ebook img

Using highly excited baryons to catch the quark mass PDF

0.13 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Using highly excited baryons to catch the quark mass

Using highly excited baryons to catch the quark mass T.VanCauteren1,a,P.Bicudo2,M.Cardoso2,andFelipeJ.Llanes-Estrada3 1 Dept.PhysicsandAstronomy,GhentUniversity,Proeftuinstraat86,B-9000Gent,Belgium 2 Dpto.F´ısica,InstitutoSuperiorTe´cnico,Avda.RoviscoPais,1096Lisbon,Portugal 3 Dpto.F´ısicaTeo´ricaI,UniversidadComplutense,Avda.Complutenses/n,28040Madrid,Spain 0 1 Abstract. ChiralsymmetryinQCDcanbesimultaneouslyinWignerandGoldstonemodes,dependingonthe 0 partofthespectrumexamined.Thetransitionregimebetweenboth,exploitingforexampletheonsetofparity 2 doublinginthehighbaryonspectrum,canbeusedtoprobetherunningquarkmassinthemid-IRpower-law regime.Inpassingwealsoarguethatthree-quarkstatesnaturallygroupintosame-flavorquartets,splitintotwo n parity doublets, all splittings decreasing high in the spectrum. We propose that a measurement of masses of a high-partialwave∆ resonancesshouldbesufficienttounambiguouslyestablishtheapproximatedegeneracyand J ∗ seethequarkmassrunning.Wetesttheseconceptswiththefirstcomputationofthespectrumofhigh-Jexcited 4 baryonsinachiral-invariantquarkmodel. ] h p 1 Introduction resonances.Twomainideasareappliedinordertodothis: - insensitivitytochiralsymmetrybreakingleadingtotheap- p e Inthelastthirtyyears,QuantumChromodynamicshasturned pearance of parity doublets in the hadron spectrum [1,2, h out to give an accurate description of many high-energy 3]andlinkingthemasssplittingsbetweenparitypartners [ processes. In the last decennium, a lot of effort has gone withtherunningquarkmass. 2 to solving the QCD equations on a discretized spacetime Ourproposalcanbeconciselyunderstoodwiththehelp v lattice, using an impressive amount of computing power. offigure1. 8 This, together with perturbation theory, has led to very 1 persuasiveevidencethatQCDindeeddescribesthestrong 4 interaction, both at the high-energy end and at the static 2 Chiral quartets 3 end. However, there still remains the question if the the- . 2 ory describes the transition between the perturbative and Chiral symmetry in the strong interactions is the Noether 1 non-perturbativedomain.Asuitablequantityforchecking 9 symmetryrelatedtothechiraltransformation,whichreads this is the quark mass, which should be a function of the 0 ontheclassicalfermionfields quark’s momentum due to the interactions with the QCD : v medium. Asymptotic freedom tells us that at high quark ψ eiαaτaγ5ψ, (1) i momentumk,thenonstrangequarkmassshouldapproach → X thecurrentquarkmassoftheorderof1 5MeVasdeduced r − with αa the parameters describing the rotation in SU(2)- a fromchiralperturbationtheoryorsum-rules,whilehadron flavour space with generators τa. Due to the Dirac matrix phenomenology puts the value of the quark mass at low γ , the chiral transformation is a helicity-dependent rota- momenta to an effective 300 MeV. This means that the 5 ∼ tioninflavourspace. nonstrange quark mass changes by two orders of magni- OnetermintheQCDLagrangianwhichisclearlynot tudewhengoingfromlowmomentumk<<Λ tohigh QCD invariant to the