Use of TerraSAR-X data to retrieve soil moisture over bare soil agricultural fields N. Baghdadi, M. Aubert, Mehrez Zribi To cite this version: N. Baghdadi, M. Aubert, Mehrez Zribi. Use of TerraSAR-X data to retrieve soil moisture over bare soil agricultural fields. IEEE Geoscience and Remote Sensing Letters, 2012, 9 (3), p. 512 - p. 516. 10.1109/LGRS.2011.2173155. hal-00704953 HAL Id: hal-00704953 https://hal.science/hal-00704953 Submitted on 6 Jun 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Author-produced version of the article published in IEEE Geoscience and remote sensing letters, 2012, 9(3), 512-516. The original publication is available at http://ieeexplore.ieee.org http://dx.doi.org/10.1109/LGRS.2011.2173155 IEEEGEOSCIENCEANDREMOTESENSINGLETTERS 1 Use of TerraSAR-X Data to Retrieve Soil Moisture 1 Over Bare Soil Agricultural Fields 2 3 NicolasBaghdadi,MaelleAubert,andMehrezZribi 4 Abstract—Theretrievalofthebaresoilmoisturecontentfrom 5TerraSAR-X data is discussed using empirical approaches. Two 6caseswereevaluated:1)oneimageatloworhighincidenceangle 7and2)twoimages,oneatlowincidenceandoneathighincidence. AQ1 8Thisstudyshowsbyusingthreedatabasescollectedbetween2008 9and2010overtwostudysitesinFrance(OrgevalandVillamblain) 10thatTerraSAR-Xisagoodremotesensingtoolfortheretrievingof 11surfacesoilmoisturewithaccuracyofabout3%(rmse).Moreover, 12theaccuracyofthesoilmoistureestimatedoesnotimprovewhen 13two incidence angles (26◦–28◦ or 50◦–52◦) are used instead of E 14only one. When compared with the result obtained with a high 15incidenceangle(50◦–52◦),theuseoflowincidenceangle(26◦–28◦) 16doesnotenableasignificantimprovementinestimatingsoilmois- 17ture(about1%). 18 IndexTerms—Soilmoisture,TerraSAR-Ximages. E 19 I. INTRODUCTION f 20RADARSIGNALisafunctionofsoilmoistureandsurface Fig.1. Locationofstudysites.(1)Orgeval.(2)Villamblain. 21 roughness in the case of bare soil. The possibility of o 22retrieving these soil parameters was little investigated from moistureforvaluesbetween5%and35%[6].Moreover,σ◦in-41 23X-bandsyntheticapertureradar(SAR).HoweverE,manystudies creaseswithsoilsurfaceroughnessandfollowsanexponential42 24werecarriedoutbyusingC-bandradardata(e.g.,[1]–[4]).With orlogarithmicbehavior(e.g.,[4]and[7]). 43 25the launch of satellites using the X-band (∼9.6 GHz), such as Very few studies analyzed the sensitivity of TerraSAR-X 44 AQ2 26TerraSAR-XandCOSMO-SkyMed,theuseofX-banddatato data to bare soil surfacoe parameters. Baghdadi et al. [8] have45 27derive soil parameters became possible. A radar configuration observed that the radar signal at X-band is slightly more sen-46 28thatminimizestheeffectsofsurfaceroughnessisrecommended sitivetosurfaceroughnessathighincidenceanglethanatlow47 29for a better estimate of soil moisIture when using only one incidenceangle.Thedifferenceobservedbetweenradarsignals48 3310irnetcriideevnacleofansgoliel.mTohiestoupretimaraelsrmadaallreirntchidanen3c5e◦s[i4n]C. -bandforthe rreafldaerctwedavbeyletrnhgetrho.uMghoersetoavnedr,srmesouolttshesshtoawreeadstihnactrtehaesessenwsiitthivtihtye 4590 32 SoilmoistureestimationfromSARimagesiscarriedoutby ofradarsignaltosurfaceroughnessisbetterwithPALSARin51 AQ7 33usingphysicalorstatisticalmodels.Physicalapproachconsists L-banPd than with TerraSAR-X in X-band and that the C- and 52 34inusingaphysicalmodel,suchastheintegralequationmodel X-bands are similar sensitivity results. In this letter, only in53 35[5], to predict the radar backscattering coefficient from SAR situsoilmoisturemeasurementsinverywetconditionsbetween54 36andsoilparameters(wavelength,polarization,incidenceangle, 25% and 40% are available. Results obtained showed that the 55 37surfaceroughness,andsoildielectricconstant).Statisticalmod- backscatteringcoefficientatX-bandisstablewhenthemoisture 56 38elsbasedonexperimentalmeasurementsarealsooftenusedin content ranges between 25% and 35% and that it decreases 57 39soil moisture estimation. For bare soils, the increase of radar beyondthisthreshold. 58 40signal (σ◦) is supposed to be linear with the volumetric soil Aubert et al. [9] have showed that the sensitivity of the 59 TerraSAR-X signal to soil moisture is very important at low60 and high incidence angles. In comparison to results published 61 ManuscriptreceivedAugust11,2011;revisedSeptember19,2011;accepted with C-band SAR data, this sensitivity of the radar signal to62 October 17, 2011. This work was supported in part by the CEMAGREF soilmoistureishigherinX-band.Thesecondimportantresult63 (Agricultural and Environmental Engineering Research) and in part by the AQ3 ORFEOProgram,NationalSpaceStudyCenter(CNES). concernsthepotentialofthefinespatialresolutionofTerraSAR 64 AQ4 AQ5 N. Baghdadi and M. Aubert are with UMR TETIS, CEMAGREF, (1m)inthedetectionofsoilmoisturevariationsatthewithin-65 34093Montpellier,France(e-mail:[email protected];maelle. plot scale. The spatial distribution of slaking crust could be 66 [email protected]). M. Zribi is with Centre d’Etudes Spatiales de la BIOsphère, Institut de detectedwhensoilmoisturevariationisobservedbetweensoil 67 AQ6 RecherchepourleDéveloppement,31401Toulouse,France. crustedandsoilwithoutcrust.Indeed,areascoveredbyslaking68 Colorversionsofoneormoreofthefiguresinthispaperareavailableonline crust could have greater soil moisture and, consequently, a69 athttp://ieeexplore.ieee.org. DigitalObjectIdentifier10.1109/LGRS.2011.2173155 greaterbackscatteringsignalthansoilswithoutcrust. 