ebook img

Using Algebraic Geometry PDF

581 Pages·2005·5.371 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Using Algebraic Geometry

185 Graduate Texts in Mathematics EditorialBoard S.Axler F.W.Gehring K.A.Ribet David A. Cox John Little Donal O’Shea Using Algebraic Geometry Second Edition With24Illustrations DavidCox DonalO’Shea DepartmentofMathematics DepartmentofMathematics AmherstCollege MountHolyokeCollege Amherst,MA01002-5000 SouthHadley,MA01075 USA USA [email protected] [email protected] JohnLittle DepartmentofMathematics CollegeoftheHolyCross Worcester,MA01610 USA [email protected] EditorialBoard S.Axler F.W.Gehring K.A.Ribet MathematicsDepartment MathematicsDepartment DepartmentofMathematics SanFranciscoState EastHall UniversityofCalifornia, University UniversityofMichigan Berkeley SanFrancisco,CA94132 AnnArbor,MI48109 Berkeley,CA94720-3840 USA USA USA MathematicsSubjectClassification(2000):13Pxx,13-01,14-01,14Qxx LibraryofCongressCataloging-in-PublicationData Little,JohnB. Usingalgebraicgeometry/JohnLittle,DavidA.Cox,DonalO’Shea. p. cm.—(Graduatetextsinmathematics;v.185) Cox’snameappearsfirstontheearlieredition. Includesbibliographicalreferencesandindex. ISBN0-387-20706-6(alk.paper)–ISBN0-387-20733-3(pbk.:alk.paper) 1. Geometry,Algebraic. I. Cox,DavidA. II. O’Shea,Donal. III. Title. IV. Graduate textsinmathematics;185. QA564.C6883 2004 (cid:1) 516.35—dc22 2003070363 ISBN0-387-20706-6(hardcover) Printedonacid-freepaper. ISBN0-387-20733-3(softcover) (cid:2)c 2005,1998SpringerScience+BusinessMedia,Inc. Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,Inc.,233SpringStreet,NewYork, NY10013, USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis. Use in connection withany formof information storage and retrieval, electronic adaptation, computer software,orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,evenifthey arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare subjecttoproprietaryrights. PrintedintheUnitedStatesofAmerica. (EB/ING) 9 8 7 6 5 4 3 2 1 SPIN10947098(hardcover) SPIN10946961(softcover) springeronline.com Preface to the Second Edition Since the first edition of Using Algebraic Geometry was published in 1998, the fieldofcomputationalalgebraicgeometryanditsapplicationshasdevelopedrap- idly.Manynewresultsconcerningtopicswediscussedhaveappeared.Moreover, anumberofnewintroductorytextshavebeenpublished.Ourgoalsinthisrevision have been to update the references to reflect these additions to the literature, to adddiscussionsofsomenewmaterial,toimprovesomeoftheproofs,andtofix typographicalerrors. Themajorchangesinthiseditionarethefollowing: • Aunifieddiscussionofhowmatricescanbeusedtospecifymonomialor- dersin§2ofChapter1. • ArewrittenpresentationoftheMoranormalformalgorithmin§3ofChap- ter4andthedivisionof§4intotwosections. • TheadditionoftwosectionsinChapter8:§4introducestheGro¨bnerfanof anidealand§5discussestheGro¨bnerWalkbasisconversionalgorithm. • The replacement of §5 of Chapter 9 by a new Chapter 10 on the theory oforderdomains,associatedcodes,andtheBerlekamp-Massey-Sakatade- codingalgorithm.Theone-pointgeometricGoppacodesstudiedinthefirst editionarespecialcasesofthisconstruction. • The Maple code has been updated and Macaulay has been replaced by Macaulay2. We would like to thank the many readers who helped us find typographical errorsinthe first edition. Special thanks goto Rainer Steinwandtfor his heroic efforts. We also want to give particular thanks to Rex Agacy, Alicia Dicken- stein, Dan Grayson, Serkan Hos¸ten, Christoph Ko¨gl, Nick Loehr, Jim Madden, MikeO’Sullivan,LyleRamshaw,HalSchenck,HansSterk,MikeStillman,Bernd Sturmfels,andIrenaSwansonfortheirhelp. August,2004 