−df(NVR)/N)2 where the “degrees of freedom” df depend on the NVR (by the above-mentioned equivalence). Remark1 Withoutthepenaltyterm,theoptimumwouldalwaysbeattainedatλ=0 (orNVR→∞),i.e.,perfectfit. A perfect fit “optimal” solution would never happen within the SDR recursive context. In this case penalty is directly associated with the estimate procedure, by thefactthatthepredictionerrordecomposition(ML)estimateisbasedonthefiltered estimatesˆk|k−1=sk−1+dk−1andnotonthesmoothedestimatesˆk|N.Namely,inML 372 M.Ratto,A.Pagano Fig.2 Pictureoftheonestep aheadpredictionsoftheIRW processinthecaseof NVR→∞.Thestars/dotted linedenotethezkdataseries, whilethesquaresdenotetheone stepaheadpredictionsˆk|k−1 estimation,wefindtheNVRthatmaximizesthelog-likelihoodfunctionL,where: (cid:2)N (cid:3) (cid:4) ˆ −2·log(L)=const+ log(1+Pk|k−1)+(N−2)·log σ2 , k=3 σˆ2= 1 (cid:2)N (zk−sˆk|k−1)2, (6) N−2k=3 (1+Pk|k−1) ˆ where σ2 is the “weighted average” of the squared innovations (i.e., the prediction erroroftheIRWmodel),andPk|k−1 istheonestepaheadforecasterrorofthestate sˆk|k−1 provided by the KF (both Pk|k−1 and sˆk|k−1 are functions of NVR). Since sˆk|k−1 isbasedonlyontheinformationcontainedinthesamplevalues[1,...,k−1] (whilesmoothedestimatesusetheentireinformationset[1,...,N]),itcanbeeasily seenthatthelimitNVR→∞(λ→0)isnolongera“perfectfit”situation,sincea zero variance for ek implies sˆk|k−1=sk−1+dk−1=zk−1+dk−1; i.e., the one step aheadpredictionofzk isgivenbythelinearextrapolationoftheadjacentvaluezk−1, thusimplyinganonzeropredictionerrorinthislimitcase. ThisisfurtherexemplifiedinFig.2:thesquaresintheplotsdenotetheonestep ahead prediction sˆk|k−1 and the arrows show the linear extrapolation mechanism of theIRWprocesswhenNVR→∞.Suchapredictiondepartsconsiderablynotonly froma“perfectfit”situationbutalsofroma“decentfit,”implyingthattheMLesti- matewillautomaticallypenalizethiskindofsituationandprovidethe“right”value fortheNVR(seealsoWeckerandAnsley1983foradiscussionofthisMLestimator inthesmoothingsplinecontext). TocompletetheequivalencebetweentheSDRandcubicsplineformulations,we needtolinktheNVRestimatedbytheMLproceduretothesmoothingparametersλ. It can be easily verified that by setting λ=1/(NVR·N4), and with evenly spaced Xk values,the f(Xk) estimateinthecubicsmoothingsplinemodelequalsthe sˆk|N estimate from the IRW process. The present results are also in line with the cited RecursivealgorithmsforsmoothingsplineANOVAmodels 373 workofWeckerandAnsley(1983),whoassume,however,adifferentstochasticform fors ,namelyanARIMA(0,2,2)process. k As mentioned in the Introduction, this is not the only possible equivalence be- tween recursive algorithms and polynomial splines. For example, one can verify that assuming a random walk stochastic process for s with some ML optimized k NVR(RW) is equivalent to estimating a linear spline with smoothing parameter λ=1/(NVR(RW)·N2)(seealsoWeckerandAnsley1983). The most interesting aspect of the SDR approach is that it is not limited to the univariatecase,butcanbeeffectivelyextendedtothemostrelevantmultivariateone. In the general additive case (1), for example, the recursive procedure needs to be