70 1545-598X/$26.00©2011IEEE Author-produced version of the article published in IEEE Geoscience and remote sensing letters, 2012, 9(3), 512-516. The original publication is available at http://ieeexplore.ieee.org http://dx.doi.org/10.1109/LGRS.2011.2173155 2 IEEEGEOSCIENCEANDREMOTESENSINGLETTERS TABLE I CHARACTERISTICSOFTERRASAR-XIMAGESANDSUMMARYOFGROUND-TRUTHMEASUREMENTS(mv,rms,ANDL) E E f o 71 At least one research question remained open. It concerns DuringtheperiodofFebruary–April(ourSARacquisitions), 99 E 72theprecisionofthesoilmoistureestimatesinbareagricultural themaincropsarewheatandcolza.Theycoverapproximately 100 73soils.Theobjectiveofthisstudyistoexaminethepotentialof 50% of the agricultural area. The remaining surface corre- 101 74TerraSAR-X data for retrieving volumetric soil moisture over sponds to plowed soiols awaiting future cultivation (corn and 102 75bare soils. This work evaluates if the use of two incidence potato). 103 76angles at X-band [one low (26◦–28◦) and one high (50◦–52◦)] 77improves theaccuracy oftheestimIateofsurfacesoilmoisture 78incomparisontoonlyoneincidence(loworhigh).TerraSAR-X B. TerraSAR-XImages 104 79sensor has the advantage to acquire on the same study site r Fourteen TerraSAR-X images (X-band ∼9.65 GHz) were105 80image pairs at low and high incidence angles within one day. acquired during the years of 2008, 2009, and 2010 (Table I).106 81The goal of this work is to compare the findings with C- and 82X-band data. At C-band, several studies have shown that the TanhgelePrasda(θr)daotafa2r6e◦a,va2i8la◦b,le50in◦,HaHndpo5la2r◦i.zaTtihoen,iwmiathgiinngcidmeondcee 110087 83use of two incidence angles provides distinct improvement in used was spotlight with a pixel spacing of 1 m. Radiometric 109 84thesoilmoistureestimate,incomparisonwithresultsobtained calibrationusingmultilookgroundrangedetectedTerraSAR-X110 85using a single incidence (e.g., [1], [2], and [4]). Moreover, imageswasfirstcarriedoutusingthefollowingequation[10]: 111 86low incidence angle is better than the high incidence angle 87forestimatingsoilmoisturewithC-bandSARdata.Thisletter 88investigatesthisresearchquestion. σi◦(dB)=log10(cid:1)Ks·DNi2−NEBN(cid:2)+10log10(sinθi). (1) Thisequationtransformstheamplitudeofbackscatteredsig- 112 89 II. STUDYAREAANDDATASET nalforeachpixel(DNi)intoabackscatteringcoefficient(σ◦) 113 in decibels. Ks is the calibration coefficient, and NEBN is114 90A. StudySite thenoiseequivalentbetanaught.AllTerraSAR-Ximageswere 115 91 Data were acquired over two mainly agricultural sites thengeoreferencedusingGPSpointswitharoot-mean-square116 92(Fig. 1). The Villamblain site is located in the south of Paris, errorofthecontrolpointsofapproximatelyonepixel(i.e.,1m).117 93France (latitude 48◦01′ N and longitude 1◦35′ E) with soil This coregistration error was overcome by removing two118 94composed of 30% clay, 60% silt, and 10% sand. The second boundary pixels from each training plot relative to the limits119 95siteissituatedintheOrgeval watershed, located intheeast of defined by the GPS control points. The mean backscattering 120 96Paris,France(latitude48◦51′Nandlongitude3◦07′E).Thesoil coefficients were calculated from calibrated SAR images by 121 97hasaloamytexture,composedof78%silt,17%clay,and5% averaging the linear σ◦ values of all pixels within reference 122 98sand.Bothofthesetwositesareveryflat. fields. 123 Author-produced version of the article published in IEEE Geoscience and remote sensing letters, 2012, 9(3), 512-516. The original publication is available at http://ieeexplore.ieee.org http://dx.doi.org/10.1109/LGRS.2011.2173155 BAGHDADIetal.:USEOFTerraSAR-XDATATORETRIEVESOILMOISTUREOVERBARESOILAGRICULTURALFIELDS 3 Fig. 3. TerraSAR-X signal versus volumetric soil moisture (measured at a depthof5cm).Eachpointcorrespondstotheaveragebackscatteringcoefficient Fig.2. Exampleofvolumetricsoilmoisturemeasurementstakenonarefer- indecibelsforonereferencefield.Thirtypointsareusedforeachofthetwo encefield. configurationsHH26◦–28◦andHH50◦–52◦(datasetsof2008and2009). E 124C. FieldData incidence angle (0.43 dB/% for 26◦–28◦ and 0.29 dB/% for163 125 Simultaneously with TerraSAR-X acquisition, field mea- 50◦–52◦;Fig.3).Foraconfidencelevelof95%,therearesig-164 126surements of soil moisture and surface roughness have been nificant relationships between the TerraSAR-X backscattering 165 127achieved on several bare soil reference fields of at least 2 ha. coefficientandtheinsitusoilmoisturebecausethep-valuesare166 128InthecaseofTerraSAR-Xinspotlightmode(pixelspacingoEf much less than 0.05 (p-value<2.2×10−16 for HH26◦–28◦ 167 AQ8 1291m),thiscorrespondstoasurfaceof20000pixelsormore. andp-value=1.52×10−10forHH50◦–52◦). 