ebook img

Upper Cretaceous diatom biostratigraphy of the Arctic archipelago and northern continental margin PDF

41 Pages·2017·1.65 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Upper Cretaceous diatom biostratigraphy of the Arctic archipelago and northern continental margin

UUnniivveerrssiittyy ooff NNeebbrraasskkaa -- LLiinnccoollnn DDiiggiittaallCCoommmmoonnss@@UUnniivveerrssiittyy ooff NNeebbrraasskkaa -- LLiinnccoollnn Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 2002 UUppppeerr CCrreettaacceeoouuss ddiiaattoomm bbiioossttrraattiiggrraapphhyy ooff tthhee AArrccttiicc aarrcchhiippeellaaggoo aanndd nnoorrtthheerrnn ccoonnttiinneennttaall mmaarrggiinn,, CCaannaaddaa Pedro M. Tapia University of Nebraska-Lincoln David M. Harwood University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons Tapia, Pedro M. and Harwood, David M., "Upper Cretaceous diatom biostratigraphy of the Arctic archipelago and northern continental margin, Canada" (2002). Papers in the Earth and Atmospheric Sciences. 184. https://digitalcommons.unl.edu/geosciencefacpub/184 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Upper Cretaceous diatom biostratigraphy of the Arctic archipelago and northern continental margin, Canada PedroM.TapiaandDavidM.Harwood DepartmentofGeosciences,UniversityofNebraska-Lincoln,Lincoln,NE68588-0340,USA email:[email protected] ABSTRACT:StrataintheCanadianArcticcontaindiverseandmoderatelywell-preservedLateCretaceoussiliceousmicrofossilas- semblages.One-hundred-twelvesampleswereanalyzedfromacompositestratigraphicsection(1094m-thick)oftheSmokingHills, MasonRiverandKangukformations.Foursectionswereexamined:(1)SlidreFjordonEllesmereIsland;(2)HoodooDomeonEllef RingnesIsland;(3)CapeNaresonEglintonIsland;and(4)HortonRiverontheAndersonPlains,NorthwestTerritories.Twohun- dred-threediatomtaxawereidentifiedinforty-nineproductivesamples.FourUpperCretaceousdiatomzonesareproposedfortheCa- nadianArcticbasedonthebiostratigraphicdistributionofdiatoms:(i)theUpperCenomaniantoUpperSantonian(?)Gladiusantiquus ConcurrentRangeZone,(ii)theLowerCampanianCostopyxisantiquaPartialRangeZone,(iii)thelowerUpperCampanianTrinacria indefinitaIntervalZone,and(iv)theupperUpperCampanianStephanopyxissimonseniPartialRangeZone. ThediatomassemblagesaresimilartothoseofAlphaRidge(ArcticOcean),UralMountains(Russia),andCampbellPlateau(SW Pacific Ocean), enabling diatom-based biostratigraphical correlations within the northern high-latitudes and to the southern high-latitudes.Afifthbiostratigraphiczone,AzpeitiopsismorenoensisConcurrentRangeZone,isalsoproposed,basedoncommonand widespreaddistributionofthenominativetaxoninlowertoupperMaastrichtiansediments.Sufficientdataisnowavailabletoestablish theconstructionofadiatom-basedstandardzonalframeworkfortheUpperCretaceous. Twonewcombinations,Trochosiradenticulatum(Strelnikova)TapiaandTrochosiropsispolychaeta(Strelnikova)Tapiaarehere proposed. INTRODUCTION Status of Late Cretaceous diatoms: taxonomic studies vs the stratigraphicrecord Diatomsintimeandspace OurknowledgeofLateCretaceousdiatomsishinderedbythe Diatoms are known from the Lower Cretaceous (Aptian- temporal instability of opal-Aand detrimental effects of silica Albian)toRecentandrepresentusefultoolsasbiostratigraphic, diagenesis through time. Most published Late Cretaceous dia- paleoenvironmental, and paleoclimatic indicators (Stoermer tom studies are descriptive and taxonomic, with little or no andSmol1999).TheCenozoicdiatombiostratigraphicrecord stratigraphic control (table 1). Nevertheless, general trends in isrelativelywell-developed(BarronandBaldauf1995),though UpperCretaceousdiatombiostratigraphyandevolutioncanbe manystratigraphicgapsstillexistinthePaleoceneandEocene foundinStrelnikova(1974)andHarwoodandNikolaev(1995). diatom record around the world. Upper Cretaceous diatom Current knowlegde of Campanian diatom biostratigraphy was biostratigraphy, however, requires considerable further devel- developed from high-latitude diatomaceous deposits in Russia opmentthroughcollectionofstratigraphicdata,taxonomicre- andtheS.W.PacificOcean.Thesedepositscontainsufficiently organization,morphologicaldescription,andbiostratigraphical well-preserved diatom floras and reliable stratigraphic control analysis such as that presented here. Acompilation of known thatcanbecomparedtoresultspresentedhere. Upper Cretaceous diatom-bearing sediments (table 1, text-fig. 1) expresses the limitation of our current knowledge for this Outcrops and industrial wells from the Ural Mountains and