applied,inturn,foreachtermfj(Xj,k)=sˆj,k|N,requiringadifferentsortingstrategy foreachsˆj,k|N.Hence,the“backfitting”procedure,asdescribedinYoung(2000)and Young (2001), is exploited (see Appendix A.1). This procedure provides both ML estimates of all NVRj’s and the smoothed estimates of the additive terms sˆj,k|N. It canbeeasilyverifiedthattheequivalencebetweenthe λ’sandNVRs presentedfor p=1alsoholdsfortheadditivemodelwithp>1.So,theestimatedNVR ’scanbe j convertedintoλ valuesusingλ =1/(NVR ·N4),allowingustoputtheadditive j j j modelintothestandardcubicsplineform. 2.2 ANOVAmodelswithinteractionfunctions Theadditivemodelconcept(1)canbegeneralizedtoincludetwo-way(andhigher) interaction functions via the functional ANOVA decomposition (Wahba 1990; Gu 2002).Forexample,wecanlet (cid:2)p (cid:2)p f(X)=f + f (X )+ f (X ,X ). (7) 0 j j j,i j i j=1 j<i In the ANOVA smoothing spline context, corresponding optimization problems withinteractionfunctionsandtheirsolutionscanbeobtainedconvenientlywiththe reproducing kernel Hilbert space (RKHS) approach (see Wahba 1990). In the SDR context, we propose here to formalize an interaction function as the product of two states s ·s , each of them characterized by an IRW stochastic process. Hence, the 1 2 estimationofasingleinteractiontermz∗(X )=f(X ,X )+e isexpressedas k 1,k 2,k k ObservationEquation: z∗=sI ·sI +e k 1,k 2,k k StateEquations:(j =1,2) sjI,k =sjI,k−1+djI,k−1 (8) dI =dI +ηI j,k j,k−1 j,k wherez∗isthemodeloutputafterthemaineffectsaretakenout,I =1,2isthemulti- indexdenotingtheinteractiontermunderestimation,andηI ∼N(0,σ2 ).Thetwo j,k ηI j termssI areestimatediterativelybyrunningtherecursiveprocedureinturn;i.e., j,k – takeaninitialestimateofsI andsI byregressingzwiththeproductofsimple 1,k 2,k linearorquadraticpolynomialsp (X )·p (X )andsetsI,0=p (X ); 1 1 2 2 j,k j j,k 374 M.Ratto,A.Pagano – iteratei=1,2: – fixsI,i−1 andestimateNVRI andsI,i usingtherecursiveprocedure; 2,k 1 1,k – fixsI,i andestimateNVRI andsI,i usingtherecursiveprocedure; 1,k 2 2,k – theproductsI,2·sI,2obtainedaftertheseconditerationprovidestherecursiveSDR 1,k 2,k estimateoftheinteractionfunction. Thelatterstoppingcriterionisaconvenientchoicetolimitthecomputationtime, andisduetotheobservationthattheestimateoftheinteractiontermneverchanged toomuchinanysubsequentiteration. Unfortunately, in the case of interaction functions we cannot derive an explicit andfullequivalencebetweenSDRandcubicsplinesofthetypementionedforfirst- orderANOVAterms.Therefore,inordertobeabletoexploittheestimationresults inthecontextofasmoothingsplineANOVAmodel,weproposetotakeadifferent approach,similartotheACOSSOcase. 2.3 VeryshortsummaryofACOSSO Wemaketheusualassumptionthatf ∈F,whereF is(cid:9)anRKHS.ThespaceF can bewrittenasanorthogonaldecompositionF ={1}⊕{ q F },whereeachF is j=1 j j itselfanRKHSandj =1,...,q spansANOVAtermsofvariousorders.Typically,q includesthemaineffectsplusrelevantinteractionterms. Wereformulate(2)forthegeneralcasewithinteractionsusingthefunctionf that minimizes (cid:2)N (cid:3) (cid:4) (cid:2)q (cid:10) (cid:10) 1 z −f(X ) 2+λ 1 (cid:10)Pjf(cid:10)2 , (9) k k 0 F N θ k=1 j=1 j where Pjf is the orthogonal projection of f onto F and the q-dimensional