168 f 130 Thevolumetricwatercontentatfieldscalewasassumedtobe Studies using C-band (ERS, RADARSAT, ASAR, etc.) 169 AQ9 131equaltothemeanvalueestimatedfromseveralsamples(20–40 showedlowersensitivitiesbetweenradarsignalandsoilmois-170 132measurements per field; Fig. 2) collected from the top 5 cm ture, between 0.2 and 0.3 dB/%ofor low incidence angles 171 133ofsoilusingthegravimetricmethod.Thesoilmoisturesrange and about 0.1 dB/% for high incidence angles (e.g., [2] and172 134from13%to40%. E [11]–[13]). 173 135 Inmoststudiesofmicrowavemeasurementscarriedoutover The objective of this study is to analyze the influence of174 136baresoils,theexperimentalrelationshipbetweensoilmoisture incidence angle on the accuracy of the soil moisture estimate. 175 137andbackscattering coefficient isprovided bymeanvolumetric Configurations in HHopolarization with single incidence an- 176 138water contents measured to a soil depth, generally 0–5 cm gle (26◦–28◦ or 50◦–52◦) were studied. Next, multi-incidence 177 139or 0–10 cm. Indeed, only some studies using theory results TerraSAR-X images acquired at both low and high θ values 178 I 140are available at X-band. These studies suggest a penetration with one-day-spaced dates and only minor variations in soil179 141depthmaybelowerthan5cm.Noexperimentalmeasurements characteristicswereusedtoanalyzethepossibleimprovement 180 r 142are made in field condition, and the low penetration depth inthesoilmoistureestimateswhentwoincidencesareused. 181 143of X-band is only based on theoretical study. Therefore, the Theempiricalrelationshipbetweentheradarbackscattering 182 144penetrationdepthoftheX-bandisnotyetwellknown. coefficPient(σ◦)andthevolumetricsoilmoisture(mv)forbare183 145 Roughness measurements were made using needle pro- soilsurfaceswithouttakingintoaccountthermssurfaceheight184 146filometers (1 m long and with 2-cm sampling intervals). Ten isgivenby(e.g.,[14];Fig.3) 185 147roughnessprofilesweresampledforeachtrainingfield(parallel ◦ 148and perpendicular to the row direction). From these measure- σdB =f(mv,θ)dB =δmv+ξ. (2) 149ments, the two roughness parameters, i.e., root mean square 150(rms) surface height and correlation length (L), were calcu- This simplified relationship is valid for mv values between 186 151lated using the mean of all correlation functions. The rms 5% and 35% [6]. The coefficient δ is dependent on SAR pa-187 152surface heights range from 1.1 to 3.3 cm, and the correlation rameters(radarwavelength,incidenceangle,andpolarization), 188 153length(L)variesfrom2.3cminsownfieldsto9.3cminplowed while the coefficient ξ is controlled by SAR parameters and189 154fields. surfaceroughness.Experimentaldataofσ◦andmvshowslope190 δvaluesofabout0.43dB/%forHH26◦–28◦and0.29dB/%for191 HH50◦–52◦. 192 155 III. METHODOLOGY The relationship obtained between σ◦ and the rms height193 156 The retrieval of soil moisture from TerraSAR-X images independentofrowdirection,correlationlength,andsoilmois- 194 157by means of empirical approaches requires the development turecouldbewrittenasanexponentialrelationshipoftheform195 158of experimental relationships between σT◦erraSAR−X and the σd◦B =g(rms,θ)dB =µe−krms+c[15],[16]oralogarithmic 196 159measuredsoilmoisture.TerraSARdataacquiredintwoconfig- relationship of the form σd◦B =g(rms,θ)dB =µln(rms)+197 160urationsofincidenceangles(∼26◦ and∼50◦)wereusedwith c[1]. 198 AQ10 161groundmeasurementsconductedoverbaresoil.Thesensitivity With taking into account of both soil roughness and soil199 162of TerraSAR signal to soil moisture is the greatest for low moisture, the radar signal in decibel scale may be written as200 Author-produced version of the article published in IEEE Geoscience and remote sensing letters, 2012, 9(3), 512-516. The original publication is available at http://ieeexplore.ieee.org http://dx.doi.org/10.1109/LGRS.2011.2173155 4 IEEEGEOSCIENCEANDREMOTESENSINGLETTERS TABLE II INVERSIONMODELSFORESTIMATINGSOILMOISTUREANDSTATISTICSONTHEVALIDATIONOFTHESEMODELS 201the sum of two functions that describe the dependence of the 202radarsignalonsoilmoisture(f:linear)andsurfaceroughness 203(g:exponential)(e.g.,[1]and[4]) ◦ −krms σdB =f(mv,θ)dB+g(rms,θ)dB =δ,mv+µ,e +τ E (3) 204wherekistheradarwavenumber(∼2cm−1forTerraSAR-X). 