chiral transformation of Eq. 1, is a quark momentumk>>Λ (typicallyΛ 210MeV). QCD QCD massterm ∼ Obviously,adirectcomparisonbetweentheQCDpre- m q¯q. (2) q dictionoftherunningquarkmassandexperimentalobser- vationisnotpossiblesincequarksareconfinedandpropa- Thistermbreakschiralsymmetryexplicitly,andtheamount gate only a distance of order a fermi, too small to detect of breaking is larger when the quark mass increases. As directly. It is a main goal of modern hadron physics to mentionedbefore,thesmallcurrentquarkmassof5MeV glimpse properties of the confined, colored quarks from breakschiralsymmetryonlyslightly.Ontopoftheexplicit colorless hadron properties. We suggest an indirect way breaking of chiral symmetry, the strong interactions also of extracting the power-law behaviour of the quark mass showspontaneouschiralsymmetrybreakingduetotheap- function from the experimentally obtainable masses of ∆ pearance of the quark condensate < q¯q > (a constituent quark mass of 300 MeV arises and breaks it to a much a e-mail:[email protected] largerdegree). EPJWebofConferences Running quark mass (matched to lattice) 0.4 0.3 V) Ge0.2 M( 0.1 0 0 0.5 1 1.5 2 2.5 3 p (GeV) MeV 400 300 200 100 J 3/2 5/2 7/2 9/2 11/2 13/2 15/2 Fig.1. Therunningofthequarkmass(top),fallingwithmomen- tumasapowerlaw,isaccessiblefromthehadronspectruminthe regionm(k)< k (continuousredline).Alloneneedstodoisfit h i apowerlawtothedecreasingparitysplittingsforexcitedbaryon states (bottom, where we show a variational-Montecarlo model calculationthereofasboxesandexperimentaldatafromRef.[4] as circles). Then the exponent of the quark mass power-law in Eq.(10)isobtainedfromEq.(9). ThisistheQCDexplanationfortheabsenceofparity doubling in the low spectrum, as the symmetry is spon- taneously broken. The community now believes that the highlyexcitedstateshoweverareinsensitivetothissponta- neousbreaking(seefig.2foraclassicalanalogy).Indeed, sincethequarkmassislargeatlowmomentaandsmallat high momenta, one may expect that the chiral symmetry breaking is less important in systems where the average quark momentum < k > is high, than in systems where Fig.2. Aclassicalanalogyofthreesymmetryrealizationsina < k > is large. This leads to the idea of insensitivity to quantum theory. Top: the two buildings have equal mass as re- chiralsymmetrybreakinghighinthehadronspectrum[1, quired by Reflection symmetry in Wigner mode. Middle: if in- 2,3,5,6] : in highly excited meson or baryon states, the mersedinafluid(non-trivialgroundstate)withadensitygradient averagequarkmomentumcanbecomelargerthanΛQCD fromlefttoright,thetwobuildings,filledwithit,havenowdif- andtheexplicitchiral-symmetrybreakingquarkmassterm ferentmass(thesymmetryisinGoldstonemode).Bottom:even is small. This is illustrated in Fig. 3, where typical quark ifthefluidbreakstheReflectionsymmetry,tallenoughbuildings momentumdistributionsareshownforthelowest-lying∆- haveclosetoequalmasses(insensitivitytosymmetrybreaking). resonancefordifferentspins,togetherwiththelatticeQCD calculationoftherunningquarkmassfromRef.