DavidCox JohnLittle DonalO’Shea v Preface to the First Edition In recent years, the discovery of new algorithms for dealing with polynomial equations,coupledwiththeirimplementationoninexpensiveyetfastcomputers, has sparked a minor revolution in the study and practice of algebraic geometry. Thesealgorithmicmethodsandtechniqueshavealsogivenrisetosomeexciting newapplicationsofalgebraicgeometry. OneofthegoalsofUsingAlgebraicGeometryistoillustratethemanyuses of algebraic geometry and to highlight the more recent applications of Gro¨bner basesandresultants. Inordertodothis,wealsoprovideanintroductiontosome algebraicobjectsandtechniquesmoreadvancedthanonetypicallyencountersin a first course, but which are nonetheless of great utility. Finally, we wanted to write a book which would be accessible to nonspecialists and to readers with a diverserangeofbackgrounds. Tokeepthebookreasonablyshort, weoftenhavetorefertobasicresultsin algebraic geometry without proof, although complete references are given. For readers learning algebraic geometry and Gro¨bner bases for the first time, we would recommend that they read this book in conjunction with one of the fol- lowingintroductionstothesesubjects: • IntroductiontoGro¨bnerBases,byAdamsandLoustaunau[AL] • Gro¨bnerBases,byBeckerandWeispfenning[BW] • Ideals,VarietiesandAlgorithms,byCox,LittleandO’Shea[CLO] We have tried, on the other hand, to keep the exposition self-contained outside of references to these introductory texts. We have made no effort at complete- ness,andhavenothesitatedtopointthereadertotheresearchliteratureformore information. Laterintheprefacewewillgiveabriefsummaryofwhatourbookcovers. TheLevelof the Text Thisbookiswrittenatthegraduatelevelandhenceassumesthereaderknowsthe material covered in standard undergraduate courses, including abstract algebra. vii viii PrefacetotheFirstEdition But because the text is intended for beginning graduate students, it does not re- quiregraduatealgebra,andinparticular,thebookdoesnotassumethatthereader isfamiliarwithmodules. Beingagraduatetext,UsingAlgebraicGeometrycov- ersmoresophisticatedtopicsandhasadenserexpositionthanmostundergraduate texts,includingourpreviousbook[CLO]. However, itis possible touse this bookat theundergraduatelevel, provided proper precautions are taken. With the exception of the first two chapters, we foundthatmostundergraduatesneededhelpreadingpreliminaryversionsofthe text. Thatsaid,ifonesupplementstheotherchapterswithsimplerexercisesand fuller explanations, many of the applications we cover make good topics for an upper-levelundergraduateappliedalgebracourse. Similarly,thebookcouldalso beusedforreadingcoursesorseniorthesesatthislevel. Wehopethatourbook will encourage instructors to find creative ways for involving advanced under- graduatesinthiswonderfulmathematics. Howto Usethe Text Thebookcoversavarietyoftopics,whichcanbegroupedroughlyasfollows: • Chapters 1 and 2: Gro¨bner bases, including basic definitions, algorithms and theorems, together with solving equations, eigenvalue methods, and solutionsoverR. • Chapters3and7: Resultants,includingmultipolynomialandsparseresul- tantsaswellastheirrelationtopolytopes,mixedvolumes, toricvarieties, andsolvingequations. • Chapters4,5and6: Commutativealgebra,includinglocalrings,standard bases,modules,syzygies,freeresolutions,Hilbertfunctionsandgeometric applications. • Chapters8and9: Applications,includingintegerprogramming,combina- torics,polynomialsplines,andalgebraiccodingtheory. Oneunusualfeatureofthebook’sorganizationistheearlyintroductionofresul- tants in Chapter 3. This is because there are many applications where resultant methods are much more