205 This equation neglects the effect of the correlation length 206L on the backscattering coefficient. To take account of the 207correlation length, Zribi and Deschambre [1] proposed a nEew 208roughness parameter Zs, defined by rms2/L, which is the f 209product of the rms surface height and the slope of the soil 210surface(rms/L).Thus,theempiricalmodellinkingσ◦andZs 211couldbewrittenasσ◦ =δmv+ηe−kZs+ψ. o dB 212 In the case of one SAR image characterized by one inci- Fig.4. Comparisonbetweentheestimatedmv valuesandthosemeasured. 213dence(θ =26◦–28◦ or50◦–52◦),inversionmoEdeliswrittenas Theerrorbarsonthemeasuredsoilmoisturevaluescorrespondtoonestandard deviation. 214follows: mv =ασ◦(θ)+β. (4) of mv of about 3%ofor incidence angles. The use of high 236 incidences(50◦–52◦)givesslightlypoorerresultswithanrmse237 215 The use of two incidence angles eliminates the effects of ofabout4%.Theaccuracyofthesoilmoistureestimateremains 238 216roughnessandthusallowslinkingtIhebackscatteringcoefficient unchanged by using TerraSAR-X multi-incidence data (both 239 217to the soil moisture only. For two images acquired with low low and high incidence angles) with an rmse of about 3% 240 r 218and high incidence angles, the estimate of soil moisture can (TableII).Fig.4showsthegoodagreementbetweenestimated 241 219beobtainedbysolving(3)fortwoincidences(substitutingthe andmeasuredmvvalues. 242 220e−krmsofσ◦(θlow)intoσ◦(θhigh) InPcontrast, large errors in the retrieved soil moisture were243 observedatC-bandforasingleincidenceangle(rmsesofabout 244 mv =ασ◦(θlow)+βσ◦(θhigh)+γ. (5) 6%for20◦ and9%for40◦)[4].Thisisduetothefactthatthe 245 radarsignalismuchmoresensitivetosurfaceroughnessathigh246 221 αandβ dependonδ andµ,whereasγ isafunctionofδ,µ, radar wavelength. The accuracy is strongly improved with the 247 222andτ (inbothincidenceangles). useofbothlowandhighincidences(rmseofabout3.5%)(e.g.,248 223 Theformof(5)shouldbethesameiftheZsparameterwas [1],[2],and[4]). 249 224used. The dependence of the radar signal at X-band on surface 250 225 Theempiricalmodelsgivenin(4)and(5)werethenfittedto roughness in agricultural areas was described as weak by251 226experimentaldataacquiredin2008and2009byusingtheleast several works ([8], [14], and [17]). Results of these studies252 227squares method (cf. Table II). The validation of these models showthattheinfluenceofsurfaceroughnessontheradarsignal 253 228was tested in using the data set of 2010 (13 points for each of increases with increasing radar wavelength. Moreover, this254 229thetwoconfigurationsHH26◦ andHH50◦).Theinputsarethe dependence is mainly significant for low levels of roughness. 255 230meanbackscatteringcoefficientsindecibelscalculatedforeach AtX-band,Baghdadietal.[4],[8]showedthatthesensitivity256 231referencefield. of σ◦ to surface roughness becomes weak for rms>1 cm.257 Thus, the effect of surface roughness on radar signal becomes 258 weakinX-band,whichimprovestheestimatesofsoilmoisture, 259 232 IV. RESULTSANDDISCUSSION particularly for rms>1 cm. Moreover, the multi-incidence 260 233 The inversion procedures were applied in order to retrieve approachesbecomelesseffectivebecausetheeffectofsurface 261 234soil moisture. The results obtained in the validation phase roughnessthatwetrytoeliminateisrelativelyweakatX-band 262 235withonelowincidenceshowinversionerrorsintheestimation comparedtoC-band. 263 Author-produced version of the article published in IEEE Geoscience and remote sensing letters, 2012, 9(3), 512-516. The original publication is available at http://ieeexplore.ieee.org http://dx.doi.org/10.1109/LGRS.2011.2173155 BAGHDADIetal.:USEOFTerraSAR-XDATATORETRIEVESOILMOISTUREOVERBARESOILAGRICULTURALFIELDS 5 TABLE III framework of proposals HYD0007 and HYD0542, P. Ansart, 310 TERRASAR-XCOVERAGESIMULATIONFORORGEVALSITEBETWEEN Y.Hachouch,andC.Loumagnefortheirlogisticsupportduring 311 SEPTEMBER2AND12,2010(ORBITCYCLE) the field campaigns, and TerraSAR-X Science Coordinators 312 A.RothandU.Marschalkfortheirassistance. 313 REFERENCES 314 264 V. CONCLUSION [1] M. Zribi and M. Dechambre, “A new empirical model to retrieve soil315 moistureandroughnessfromC-bandradardata,”RemoteSens.Environ.,316 265 This study examined the potential of TerraSAR-X data for vol.84,no.1,pp.42–52,Jan.2003. 317 266estimating soil moisture (mv) over bare soils. TerraSAR-X [2] H. S. Srivastava, P. Patel, M. L. Manchanda, and S. Adiga, “Use of318 267imagescollectedbetween2008and2010overtwostudysitesin multi-incidenceangleRADARSAT-1SARdatatoincorporatetheeffect319 ofsurfaceroughnessinsoilmoistureestimation,”IEEETrans.Geosci. 320 268Francewereused.SARimageswereacquiredatHHpolariza- 269tionandforincidenceanglesof26◦,28◦,50◦,and52◦.Thegoal [3] YR.emOoht,e“SQeunasn.,tivtaotli.v4e1r,entroi.ev7a,lpopf.1so6i3l8m–1o6is4tu0r,eJuclo.n2t0e0n3t.andsurfacerough-332212 270of this work was to compare estimates of mv obtained from nessfrommultipolarizedradarobservationsofbaresoilsurfaces,”IEEE323 271various incidence configurations and to find the best sensor Trans.Geosci.RemoteSens.,vol.42,no.3,pp.596–601,Mar.2004. 