[7]. showsupbothinthequarkspinorsandintheQCDHamil- 2.1 Seriesexpansioninm(k)/k tonian. Since we want to find out what happens at small quarkmassandhighmomentum,aseriesexpansionofthe In order to assess the effect of a nonzero quark mass to a spinors and Hamiltonian in the parameter m(k)/k seems hadron mass, it is important to note that the quark mass appropriate. 19th InternationalIUPAPConferenceonFew-BodyProblemsinPhysics theexplicitexpressionforthespinors,thechiralchargecan bewrittenas d3k τa k Qa = (6) m(k) (GeV) q 000...453 m∆∆∆∆357q///(222k) m×(kh)(σ5·kˆ)Zλλ′((cid:16)2Bπ†kλ)3fcλBλX′kfλ′f′fc′c +2D!f†−fk′λ′pf′ckD2−+kλmfc2(cid:17)(+k) Lattice 0.2 ∆∆91/12/2 k (iσ2)λλ′ B†kλfcD†−kλ′f′c+Bkλ′f′cD−kλfc # . 13/2 (cid:16) (cid:17) 0.1 The first term between the square brackets represents a quark and antiquark number operators flipping spin and 0 2 4 6 k (GeV) parity.Whenm(k)<<k,itdominatesthesecondtermrep- resentingthecreationorannihilationofapion(andtheRe- Fig. 3. Typical momentum distributions of increasingly excited forerealizeschiralsymmetrynonlinearly). ∆ , ,∆ resonancesoverlaplessandlesswiththedynam- 3/2 ··· 13/2 AsisargumentedinRefs.[10,11,12],repeatedaction ically generated infrared quark mass. The momentum distribu- ofthechiralchargeonathree-quarkstateleadstoaquartet tions are computed using variational wave functions (not nor- malized for visibility) for a linear potential with string tension ofstates,twoofeachparity,whichdynamicallybreaksinto σ=0.135GeV2. twodoubletsofparitypartners.Thesepartnersbecomede- generatewhenm(k)vanishes.Moreover,themasssplitting betweenpartnersisadirectmeasureofm(k). Thespinorsareexpandedas U = 1 √E(k)+m(k)χλ (3) 3 The running quark mass and the ∆ kλ 2E(k) √E(k) m(k)σ kˆχλ spectrum " − · # 1 χ 1 m(k) χ −k−−→−−→∞ √2"σ·kˆλχλ#+ 2√2 k "−σ·λkˆχλ# , iItnyodroduebrlteotltionkthteherumnnasinsgspqluitatrinkgm|MasPs=,+w−ewMiPll=l−o|oinkaatptahre- lowest-lying∆paritydoubletsforincreasingspin jandwe with E(k) = k2+m(k)2. We have kept the leading chi- usethefollowingfourarguments rallyinvarianttermandtheleadingchiral-symmetrybreak- p ingtermwhichisnecessarilyoforderm(k)/k.Notethatthe 1. Reggetrajectories: j=α +αM 2 j→∞ αM 2 0 ± ± lower component of the first-order term has the opposite −→ 2. Relativistic virial theorem [13]: < k > c M 2 ± signofthelowercomponentofthechiralinvariantterm. c2 √j → → WhenexpandingtheQCDHamiltonian[8]intheweak √α 3. Thechirallyinvariantterm(<nHQCDn>)cancelsout sense(thatis,notoftheHamiltonianitself,butarestriction χ | | in∆M: thereof to the Hilbert space of highly excited resonances, M+ M << M where< k >islarge),wenotethattheleadingterminthe − ± | − | m(k)/k expansion is chiral invariant, while the first order and term may involve nonchiral, spin-dependent potentials in m(k) m(k) thequark-quarkinteraction: |M+−M−|→< k HχQCD′ >→ c3 k < HχQCD′ > m(k) hn|HQCD|n′i≃hn|HχQCD|n′i+hn| k HχQCD′|n′i+... . (4) 4. InHχQCD,thespin-orbitLi·Sitermiscrucialtocorrect the angular momentum in the centrifugal barrier term from L2 to the chirally invariant L2 +2L S = J2 i i i · i i − 3.Duetothesigndifferenceinthehelicity-dependent 2.2 Chiralchargeandthree-quarkstates 4 term σ kˆinthespinor,thespin-orbitterminHQCD′ χ ∼− · Ifthequarksweremassless,andtherewouldbenochiral adds to the mass difference ∆M, instead of cancelling