efficient than Gro¨bner basis methods. While Gro¨bner basismethodshavehadagreatertheoreticalimpactonalgebraicgeometry,resul- tantsappeartohaveanadvantagewhenitcomestopracticalapplications. There isalsosomelovelymathematicsconnectedwithresultants. There is a large degree of independence among most chapters of the book. Thisimpliesthattherearemanywaysthebookcanbeusedinteachingacourse. Sincethereismorematerialthancanbecoveredinonesemester, somechoices arenecessary.Herearethreeexamplesofhowtostructureacourseusingourtext. • Solving Equations. This course would focus on the use of Gro¨bner bases andresultants tosolve systems of polynomialequations. Chapters1, 2, 3 PrefacetotheFirstEdition ix and7wouldformtheheartofthecourse.Specialemphasiswouldbeplaced on§5ofChapter2,§5and§6ofChapter3,and§6ofChapter7. Optional topicswouldinclude§1and§2ofChapter4,whichdiscussmultiplicities. • CommutativeAlgebra. Here, the focus would be on topics fromclassical commutativealgebra. ThecoursewouldfollowChapters1, 2, 4, 5and6, skipping only those parts of §2 of Chapter 4 which deal with resultants. ThefinalsectionofChapter6isaniceendingpointforthecourse. • Applications. A course concentrating on applications would cover inte- gerprogramming,combinatorics,splinesandcodingtheory. Afteraquick tripthroughChapters1and2,themainfocuswouldbeChapters8and9. Chapter8usessomeideasaboutpolytopesfrom§1ofChapter7,andmod- ules appear naturallyin Chapters8 and 9. Hence the first two sections of Chapter 5 would need to be covered. Also, Chapters 8 and 9 use Hilbert functions,whichcanbefoundineitherChapter6ofthisbookorChapter9 of[CLO]. Wewant to emphasizethat these areonlythreeof manyways of usingthe text. We would be very interested in hearing from instructors who have found other pathsthroughthebook. References Referencestothebibliographyattheendofthebookarebythefirstthreeletters oftheauthor’slastname(e.g.,[Hil]forHilbert),withnumbersformultiplepapers bythesameauthor(e.g.,[Mac1]forthefirstpaperbyMacaulay). Whenthereis more than one author, the first letters of the authors’ last names are used (e.g., [AM]forAtiyahandMacdonald),andwhenseveralsetsofauthorshavethesame initials,otherlettersareusedtodistinguishthem(e.g.,[BoF]isbyBonnesenand Fenchel,while[BuF]isbyBurdenandFaires). The bibliography lists books alphabetically by the full author’s name, fol- lowed (if applicable) by any coauthors. This means, for instance, that [BS] by BilleraandSturmfelsislistedbefore[Bla]byBlahut. CommentsandCorrections Weencouragecomments,criticism,andcorrections. Pleasesendthemtoanyof us: DavidCox [email protected] JohnLittle [email protected] DonO’Shea [email protected] For eachnewtypoorerror, wewill pay$1tothefirstpersonwhoreportsit tous. We alsoencouragereaderstocheckout theweb siteforUsing Algebraic Geometry,whichisat http://www.cs.amherst.edu/˜dac/uag.html x PrefacetotheFirstEdition Thissiteincludesupdatesanderratasheets,aswellaslinkstoothersitesofinter- est. Acknowledgments We would like to thank everyone who sent us comments on initial drafts of the manuscript.WeareespeciallygratefultothankSusanColley,AliciaDickenstein, Ioannis Emiris, Tom Garrity, Pat Fitzpatrick, Gert-Martin Greuel, Paul Peder- sen, Maurice Rojas, Jerry Shurman, Michael Singer, Michael Stanfield, Bernd Sturmfels(andstudents),MossSweedler(andstudents),andWilandSchmalefor especiallydetailedcommentsandcriticism. We also gratefully acknowledge the support provided by National Science FoundationgrantDUE-9666132, andthehelpandadviceaffordedbythemem- bers of our AdvisoryBoard: Susan Colley, KeithDevlin, ArnieOstebee, Bernd Sturmfels,andJimWhite. November,1997 DavidCox JohnLittle DonalO’Shea Contents PrefacetotheSecondEdition v PrefacetotheFirstEdition vii 1 Introduction 1 §1 PolynomialsandIdeals . . . . . . . . . . . . . . . . . . . . . . . 