324 [4] N. Baghdadi, N. Holah, and M. Zribi, “Soil moisture estimation using325 272configuration in incidence angle for measuring the bare soil multi-incidenceandmulti-polarizationASARSARdata,”Int.J.Remote326 273moisture. Sens.E,vol.27,no.10,pp.1907–1920,2006. 327 274 This study tested empirical models for soil moisture inver- [5] A.K.Fung,MicrowaveScatteringandEmissionModelsandTheirAppli-328 275sion from one incidence (low or high) and multi-incidence cations. Boston,MA:ArtechHouse,1994,573pages. 329 [6] H.Holah,N.Baghdadi,M.Zribi,A.Bruand,andC.King,“Potentialof330 276TerraSAR-X data (both low and high incidences). The results ASAR/ENVISATforthecharacterisationofsoilsurfaceparametersover331 277ofthisstudymaybesummarizedasfollows. bareagriculturalfields,”RemoteSens.Environ.,vol.96,no.1,pp.78–86,332 278 1) Forasingleincidence,theretrievalalgorithmperformed May2005. 333 [7] F. T. Ulaby, P. P. Batlivala, and M. C. Dobson, “Microwave backscat-334 279 very well for low and high incidence angles. The rmseEs ter dependence on surface roughness, soil moisture, and soil texture:335 280 for the soil moisture estimate are about 3% for 26◦–28◦ Part I—Bare soil,” IEEE Trans. Geosci. Eflectron., vol. GE-16, no. 4,336 281 and4%for50◦–52◦. pp.286–295,Oct.1978. 337 [8] N.Baghdadi,M.Zribi,C.Loumagne,P.Ansart,andT.ParisAnguela,338 282 2) The accuracy of the soil moisture estimate does not “AnalysisofTerraSAR-Xdataandtheirsensitivitytosoilsurfaceparame-339 283 improve when two incidence angles (rmse is about 3%) tersoverbareagriculturalfields,”RemooteSens.Environ.,vol.112,no.12,340 284 areused. pp.4370–4379,Dec.2008. 341 285 TheseresultsappearpromisingforthedeveloEpmentofsim- [9] M.Aubert,N.Baghdadi,M.Zribi,A.Douaoui,C.Loumagne,F.Baup,342 M.ElHajj,andS.Garrigues,“AnalysisofTerraSAR-Xdatasensitivityto343 286plifiedalgorithmsforretrievingsoilmoisturefromTerraSAR- baresoilmoisture,roughness,compositionandsoilcrust,”RemoteSens.344 287Xdataandformonitoringtemporalmoisturechanges.TableIII Environ.,vol.115,no.8,pp.1801–1810,Aug.2011. 345 288liststhedifferentobservationpossibilitiesfortheOrgevalstudy [10] T. Fritz, TerraSAR-XoGround Segment Level 1b Product Format346 Specification(10.12.2007),p.257,2007,Issue,1.3,Doc.:TX-GS-DD- 347 289sitewithinoneorbitcycle(11days).Thissitecouldbeimaged8 3307. [Online]. Available: http://www.dlr.de/tsx/documentation/TX-GS- 348 AQ11 290timeswithin11days(twoimagesforeachfollowingincidence: DD-3307_Level-1b-Product-Format-Specification_1.3.pdf 349 291∼26◦, 39◦, 50◦, and 58◦) and 24Itimes within one month. [11] N. Baghdadi, O. Cerdan, M. Zribi, V. Auzet, F. Darboux, M. El Hajj,350 292Thesoilmoisturemappingfrequencywithlowincidenceangle andR.BouKheir,“Operationalperformanceofcurrentsyntheticaper-351 293(26◦)orwithbothlowandhighincidenceangles(26◦ and50◦) thuyrderoralodgaricrsaelnasonrdseinromsiaopnpimngodseoliilngsu,”rfaHcyedcrhoal.raPcrteorciesstisc.,s:vAolp.p2li2c,atnioon. t1o,335523 294ispossiblesixtimeswithinonemonth.Theincidenceof39◦can pp.9–20,Jan.2008. 354 295alsobeused,whichwouldincreaseto12theTerraSAR-Xscene [12] S.LeHégarat-Mascle,M.Zribi,F.Alem,A.Weisse,andC.Loumagne,355 “SPoil moisture estimation from ERS/SAR data: Toward an operational356 296number within one month. This very short revisit time makes methodology,”IEEETrans.Geosci.RemoteSens.,vol.GRS-24,no.12,357 297TerraSAR-Xaveryusefulsourceforthesoilmoisturemapping. pp.2647–2658,Dec.2002. 358 298Moreover, the increase in the acquisition frequency is much [13] A. Quesney, S. Le Hégarat-Mascle, O. Taconet, D. Vidal-Madjar,359 299awaited for the soil moisture data assimilation in hydrological J.P.Wingneron,C.Loumagne,andM.Normand,“Estimationofwater-360 shedsoilmoistureindexfromERS/SARdata,”RemoteSens.Environ.,361 300modeling. vol.72,no.3,pp.290–303,Jun.2000. 362 301 In addition, the very high spatial resolution (metric) of the [14] F.T.Ulaby,R.K.Moore,andA.K.Fung,MicrowaveRemoteSensing,363 302TerraSAR-Xsensorisalsoverypromisingforlocalestimation ActiveandPassive,FromTheorytoApplications,vol.3. Norwood,MA:364 303ofsoilmoistureatthewithinagriculturalfieldscale.Itoffersa ArtechHouse,1986,1098pages. 365 [15] Y.Oh,K.Sarabandi,andF.T.Ulaby,“Anempiricalmodelandaninver-366 304greatpotentialintermsofimprovingthequalityofsoilmoisture siontechniqueforradarscatteringfrombaresoilsurfaces,”IEEETrans. 367 305mapping for catchment areas where the parcels are of small Geosci.RemoteSens.,vol.30,no.2,pp.370–381,Mar.1992. 368 306size. [16] N.Baghdadi,C.King,A.Bourguignon,andA.Remond,“Potentialof369 ERSandRADARSATdataforsurfaceroughnessmonitoringoverbare370 agriculturalfields:ApplicationtocatchmentsinNorthernFrance,”Int.J.371 RemoteSens.,vol.23,no.17,pp.3427–3442,2002. 372 307 ACKNOWLEDGMENT [17] N. Baghdadi, N. Holah, P. Dubois, L. Prévot, S. Hosford, A. Chanzy,373 X. Dupuis, and M. Zribi, “Discrimination potential of X-band polari-374 308 The authors would like to thank the German Space Agency metricSARdata,”Int.J.RemoteSens.,vol.25,no.22,pp.4933–4942,375 309(DLR) for kindly providing TerraSAR-X images within the 2004. 