noninvariantmassterminthestronginteractions,thechiral out as it does for HχQCD. Since the centrifugal barrier charge[9] scales like M± for high j, the spin-orbit term scales τa withonepowerof jless: Qa = dxψ (x)γ ψ(x) (5) 5 † 5 2 Z c 1 wchoiuraldl scyommmmeuttreywwitohutlhdesQtilClDbeHsapmoinlttoanneiaonu.sNlyevberrotkheenlesbsy, < HχQCD′ >→c5M±j−1 → √5αs j . (7) thegroundstate, Qa0 , 0,leadingtoalargequarkmass 5| i Combiningthesefourarguments,weobtain inthequarkpropagator,pseudo-Goldstonebosonsandthe loss of parity-degeneracy in ground-state baryons. Using c c M+ M 3 5 m(<k>)j 1 . (8) Bogoliubov-rotatedquark/antiquarkoperatorsBandDand | − −|→ c √α − 2 EPJWebofConferences An experimental extraction can be done by fitting the ex- Hamiltonianusingasetofbasisfunctionsforthree-quark ponent iof jinthesplitting states. − Constructinganorthonormalbasisofthree-quarkstates M+ M j i. (9) | − −|∝ − is not an easy task. The basis functions need to form an antisymmetrized and orthonormal set of states of definite Then,thepower-lawbehaviouroftherunningquarkmass spin and parity. We have built this basis starting from ba- isgivenby sis states which are a combination of harmonic-oscillator m(k) k 2i+2. (10) ∝ − (HO)stateswithparameterαanda2 2 2=8-component × × The experimentally known masses of lowest-lying ∆ res- spinor onances for j = 1/2, ,15/2 are shown in Fig. 4. From ··· this, it is clear that the present state of our experimental α (p ,p ,S )=ϕα (p )ϕα (p )χ (S ), knowledgeofthe∆-spectrumisnotsufficienttoderivethe BN,l,mρ,mλ,Ri ρ λ i nρN,l,lρN,l,mρ ρ nλN,l,lλN,l,mλ λ Ri i exponenti.Knowledgeofthemassesoftheparitydoubler (12) forspins j>9/2wouldgreatlyenhancethis. wherepρ andpλ aretherelativeJacobimomenta,andthe indices are needed to denote the quantum numbers of the HOwavefunctionsandthespinor. 4 PDG, natural parity Thefollowingsubsequentstepsaretakeninconstruct- PDG, parity doubler ingthebasis 3.5 3 V) – A unitary transformation is applied to the basis func- Ge2.5 tions of Eq. 12, using Clebsch-Gordan coefficients to M ( ensureafixedspinofthebasisfunction.Theparityof 2 the state is automatically fixed for the HO basis func- 1.5 tions:HOshellswitheven (odd)shellnumber N give risetopositive(negative)paritystates. 11 2 3 4 5 6 7 8 9 – The resulting set of basis functions are symmetrised J (thecolourpartofthewavefunctionistakentobean- Fig.4.Experimentallyknownmassesforthelowest-lying∆res- tisymmetric and is left out in this discussion) by sim- onanceforspinsupto15/2andeachparity.Thedegeneracyseen plysummingoverthesixpossiblequarkpermutations. at j=9/2canbeaccidentalandmaybeconfirmedifthemasses Thisgivesrisetoanoverdeterminedsetofnon-orthogonal oftheparitydoublersat j>9/2aremeasured. symmetrizedbasisfunctionsoffixedspinandparity. – Anorthonormalsetofbasisfunctionsiscreatedbyper- formingaGram-Schmidtprocedureonthenon-orthogonal set.Forthis,onehastocomputetheoverlapsbetween thenon-orthogonalwavefunctionsusingthevanBeveren- 4 A basis for ∆ states Ribeiro-Moschinskycoefficients[14]. The idea of extracting the running quark mass from the hadron spectrum can be investigated using a chirally in- Wehaveperformedthisorthonormalizationprocedure variant quark model. The Hamiltonian we have used in anddiagonalizedthemodelHamiltonianforspin1/2and Ref.