1 §2 MonomialOrdersandPolynomialDivision . . . . . . . . . . . . 6 §3 Gro¨bnerBases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 §4 AffineVarieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 SolvingPolynomialEquations 26 §1 SolvingPolynomialSystemsbyElimination . . . . . . . . . . . . 26 §2 Finite-DimensionalAlgebras . . . . . . . . . . . . . . . . . . . . 37 §3 Gro¨bnerBasisConversion . . . . . . . . . . . . . . . . . . . . . 49 §4 SolvingEquationsviaEigenvaluesandEigenvectors . . . . . . . 56 §5 RealRootLocationandIsolation . . . . . . . . . . . . . . . . . . 69 3 Resultants 77 §1 TheResultantofTwoPolynomials . . . . . . . . . . . . . . . . . 77 §2 MultipolynomialResultants. . . . . . . . . . . . . . . . . . . . . 84 §3 PropertiesofResultants . . . . . . . . . . . . . . . . . . . . . . . 95 §4 ComputingResultants. . . . . . . . . . . . . . . . . . . . . . . . 102 §5 SolvingEquationsviaResultants . . . . . . . . . . . . . . . . . . 114 §6 SolvingEquationsviaEigenvaluesandEigenvectors . . . . . . . 128 4 ComputationinLocalRings 137 §1 LocalRings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 §2 MultiplicitiesandMilnorNumbers . . . . . . . . . . . . . . . . . 145 §3 TermOrdersandDivisioninLocalRings . . . . . . . . . . . . . 158 §4 StandardBasesinLocalRings . . . . . . . . . . . . . . . . . . . 174 §5 ApplicationsofStandardBases . . . . . . . . . . . . . . . . . . . 180 xi xii Contents 5 Modules 189 §1 ModulesoverRings . . . . . . . . . . . . . . . . . . . . . . . . . 189 §2 MonomialOrdersandGro¨bnerBasesforModules. . . . . . . . . 207 §3 ComputingSyzygies . . . . . . . . . . . . . . . . . . . . . . . . 222 §4 ModulesoverLocalRings . . . . . . . . . . . . . . . . . . . . . 234 6 FreeResolutions 247 §1 PresentationsandResolutionsofModules . . . . . . . . . . . . . 247 §2 Hilbert’sSyzygyTheorem . . . . . . . . . . . . . . . . . . . . . 258 §3 GradedResolutions . . . . . . . . . . . . . . . . . . . . . . . . . 266 §4 HilbertPolynomialsandGeometricApplications . . . . . . . . . 280 7 Polytopes,Resultants,andEquations 305 §1 GeometryofPolytopes . . . . . . . . . . . . . . . . . . . . . . . 305 §2 SparseResultants . . . . . . . . . . . . . . . . . . . . . . . . . . 313 §3 ToricVarieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 §4 MinkowskiSumsandMixedVolumes . . . . . . . . . . . . . . . 332 §5 Bernstein’sTheorem . . . . . . . . . . . . . . . . . . . . . . . . 342 §6 ComputingResultantsandSolvingEquations . . . . . . . . . . . 357 8 PolyhedralRegionsandPolynomials 376 §1 IntegerProgramming . . . . . . . . . . . . . . . . . . . . . . . . 376 §2 IntegerProgrammingandCombinatorics. . . . . . . . . . . . . . 392 §3 MultivariatePolynomialSplines . . . . . . . . . . . . . . . . . . 405 §4 TheGro¨bnerFanofanIdeal . . . . . . . . . . . . . . . . . . . . 426 §5 TheGro¨bnerWalk . . . . . . . . . . . . . . . . . . . . . . . . . 436 9 AlgebraicCodingTheory 451 §1 FiniteFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451 §2 Error-CorrectingCodes . . . . . . . . . . . . . . . . . . . . . . . 459 §3 CyclicCodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468 §4 Reed-SolomonDecodingAlgorithms. . . . . . . . . . . . . . . . 480 10 TheBerlekamp-Massey-SakataDecodingAlgorithm 494 §1 CodesfromOrderDomains . . . . . . . . . . . . . . . . . . . . . 494 §2 TheOverallStructureoftheBMSAlgorithm . . . . . . . . . . . 508 §3 TheDetailsoftheBMSAlgorithm . . . . . . . . . . . . . . . . . 522 References 533 Index 547

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.