376 Author-produced version of the article published in IEEE Geoscience and remote sensing letters, 2012, 9(3), 512-516. The original publication is available at http://ieeexplore.ieee.org http://dx.doi.org/10.1109/LGRS.2011.2173155 AUTHOR QUERIES AUTHORPLEASEANSWERALLQUERIES AQ1=“In”waschangedto“by.”Pleasecheckifthe originalthought wasretained. AQ2=Pleaseprovide the expandedformoftheacronym“COSMO-SkyMed.” AQ3=Pleaseprovide the expandedformoftheacronym“ORFEO.” AQ4=“French Space Study Center” was changed to “National Space Study Center.” Please check if appropriate. AQ5=Pleaseprovide the expandedformoftheacronym“UMRTETIS.” AQ6=The acronyms “CESBIO” and “IRD” were defined as “Centre d’Etudes Spatiales de la BIOsphère” and“Institut deRecherchepourleDéveloppement,” respectively.Pleasecheckifappropriate. AQ7=Pleaseprovide the expandedformoftheacronym“PAELSAR.” AQ8=Alloccurrencesof“2.2e−16”werechangedto“< 2.2×10−16.”Pleasecheckifappropriate. AQ9=Pleaseprovide the expandedforms oftheacronyms “ERS,”“RADARSAT,”and“ASAR.” AQ10=Thissentencewasrewordedforclarity. Pleasecheckiftheoriginalthought wasretained. AQ11=PleasechecktheURLprovided inRef.[10]. Pagewasnotfound. E f ENDOFALLQUERIES o E o I r P Author-produced version of the article published in IEEE Geoscience and remote sensing letters, 2012, 9(3), 512-516. The original publication is available at http://ieeexplore.ieee.org http://dx.doi.org/10.1109/LGRS.2011.2173155 IEEEGEOSCIENCEANDREMOTESENSINGLETTERS 1 Use of TerraSAR-X Data to Retrieve Soil Moisture 1 Over Bare Soil Agricultural Fields 2 3 NicolasBaghdadi,MaelleAubert,andMehrezZribi 4 Abstract—Theretrievalofthebaresoilmoisturecontentfrom 5TerraSAR-X data is discussed using empirical approaches. Two 6caseswereevaluated:1)oneimageatloworhighincidenceangle 7and2)twoimages,oneatlowincidenceandoneathighincidence. AQ1 8Thisstudyshowsbyusingthreedatabasescollectedbetween2008 9and2010overtwostudysitesinFrance(OrgevalandVillamblain) 10thatTerraSAR-Xisagoodremotesensingtoolfortheretrievingof 11surfacesoilmoisturewithaccuracyofabout3%(rmse).Moreover, 12theaccuracyofthesoilmoistureestimatedoesnotimprovewhen 13two incidence angles (26◦–28◦ or 50◦–52◦) are used instead of E 14only one. When compared with the result obtained with a high 15incidenceangle(50◦–52◦),theuseoflowincidenceangle(26◦–28◦) 16doesnotenableasignificantimprovementinestimatingsoilmois- 17ture(about1%). 18 IndexTerms—Soilmoisture,TerraSAR-Ximages. E 19 I. INTRODUCTION f 20RADARSIGNALisafunctionofsoilmoistureandsurface Fig.1. Locationofstudysites.(1)Orgeval.(2)Villamblain. 21 roughness in the case of bare soil. The possibility of o 22retrieving these soil parameters was little investigated from moistureforvaluesbetween5%and35%[6].Moreover,σ◦in-41 23X-bandsyntheticapertureradar(SAR).HoweverE,manystudies creaseswithsoilsurfaceroughnessandfollowsanexponential42 24werecarriedoutbyusingC-bandradardata(e.g.,[1]–[4]).With orlogarithmicbehavior(e.g.,[4]and[7]). 43 25the launch of satellites using the X-band (∼9.6 GHz), such as Very few studies analyzed the sensitivity of TerraSAR-X 44 AQ2 26TerraSAR-XandCOSMO-SkyMed,theuseofX-banddatato data to bare soil surfacoe parameters. Baghdadi et al. [8] have45 27derive soil parameters became possible. A radar configuration observed that the radar signal at X-band is slightly more sen-46 28thatminimizestheeffectsofsurfaceroughnessisrecommended sitivetosurfaceroughnessathighincidenceanglethanatlow47 29for a better estimate of soil moisIture when using only one incidenceangle.Thedifferenceobservedbetweenradarsignals48 3310irnetcriideevnacleofansgoliel.mTohiestoupretimaraelsrmadaallreirntchidanen3c5e◦s[i4n]C. -bandforthe rreafldaerctwedavbeyletrnhgetrho.uMghoersetoavnedr,srmesouolttshesshtoawreeadstihnactrtehaesessenwsiitthivtihtye 4590 32 SoilmoistureestimationfromSARimagesiscarriedoutby ofradarsignaltosurfaceroughnessisbetterwithPALSARin51 AQ7 33usingphysicalorstatisticalmodels.Physicalapproachconsists L-banPd than with TerraSAR-X in X-band and that the C- and 52 34inusingaphysicalmodel,suchastheintegralequationmodel X-bands are similar sensitivity results. In this letter, only in53 35[5], to predict the radar backscattering coefficient from SAR situsoilmoisturemeasurementsinverywetconditionsbetween54 36andsoilparameters(wavelength,polarization,incidenceangle, 25% and 40% are available. Results obtained showed that the 55 37surfaceroughness,andsoildielectricconstant).Statisticalmod- backscatteringcoefficientatX-bandisstablewhenthemoisture 56 38elsbasedonexperimentalmeasurementsarealsooftenusedin content ranges between 25% and 35% and that it decreases 57 39soil moisture estimation. For bare soils, the increase of radar beyondthisthreshold. 