[10]comesfromafieldtheoryupgradeoftheCornell 3/2statesofeachparity.Theresultingmassesareplotted model and we use a linear quark-quark potential V (r) = inFig.5.Here,wecanalreadyseeatendencyofdecreas- L σr with string tension σ = 0.135 GeV2. This leads to an ingmassdifferencebetweenstatesofdifferentparitywhen analytic expression for the mass splitting between parity lookingathigher-excitedstates. partnersof However, it is at this point not clear which states are paritypartnerssincethedensityofstatesissohigh.Inor- M M =3 d3k1 d3k2 2 d3q (11) dertodisentanglethepairsinmodelterms,onejustneeds +− − (2π)3(2π)3 3 (2π)3 tocheckouttheoverlapsofthechiralchargebetweenpos- ×Vˆ(q)12 m(k|k1|) +Zm(k|k1++qq|) F∗ λ1λ!2λZ3(k1,k2) isttiavteesanardencelogsaetivtoebpeairnitgyscuacnhddideagteense.rIaftheBp−a|rQtna5e|Brs+.iH∼ow1,evtheer | 1| | 1 | ! thisisdifficulttoimplementwithexperimentaldataalone. I σkˆ σk +q Fµ1λ2λ3(k +q,k q). 1 1 1 2 Thusweadvocatereachinghighexcitationnotby“ra- × − λ1µ1 − dial”excitations(successiveresonancesofincreasingmass (cid:16) (cid:17) HereVˆ istheFouriedrtransformofthelinearpotentialwhich butequalquantumnumbers),butinsteadbyangularexcita- fallslikeq 4,andthe F isthewavefunctionofoneofthe tions(thegroundstateineachJ-channel).Itisstraightfor- − parity partners. This wavefunction can be obtained vari- wardtomatchthegroundstatesinanexperimentalanaly- ationally as done in Ref. [10]. However, it is only possi- sis,aslongasgoodpartialwaveexpansionsareachieved. bletodothisfortheloweststateforeachspinandparity. WelookforwardforJLABandELSAprovidingtheseex- Higher-lyingstatescanbecomputedbydiagonalizingthe cited∆ spectrum. J 19th InternationalIUPAPConferenceonFew-BodyProblemsinPhysics Parity doubling in the ∆ spectrum? quarkmodels,thesecondtheNambu-Jona-Lasiniomodel). 4 Thus one needs to resort to global-color models that are non-local, and we employ the field-theory upgrade of the Cornell quark model. In this contribution we have shown 3 resultsforhighlyexcited∆baryonstomorethan20eigen- V) values (out of reach for conceivable lattice calculations), M (Ge2 11//22-+ wraintgheaomfbuacshislvaregcetorrvsa.rOiautriocnoamlpbuatsaitsioinnst,hfeorhbuontdhrespdi-nm1o/r2e and3/2,clearlyshowtheparitydoubling. 1 However,thisavenueisnotpromisingforexperimental extraction,asitisthendifficulttomatchthepartnerssince 00 2 4 6 8 10 12 14 16 18 20 thedensityofstatesislarge,andtheyoverlapastheirwidth Eigenvalue number growshighinthespectrum.Weadvocateanexperimental Parity doubling in the ∆ spectrum? measurementofthedoublingfortheground-statesofeach 4 angularmomentumchannelatJLABandELSA. Withthedatainhand,onecanthenuseourm(k)/kfirst- orderexpansiontoobtaintherunningofthequarkmassin 3 theinfrared,ahithertounaccessedquantityinQCD.Other V) effortsareunderway toaccessthisinterestingpropertyof M (Ge2 33//22-+ apacroisnofinnsehdooubldjepctrofvroeminhteardersotinngst.ructuredata1 andacom- 1 Acknowledgments 0 0 2 4 6 8 10 12 14 16 18 20 Eigenvalue number WorksupportedbygrantnumbersUCM-BSCHGR58/08 Fig.5.Amassivevariational-Montecarlomodelcalculation[15] 910309,FPA2007-29115-E,FPA2008-00592,FIS2008-01323, allows