vec- j tor θ of smoothing parameters needs to be optimized somehow. This is typically j a formidable problem, and in the simplest case θ is set to one, with the single λ j 0 estimatedbyGCVorGML. Problem (9) also poses the issue of selection of F terms: this is tackled rather j effectivelywithintheCOSSO/ACOSSOframework. The COSSO (Lin and Zhang 2006) penalizes the sum of norms, using a Least AbsoluteShrinkageandSelectionOperator(LASSO)-typepenalty(Tibshirani1996) for the ANOVA model, which allows us to identify the informative predictor terms F withanestimateoff thatminimizes j (cid:2)N (cid:3) (cid:4) (cid:2)Q (cid:10) (cid:10) 1 z −f(X ) 2+λ (cid:10)Pjf(cid:10) (10) k k F N k=1 j=1 usingasinglesmoothingparameterλ,andwhereQincludesallANOVAtermstobe potentiallyincludedinf,e.g.,withatruncationuptosecond-orthird-orderinterac- tions. RecursivealgorithmsforsmoothingsplineANOVAmodels 375 ItcanbeshownthattheCOSSOestimateisalsotheminimizerof (cid:2)N (cid:3) (cid:4) (cid:2)Q (cid:10) (cid:10) 1 z −f(X ) 2+ 1 (cid:10)Pjf(cid:10)2 (11) k k F N θ k=1 j=1 j (cid:8) Q subjectto 1/θ <M (wherethereisa1-1mappingbetweenM andλ).Sowe j=1 j can think of the COSSO penalty as the traditional smoothing spline penalty plus a penaltyontheQsmoothingparametersusedforeachcomponent.TheLASSO-type penalty has the effect of setting some of the functional components (F ’s) equal to j zero (e.g., the variable X or the interaction (X ,X ) is not in the model); thus, it j j i “automatically”selectstheappropriatesubsetq oftermsoutoftheQ“candidates.” The key property of COSSO is that with one single smoothing parameter (λ or M) itprovidesproperestimatesofallθ parameters:therefore,itconsiderablyimproves j problem(9)withθ =1(stillwithonesinglesmoothingparameterλ )andismuch j 0 morecomputationallyefficientthanthefullproblem(9)withoptimizedθ ’s. j IntheadaptiveCOSSO(ACOSSO)ofStorlieetal.(2011),f ∈F minimizes (cid:2)N (cid:3) (cid:4) (cid:2)q (cid:10) (cid:10) 1 z −f(X ) 2+λ w (cid:10)Pjf(cid:10) , (12) k k j F N k=1 j=1 where 0<w ≤∞ are weights that depend on an initial estimate of f˜, either us- j ing (9) with θ = 1 or the COSSO estimate (10). The adaptive weights are ob- j tained as w = (cid:11)Pjf˜(cid:11)−γ, typically with γ = 2 and the L norm (cid:11)Pjf˜(cid:11) = ((cid:11) (Pjf˜(X))j2dX)1/2.ThLe2useofadaptiveweightsimprovesthe2predictivecapabLi2lity ofANOVAmodelswithrespecttotheCOSSOcase. 2.4 CombiningSDRandACOSSOforinteractionfunctions ThereisanobviouswayofexploitingtheSDRidentificationandestimationstepsin theACOSSOframework:namely,theSDRestimatesofadditiveandinteractionfunc- ˜ tiontermscanbetakenastheinitialf usedtocomputetheweightsintheACOSSO. However, this would be a minimal approach, whereas the SDR identification and estimationprovidesmoredetailedinformationaboutf termsthatisworthexploit- j ing.WedefineK(cid:12)j(cid:13) tobethereproducingkernel(r.k.)ofanadditivetermFj ofthe ANOVAdecompositionofthespaceF.Inthecubicsplinecase,thisisconstructedas thesumoftwotermsK(cid:12)j(cid:13)=K01(cid:12)j(cid:13)⊕K1(cid:12)j(cid:13),whereK01(cid:12)j(cid:13)isther.k.oftheparametric (linear)partandK1(cid:12)j(cid:13) isther.k.ofthepurelynonparametricpart.Thesecond-order