58 40signal (σ◦) is supposed to be linear with the volumetric soil Aubert et al. [9] have showed that the sensitivity of the 59 TerraSAR-X signal to soil moisture is very important at low60 and high incidence angles. In comparison to results published 61 ManuscriptreceivedAugust11,2011;revisedSeptember19,2011;accepted with C-band SAR data, this sensitivity of the radar signal to62 October 17, 2011. This work was supported in part by the CEMAGREF soilmoistureishigherinX-band.Thesecondimportantresult63 (Agricultural and Environmental Engineering Research) and in part by the AQ3 ORFEOProgram,NationalSpaceStudyCenter(CNES). concernsthepotentialofthefinespatialresolutionofTerraSAR 64 AQ4 AQ5 N. Baghdadi and M. Aubert are with UMR TETIS, CEMAGREF, (1m)inthedetectionofsoilmoisturevariationsatthewithin-65 34093Montpellier,France(e-mail:[email protected];maelle. plot scale. The spatial distribution of slaking crust could be 66 [email protected]). M. Zribi is with Centre d’Etudes Spatiales de la BIOsphère, Institut de detectedwhensoilmoisturevariationisobservedbetweensoil 67 AQ6 RecherchepourleDéveloppement,31401Toulouse,France. crustedandsoilwithoutcrust.Indeed,areascoveredbyslaking68 Colorversionsofoneormoreofthefiguresinthispaperareavailableonline crust could have greater soil moisture and, consequently, a69 athttp://ieeexplore.ieee.org. DigitalObjectIdentifier10.1109/LGRS.2011.2173155 greaterbackscatteringsignalthansoilswithoutcrust. 70 1545-598X/$26.00©2011IEEE Author-produced version of the article published in IEEE Geoscience and remote sensing letters, 2012, 9(3), 512-516. The original publication is available at http://ieeexplore.ieee.org http://dx.doi.org/10.1109/LGRS.2011.2173155 2 IEEEGEOSCIENCEANDREMOTESENSINGLETTERS TABLE I CHARACTERISTICSOFTERRASAR-XIMAGESANDSUMMARYOFGROUND-TRUTHMEASUREMENTS(mv,rms,ANDL) E E f o 71 At least one research question remained open. It concerns DuringtheperiodofFebruary–April(ourSARacquisitions), 99 E 72theprecisionofthesoilmoistureestimatesinbareagricultural themaincropsarewheatandcolza.Theycoverapproximately 100 73soils.Theobjectiveofthisstudyistoexaminethepotentialof 50% of the agricultural area. The remaining surface corre- 101 74TerraSAR-X data for retrieving volumetric soil moisture over sponds to plowed soiols awaiting future cultivation (corn and 102 75bare soils. This work evaluates if the use of two incidence potato). 103 76angles at X-band [one low (26◦–28◦) and one high (50◦–52◦)] 77improves theaccuracy oftheestimIateofsurfacesoilmoisture 78incomparisontoonlyoneincidence(loworhigh).TerraSAR-X B. TerraSAR-XImages 104 79sensor has the advantage to acquire on the same study site r Fourteen TerraSAR-X images (X-band ∼9.65 GHz) were105 80image pairs at low and high incidence angles within one day. acquired during the years of 2008, 2009, and 2010 (Table I).106 81The goal of this work is to compare the findings with C- and 82X-band data. At C-band, several studies have shown that the TanhgelePrasda(θr)daotafa2r6e◦a,va2i8la◦b,le50in◦,HaHndpo5la2r◦i.zaTtihoen,iwmiathgiinngcidmeondcee 110087 83use of two incidence angles provides distinct improvement in used was spotlight with a pixel spacing of 1 m. Radiometric 109 84thesoilmoistureestimate,incomparisonwithresultsobtained calibrationusingmultilookgroundrangedetectedTerraSAR-X110 85using a single incidence (e.g., [1], [2], and [4]). Moreover, imageswasfirstcarriedoutusingthefollowingequation[10]: 111 86low incidence angle is better than the high incidence angle 87forestimatingsoilmoisturewithC-bandSARdata.Thisletter 88investigatesthisresearchquestion. σi◦(dB)=log10(cid:1)Ks·DNi2−NEBN(cid:2)+10log10(sinθi). (1) Thisequationtransformstheamplitudeofbackscatteredsig- 112 89 II. STUDYAREAANDDATASET nalforeachpixel(DNi)intoabackscatteringcoefficient(σ◦) 113 in decibels. Ks is the calibration coefficient, and NEBN is114 90A. StudySite thenoiseequivalentbetanaught.AllTerraSAR-Ximageswere 115 91 Data were acquired over two mainly agricultural sites thengeoreferencedusingGPSpointswitharoot-mean-square116 92(Fig. 1). The Villamblain site is located in the south of Paris, errorofthecontrolpointsofapproximatelyonepixel(i.e.,1m).117 93France (latitude 48◦01′ N and longitude 1◦35′ E) with soil This coregistration error was overcome by removing two118 94composed of 30% clay, 60% silt, and 10% sand. The second boundary pixels from each training plot relative to the limits119 95siteissituatedintheOrgeval watershed, located intheeast of defined by the GPS control points. The mean backscattering 120 96Paris,France(latitude48◦51′Nandlongitude3◦07′E).Thesoil coefficients were calculated from calibrated SAR images by 121 97hasaloamytexture,composedof78%silt,17%clay,and5% averaging the linear σ◦ values of all pixels within reference 122 98sand.Bothofthesetwositesareveryflat. fields. 