to check that parity doubling occurs high in the high CERN/FP/83582/2008,POCI/FP/81933/2007,/81913/2007, baryonspectrum,here∆baryonswithspin1/2and3/2.Thecom- PDCT/FP /63907/2005 and /63923/2005, Spain-Portugal putationofhighlyexcitedstatesiscurrentlyimpossibleinlattice bilateralgrantHP2006-0018/E-56/07,aswellastheFlan- gaugetheory.Eveninoursimplifiedchiralfield-theorymodelof QCD,thepresentcomputationisformidableandrequired 105 dersResearchFoundation(FWO).Computationalresources ∼ and services used in this work were provided by Ghent CPU-hoursat2-3GHz. University. FLE acknowledges useful conversations with Craig Roberts, Eric Swanson and Christoph Hanhart dur- 5 Conclusions ingtherecentBad-Honnefmeetings. It is commonly quoted in textbooks that symmetries in a quantum theory can be realized in Wigner mode (degen- References erate spectrum), Goldstone mode (vacuum spontaneously breaks symmetry, Goldstone bosons present) or anoma- 1. L.Y.Glozman,Phys.Lett.B475(2000)329. lously(thequantumeffectiveactionhaslesssymmetrythan 2. E.S.Swanson,Phys.Lett.B582,(2004)167. the classical action). Chiral symmetry in QCD is widely 3. R. F. Wagenbrunn and L. Y. Glozman, Phys. Lett. believedtobeinGoldstonemode. B 643, (2006) 98; T. D. Cohen and L. Y. Glozman, Inthisnotewehavearguedthatactually,inQCD,chi- Mod. Phys. Lett. A 21, (2006) 1939; L. Y. Glozman, ral symmetry is realized in both Goldstone mode (lower A.V.NefedievandJ.E.F.Ribeiro,Phys.Rev.D72, part of the spectrum) and Wigner mode (excited states), (2005)094002. andgivenaclassicalanalogy. 4. C.Amsleretal.[PDG],Phys.Lett.B667,(2008)1. We have further commented on the possibility of em- 5. A.LeYaouancetal.,Phys.Rev.D31(1985)137. ploying a new perturbative regime in QCD, an expansion 6. P.Bicudoetal.,Phys.Lett.B442,(1998)349. in powers of m(k)/k for small quark masses. This is use- 7. P.O.Bowmanetal.,Nucl.Phys.B,Proc.Suppl.161, ful for observables that (in Wigner mode) do not receive (2006), 27; M.B. Parappilly et al., Phys. Rev. D73, acontributionfromthefirstorderterm.Suchobservables (2006) 054504; S. Furui, Few-Body Syst. 45, (2009) areparitysplittingsinexcitedstates,theirpioncouplings, 51;46,(2009)73. etc. These observables are then able to probe the running 8. ForadiscussiononHQCD,agoodstartingpointisN. quarkmassinfirstorder. H.ChristandT.D.Lee,Phys.Rev.D22,(1980)939. We have undertaken a major model calculation of ex- 9. A.V.Nefediev,J.E.F.RibeiroandA.P.Szczepaniak, cited baryon states, in the simplest possible model that JETPLett.87,(2008)271. simultaneously implements chiral symmetry and yet has excitedstates(thefirstconditionrulesoutnon-relativistic 1 CraigRoberts,privatecommunication EPJWebofConferences 10. P. Bicudo, M. Cardoso T. Van Cauteren and Fe- lipe J. Llanes-Estrada, Phys. Rev. Lett. 103, (2009) 092003. 11. C.E.DeTarandT.Kunihiro,Phys.Rev.D39,(1989) 2805;D.Jido,T.HatsudaandT.Kunihiro,Phys.Rev. Lett.84,(2000)3252. 12. T. D. Cohen and L. Y. Glozman, Phys. Rev. D 65, (2001)016006. 13. W. Lucha and F. F. Schoberl, Mod. Phys. Lett. A 5, (1990)2473. 14. E.vanBeveren,Z.Phys.C17,(1983)135. 15. T.Hahn,Comput.Phys.Commun.168,(2005)78.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.