interactiontermsareconstructedasthetensorproductofthefirst-orderterms,fora totaloffourelements,i.e., K(cid:12)i,j(cid:13)=(K01(cid:12)i(cid:13)⊕K1(cid:12)i(cid:13))⊗(K01(cid:12)j(cid:13)⊕K1(cid:12)j(cid:13)) =(K01(cid:12)i(cid:13)⊗K01(cid:12)j(cid:13))⊕(K01(cid:12)i(cid:13)⊗K1(cid:12)j(cid:13))⊕(K1(cid:12)i(cid:13)⊗K01(cid:12)j(cid:13))⊕(K1(cid:12)i(cid:13)⊗K1(cid:12)j(cid:13)). (13) 376 M.Ratto,A.Pagano Ingeneral,consideringproblem(9),oneshouldattributeaspecificcoefficientθ(cid:12)·(cid:13) to each single element of the r.k. of F (see, e.g., Gu 2002, Chap. 3), i.e. two θ’s j foreachmaineffect,four θ’sforeachtwo-wayinteraction,andsoon.Infact,each Fj would be optimally fitted by opportunely choosing weights in the sum of K(cid:12)·,·(cid:13) elements.This,however,makestheestimationproblemrathercomplex,so,usually, thetensorproduct(13)isdirectlyused,withouttuningtheweightsofeachelement ofthesum.ThisstrategyisalsoappliedinACOSSO. Instead,weproposetouseSDRestimatesofinteractiontosettheweights. Inparticular,wecanseethattheSDRestimateoftheinteraction(8)isgivenbythe productoftwounivariatecubicsplines.So,onecaneasilydecomposeeachestimated sˆI into the sum of a linear (sˆI ) and nonparametric term (sˆI ). This provides a j 01(cid:12)j(cid:13) 1(cid:12)j(cid:13) decompositionoftheSDRinteractionoftheform sˆI ·sˆI =sˆI sˆI +sˆI sˆI +sˆI sˆI +sˆI sˆI , (14) i j 01(cid:12)i(cid:13) 01(cid:12)j(cid:13) 01(cid:12)i(cid:13) 1(cid:12)j(cid:13) 1(cid:12)i(cid:13) 01(cid:12)j(cid:13) 1(cid:12)i(cid:13) 1(cid:12)j(cid:13) whichcanbethoughtofasaproxyofthefourelementsofther.k.ofthesecond-order tensorproductcubicspline. This suggests that a natural use of the SDR identification and estimation in the ACOSSOframeworkistoapplyspecificweightstoeachelementofther.k.K(cid:12)·,·(cid:13) in (13). In particular, the weights are the L norms of each of the four elements esti- 2 matedin(14).Wewillshowintheexamplesthatthischoiceleadstosignificantim- provementintheaccuracyofANOVAmodelswithrespecttotheoriginalACOSSO approach. 2.5 Krigingmethod:theDACEMatlabtoolbox DACE(Lophavenetal.2002)isaMatlabtoolboxusedtoconstructkrigingapprox- imationmodelsonthebasisofdatafromcomputerexperiments.Oncewehavethis approximatemodel,wecanuseitasasurrogatemodel(emulator,meta-model). WebrieflyhighlightthemainfeaturesofDACE. Keepingwhereverpossiblethesamenotationthatweusedpreviously,thekriging modelcanbeexpressedasaregression zˆ(X)=β f (X)+···+β f (X)+ζ(X), (15) 1 1 q q wheref ,i=1,...,qaredeterministicregressionterms,β aretherelatedregression i i coefficients, and ζ is a zero-mean random process whose variance depends on the process variance ω2 and on the correlation R(v,w) between ζ(v) and ζ(w). The toolboxprovidesasetofcorrelationfunctionsdefinedas (cid:12) R(θ,v,w)= R (θ ,w −v ). j j j j j=1:p In particular, for the generalized exponential correlation function, used in the next section,onehas (cid:3) (cid:4) Rj(θj,wj −vj)=exp −θj|wj −vj|θp+1 .

Description:
the identification of smoothing spline analysis of variance (ANOVA) models: (i) the Keywords Smoothing spline ANOVA models · Recursive algorithms
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.