123 Author-produced version of the article published in IEEE Geoscience and remote sensing letters, 2012, 9(3), 512-516. The original publication is available at http://ieeexplore.ieee.org http://dx.doi.org/10.1109/LGRS.2011.2173155 BAGHDADIetal.:USEOFTerraSAR-XDATATORETRIEVESOILMOISTUREOVERBARESOILAGRICULTURALFIELDS 3 Fig. 3. TerraSAR-X signal versus volumetric soil moisture (measured at a depthof5cm).Eachpointcorrespondstotheaveragebackscatteringcoefficient Fig.2. Exampleofvolumetricsoilmoisturemeasurementstakenonarefer- indecibelsforonereferencefield.Thirtypointsareusedforeachofthetwo encefield. configurationsHH26◦–28◦andHH50◦–52◦(datasetsof2008and2009). E 124C. FieldData incidence angle (0.43 dB/% for 26◦–28◦ and 0.29 dB/% for163 125 Simultaneously with TerraSAR-X acquisition, field mea- 50◦–52◦;Fig.3).Foraconfidencelevelof95%,therearesig-164 126surements of soil moisture and surface roughness have been nificant relationships between the TerraSAR-X backscattering 165 127achieved on several bare soil reference fields of at least 2 ha. coefficientandtheinsitusoilmoisturebecausethep-valuesare166 128InthecaseofTerraSAR-Xinspotlightmode(pixelspacingoEf much less than 0.05 (p-value<2.2×10−16 for HH26◦–28◦ 167 AQ8 1291m),thiscorrespondstoasurfaceof20000pixelsormore. andp-value=1.52×10−10forHH50◦–52◦). 168 f 130 Thevolumetricwatercontentatfieldscalewasassumedtobe Studies using C-band (ERS, RADARSAT, ASAR, etc.) 169 AQ9 131equaltothemeanvalueestimatedfromseveralsamples(20–40 showedlowersensitivitiesbetweenradarsignalandsoilmois-170 132measurements per field; Fig. 2) collected from the top 5 cm ture, between 0.2 and 0.3 dB/%ofor low incidence angles 171 133ofsoilusingthegravimetricmethod.Thesoilmoisturesrange and about 0.1 dB/% for high incidence angles (e.g., [2] and172 134from13%to40%. E [11]–[13]). 173 135 Inmoststudiesofmicrowavemeasurementscarriedoutover The objective of this study is to analyze the influence of174 136baresoils,theexperimentalrelationshipbetweensoilmoisture incidence angle on the accuracy of the soil moisture estimate. 175 137andbackscattering coefficient isprovided bymeanvolumetric Configurations in HHopolarization with single incidence an- 176 138water contents measured to a soil depth, generally 0–5 cm gle (26◦–28◦ or 50◦–52◦) were studied. Next, multi-incidence 177 139or 0–10 cm. Indeed, only some studies using theory results TerraSAR-X images acquired at both low and high θ values 178 I 140are available at X-band. These studies suggest a penetration with one-day-spaced dates and only minor variations in soil179 141depthmaybelowerthan5cm.Noexperimentalmeasurements characteristicswereusedtoanalyzethepossibleimprovement 180 r 142are made in field condition, and the low penetration depth inthesoilmoistureestimateswhentwoincidencesareused. 181 143of X-band is only based on theoretical study. Therefore, the Theempiricalrelationshipbetweentheradarbackscattering 182 144penetrationdepthoftheX-bandisnotyetwellknown. coefficPient(σ◦)andthevolumetricsoilmoisture(mv)forbare183 145 Roughness measurements were made using needle pro- soilsurfaceswithouttakingintoaccountthermssurfaceheight184 146filometers (1 m long and with 2-cm sampling intervals). Ten isgivenby(e.g.,[14];Fig.3) 185 147roughnessprofilesweresampledforeachtrainingfield(parallel ◦ 148and perpendicular to the row direction). From these measure- σdB =f(mv,θ)dB =δmv+ξ. (2) 149ments, the two roughness parameters, i.e., root mean square 150(rms) surface height and correlation length (L), were calcu- This simplified relationship is valid for mv values between 186 151lated using the mean of all correlation functions. The rms 5% and 35% [6]. The coefficient δ is dependent on SAR pa-187 152surface heights range from 1.1 to 3.3 cm, and the correlation rameters(radarwavelength,incidenceangle,andpolarization), 188 153length(L)variesfrom2.3cminsownfieldsto9.3cminplowed while the coefficient ξ is controlled by SAR parameters and189 154fields. surfaceroughness.Experimentaldataofσ◦andmvshowslope190 δvaluesofabout0.43dB/%forHH26◦–28◦and0.29dB/%for191 HH50◦–52◦. 192 155 III. METHODOLOGY The relationship obtained between σ◦ and the rms height193 156 The retrieval of soil moisture from TerraSAR-X images independentofrowdirection,correlationlength,andsoilmois- 194 157by means of empirical approaches requires the development turecouldbewrittenasanexponentialrelationshipoftheform195 158of experimental relationships between σT◦erraSAR−X and the σd◦B =g(rms,θ)dB =µe−krms+c[15],[16]oralogarithmic 196 159measuredsoilmoisture.TerraSARdataacquiredintwoconfig- relationship of the form σd◦B =g(rms,θ)dB =µln(rms)+197 160urationsofincidenceangles(∼26◦ and∼50◦)wereusedwith c[1]. 198 AQ10 161groundmeasurementsconductedoverbaresoil.Thesensitivity With taking into account of both soil roughness and soil199 162of TerraSAR signal to soil moisture is the greatest for low moisture, the radar signal in decibel scale may be written as200
Description: