ebook img

Use of AI, Robotics, and Modern Tools to Fight Covid-19 PDF

246 Pages·2021·10.688 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Use of AI, Robotics, and Modern Tools to Fight Covid-19

Use of AI, Robotics, and Modern Tools to Fight Covid-19 RIVER PUBLISHERS SERIES IN AUTOMATION, CONTROL AND ROBOTICS Series Editors ISHWAR K. SETHI TAREK SOBH Oakland University University of Bridgeport USA USA FENG QIAO Shenyang JianZhu University China Indexing: all books published in this series are submitted to the Web of Science Book Citation Index (BkCI), to SCOPUS, to CrossRef and to Google Scholar for evaluation and indexing. The “River Publishers Series in Automation, Control and Robotics” is a series of comprehensive academic and professional books which focus on the theory and applications of automation, control and robotics. The series focuses on topics ranging from the theory and use of control systems, automation engineering, robotics and intelligent machines. Books published in the series include research monographs, edited volumes, handbooks and textbooks. The books provide professionals, researchers, educators, and advanced students in the field with an invaluable insight into the latest research and developments. Topics covered in the series include, but are by no means restricted to the following: • Robots and Intelligent Machines • Robotics • Control Systems • Control Theory • Automation Engineering For a list of other books in this series, visit www.riverpublishers.com The NEC and You Perfect Together: Use of AI, Robotics, and A ComMporedheenrnsi Tveo oStlusd tyo o Ff itgheh t Covid-19 National Electrical Code Editors Arpit Jain Gregory P. Bierals University of Petroleum and Energy Studies, India Electrical Design Institute, USA Abhinav Sharma University of Petroleum and Energy Studies, India Jianwu Wang University of Maryland, USA Mangey Ram Graphic Era Deemed to be University, India River Publishers Published2021byRiverPublishers RiverPublishers Alsbjergvej10,9260Gistrup,Denmark www.riverpublishers.com DistributedexclusivelybyRoutledge 4ParkSquare,MiltonPark,Abingdon,OxonOX144RN 605ThirdAvenue,NewYork,NY10017,USA Use of AI, Robotics, and Modern Tools to Fight Covid-19/by Arpit Jain, AbhinavSharma,JianwuWang,MangeyRam. ©2021RiverPublishers.Allrightsreserved.Nopartofthispublicationmay bereproduced,storedinaretrievalsystems,ortransmittedinanyformorby anymeans,mechanical,photocopying,recordingorotherwise,withoutprior writtenpermissionofthepublishers. RoutledgeisanimprintoftheTaylor&FrancisGroup,aninforma business ISBN9788770224437(print) While every effort is made to provide dependable information, the publisher, authors, and editors cannot be held responsible for any errors oromissions. Contents Preface xiii Acknowledgement xvii List of Contributors xix List of Figures xxiii List of Tables xxvii List of Notations and Abbreviations xxix 1 The History of Pandemics and Evolution So Far 1 Puneet Joshi, Swati Shukla 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Definition Of Pandemics . . . . . . . . . . . . . . . . . . . 2 1.3 History Of Pandemics . . . . . . . . . . . . . . . . . . . . 3 1.3.1 Prehistoric Epidemic . . . . . . . . . . . . . . . . . 3 1.3.2 Modern Epidemics . . . . . . . . . . . . . . . . . . 4 1.4 Attributes Of A Pandemic . . . . . . . . . . . . . . . . . . . 5 1.5 Origin Of The Coronavirus Or Covid-19 . . . . . . . . . . . 6 1.5.1 Pathophysiology . . . . . . . . . . . . . . . . . . . . 7 1.5.2 Signs, Symptoms, and Transmission . . . . . . . . . 7 1.5.3 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . 8 1.5.4 Prevention . . . . . . . . . . . . . . . . . . . . . . . 8 1.5.5 Management . . . . . . . . . . . . . . . . . . . . . . 9 1.6 Types Of Covid-19 . . . . . . . . . . . . . . . . . . . . . . 9 1.7 Vaccine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.8 Pandemic Impacts . . . . . . . . . . . . . . . . . . . . . . . 11 1.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 14 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 v vi Contents 2 Tracing the Origins of COVID-19 17 Vidushee Nautiyal, Rakhi Pandey 17 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 History of the Virus . . . . . . . . . . . . . . . . . . . . . . 19 2.2.1 Influenza . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 Seasonal Flu . . . . . . . . . . . . . . . . . . . . . . 21 2.2.3 2002–2004: Severe Acute Respiratory Syndrome . . . 21 2.2.4 2009 (H1N1) Flu Pandemic . . . . . . . . . . . . . . 22 2.2.5 Middle East Respiratory Syndrome Coronavirus (MERS-COV) − 2012 . . . . . . . . . . 22 2.2.6 2014–2016 Ebola . . . . . . . . . . . . . . . . . . . 23 2.3 Genetic Sequence of Sars-Cov-2 . . . . . . . . . . . . . . . 23 2.4 Transmission and Diagnosis . . . . . . . . . . . . . . . . . . 24 2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.6 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . 26 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 AI for COVID-19: The Journey So Far 29 Abhinav Sharma, Arpit Jain, Mangey Ram 29 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . 31 3.3 Potential Contribution of Ai Against Covid-19 . . . . . . . . 33 3.3.1 Diagnosis of Disease . . . . . . . . . . . . . . . . . 33 3.3.2 Discovery of Drug and Vaccine . . . . . . . . . . . . 35 3.3.3 Prediction of Mortality and Survival Rate . . . . . . . 36 3.3.4 Contact Tracing . . . . . . . . . . . . . . . . . . . . 36 3.3.5 Robotics and Health Care . . . . . . . . . . . . . . . 37 3.3.6 COVID-19 Chatbots . . . . . . . . . . . . . . . . . . 38 3.3.7 Prevent Further Spread of Disease . . . . . . . . . . 39 3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4 Technological Opportunities to Fight COVID-19 for Indian Scenario 45 Meera C. S., Aslesha Bodavula, Pinisetti Swami Sairam 45 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Technological Interventions . . . . . . . . . . . . . . . . . . 47 4.2.1 Robotic Technologies in COVID-19 . . . . . . . . . 47 4.2.2 Smart Surveillance Systems . . . . . . . . . . . . . . 49 4.2.3 Artificial Intelligence and Machine Learning . . . . . 50 Contents vviiii 4.2.4 Computational Fluid Dynamics . . . . . . . . . . . . 52 4.2.5 Unmanned Aerial Vehicles . . . . . . . . . . . . . . 54 4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5 Mobile Robots in COVID-19 59 Prashant Kumar Dwivedi 59 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.1.1 What is Mobile Robot? . . . . . . . . . . . . . . . . 60 5.1.2 Components of Mobile Robots . . . . . . . . . . . . 61 5.1.3 Mobile Robots and COVID-19 . . . . . . . . . . . . 63 5.2 Requirements of Mobile Robots in Pandemic Situation . . . 64 5.3 Innovation and Classification of Mobile Robots . . . . . . . 65 5.4 Future Scope and Challenges . . . . . . . . . . . . . . . . . 72 5.4.1 Challenges During Development Phase . . . . . . . 72 5.4.2 Challenges During Deployment Phase . . . . . . . . 74 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6 Predictor System for Tracing COVID-19 Spread 79 Kuldeep Panwar, Supriya Pandey, Kamal Rawat, Neeraj Bisht 79 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.2 Various Prediction Methods . . . . . . . . . . . . . . . . . 80 6.3 Case Study − Prediction of Effective Reproductive Number for India . . . . . . . . . . . . . . . . . . . . . . . 82 6.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . 83 6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7 Discovery of Robust Distributions of COVID-19 Spread 89 Chhaya Kulkarni, Sandipan Dey, Vandana Janeja 89 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.2.1 Data Preprocessing . . . . . . . . . . . . . . . . . . 92 7.2.2 Temporal Analysis . . . . . . . . . . . . . . . . . . . 92 7.2.3 Distribution Detection . . . . . . . . . . . . . . . . . 93 7.2.4 Outlier Detection . . . . . . . . . . . . . . . . . . . 95 7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . 96 7.3.1 Geospatial Context of the Data . . . . . . . . . . . . 96 viii Contents 7.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 8 Toward Smart Hospital: An Intelligent Personnel Scheduling Using Evolutionary Algorithms 111 Tan Nhat Pham, Son Vu Truong Dao 111 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.2.1 Data Collection . . . . . . . . . . . . . . . . . . . . 113 8.2.2 Mathematical Model Development . . . . . . . . . . 113 8.2.3 Discrete GWO with a Novel Neighborhood Search Operator . . . . . . . . . . . . . . . . . . . . 115 8.3 Computational Results . . . . . . . . . . . . . . . . . . . . 121 8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 9 Role of Artificial Intelligence Based Wireless Sensor Network for Pandemic Control: A Case Study Using CupCarbon 127 Paawan Sharma, Hardik Patel, Mohendra Roy 127 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 127 9.2 Proposed Analysis . . . . . . . . . . . . . . . . . . . . . . . 132 9.3 Modeling and Simulation . . . . . . . . . . . . . . . . . . . 133 9.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . 135 9.4.1 Application in Pandemic Control . . . . . . . . . . . 135 9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 10 Peculiarities of Technical Measures During the COVID-19 Pandemic 141 Iosif Z. Aronov, Anna M. Rybakova, Nataliia M. Galkina 141 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 141 10.2 Application of Tbt Measures By Wto Members . . . . . . . 143 10.3 Peculiarities of Application of Standardization Tools During the Pandemic . . . . . . . . . . . . . . . . . . . . . 148 10.3.1 Standard Accessibility in Response to the COVID-19 Pandemic . . . . . . . . . . . . . . . . . 149 10.3.2 Development of Standardization Documents in Response to the COVID-19 Pandemic . . . . . . . . 152 Contents iixx 10.4 Main Conclusions and Recommendations from the Analysis of TBT Measures During the Covid-19 Pandemic . . . . . . 155 10.5 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 156 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 11 Climate Change and COVID-19: An Interplay 161 Vibhu Jately, Jyoti Joshi, Rajendra Kumar Jatley 161 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 162 11.2 Comparison OF Two Disruptors, The Climate Risk, and Covid-19 . . . . . . . . . . . . . . . . . . . . . . . . . 164 11.2.1 Short-Term and Long-Term Effects of Climate Change and COVID-19 . . . . . . . . . . . . . . . . 165 11.2.2 Short-Term Effects of the Current Pandemic . . . . . 165 11.2.3 Long-Term Effects of the Pandemic . . . . . . . . . . 165 11.2.4 Short-Term Effects of Climate Change . . . . . . . . 166 11.2.5 Long-Term Effects of Climate Change . . . . . . . . 166 11.2.6 Searching Ways to Mitigate . . . . . . . . . . . . . . 166 11.2.7 Common Features . . . . . . . . . . . . . . . . . . . 166 11.2.8 Features that Make Them Different . . . . . . . . . . 167 11.2.9 Mitigating the Risk by Avoiding its Multiplication . . 167 11.3 Trends in CO2 and GHG Emission Levels . . . . . . . . . . 168 11.4 Effect of Covid-19 on Emission Levels and on Energy Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 11.5 How to Move Forward? . . . . . . . . . . . . . . . . . . . . 173 11.5.1 Responses Helpful in Saving the Environment . . . . 174 11.5.2 Pitfalls in Road that Can Blur the Focus of Stakeholders for Reducing Emissions . . . . . . . . . 174 11.5.3 Road Map for the Planners . . . . . . . . . . . . . . 175 11.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 11.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 179 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 12 COVID-19 Pandemic: A New Era in Higher Education 181 Sriperumbuduru Srilaya, Sirisha Velampalli 181 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 182 12.2 Covid-19 Impact on Higher Education . . . . . . . . . . . . 183 12.2.1 All Educational Activities are Disrupted . . . . . . . 183 12.2.2 Turndown in Employment Opportunities . . . . . . . 183

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.