stratigraphicinterval.Diatompreservationisthelimitingfactor WesternSiberianlowlandplains,Russia.Thebestsequencethat onmanyofthesedeposits. contains Upper Cretaceous opaline diatoms is in north-central Russia. A299m-thick composite core section along the North ThispaperisanattempttodevelopanUpperCretaceousdiatom Sosva River (Cores 22, 82, and 19; text-fig. 3-A) and outcrop biostratigraphy for the Canadian Arctic. Our main goal is to samplesfromtheSyinjaRiver[SectionsXI(14)andIX(13)]re- identifythemaindiatomassemblagesinordertoapplydiatom cordportionsoftheCampanianandMaastrichtian(Strelnikova biostratigraphy to the stratigraphic sequences of the Kanguk, 1974,1975).StrelnikovadividedtheCampaniansequenceinto Smoking Hills, and Mason River formations. The moderately three diatom complexes. The First Complex (aleuritic diatom- goodpreservationofdiatomsfromthesestrataenablesustoin- aceous clays, Lower Campanian) is characterized by diatoms vestigate changes in diversity and composition of siliceous Paralia cretacea, P. ornata, Costopyxis antiqua, C. uralensis, microfossil assemblages from the northern high-latitudes Lepidodiscuselegans,Triceratiumschulzii,Hemiaulusdanicus, (text-fig. 2). Thick stratigraphic sections, like the 125m-thick H. echinulatus, Pterotheca alata, and P. simplex. The continuousandmoderatelywell-preserveddiatomaceousshale Prunobrachium crassum radiolarian complex and the foram- of the Horton River section represent an excellent reference iniferal Spiroplectammina lata Zone provide biostratigraphic sectionfordevelopmentofabiostratigraphicframeworkforfu- control that indicates an Early Campanian age. The Second turecorrelation. Complex(whitediatomite,lowerpartoftheUpperCampanian) micropaleontology,vol.48,no.4,pp.303-342,text-figures1-9,plates1-9,tables1-6,appendix1,2002 303 P.M.TapiaandD.M.Harwood:UpperCretaceousdiatombiostratigraphyoftheArcticarchipelagoandnortherncontinentalmargin,Canada TABLE1 is distinguished by the presence of Stephanopyxis turris, Tri- OccurencesofUpperCretaceousbearing-diatomdepositsintheworld. ceratium anissimovae, Paralia sulcata, Pseudopodosira sim- plex, P. punctata, Skeletonema polychaetum, Costopyxis broschii, Aulacodiscus archangelskianus, A. bifrons, Hemi- aulus antiquus, H. kittonii, Gladius speciosus f. speciosus, Pterothecaaculeifera,andP.evermannii.TheThirdComplex (lightgraydiatomaceousclays,upperpartoftheUpperCamp- anian) is characterized by Paralia sulcata, Pseudopodosira aspera, Stephanopyxis turris, S. lavrenkoi, Costopyxis reticu- lata,Aulacodiscusjouseae,Triceratiumplanum,T.coronatum, Gladius speciosus f. aculeatus and f. poratus, and Pseudo- pyxilla rossica. The Prunobrachium articulatum radiolarian complex and the foraminiferal Bathysiphon nodosariaformis Zone provide biostratigraphic control that indicates a Late Campanian age for the Second and Third diatom complexes (Strelnikova1975). DeepSeaDrillingProjectLeg29,Site275,SWPacificOcean. DSDP Site 275 recovered 17.5m (40.6%) of sediment from a 43m-thick cored section on the Southeast Campbell Plateau (50°26'S,176°19'E).Twocorescontaining13mofglauconite- bearing silty, radiolarian-diatomaceous ooze recorded the Late Cretaceous diatom history in the Southwest Pacific Ocean (text-fig.3-B).ALateCampanianagewasdeterminedbycorre- lation with the uppermost Campanian radiolarian Patuli- bracchiumdickinsoniZoneofCaliforniaandbypalynological correlation to New Zealand and Campbell Island, which sug- gestedaLateCampaniantoMaastrichtianage(ShipboardSci- entific Party 1975). The diatom record indicates a Late CampaniantoMaastrichtianage,whereassilicoflagellatesindi- cate a Late Cretaceous (probably Maastrichtian) age (Perch- Nielsen 1975). Extraordinarily well-preserved diatom and silicoflagellateassemblageswereencounteredinCores1and2. Hajós and Stradner (1975) examined twenty samples and pro- posedninebiostratigraphiczonesforthis13m-thicksection.In ascending order the zones are the Horodiscus rugosus Zone, ChaseaornataZone,EpitheliumrossicumZone,Anaulussubant- arcticus Zone, Biddulphia sparsepunctata Zone, Kentrodiscus armatus Zone, Cerataulus-Odontotropis Zone, Acanthodiscus antarcticusZone,andPseudopyxillajouseaeZone. AlthoughmanydiatomtaxapresentatSite275arealsonotedin theCanadianArcticsediments,otherkeytaxa,includingthose usedasstratigraphicmarkers,arenotpresentintheArcticdia- tom flora. For this reason, the zonation of Hajós and Stradner (1975)cannotbeappliedinthepresentstudy. GeologicalsettingoftheUpperCretaceousCanadianArctic Samples examined in this study came from two different geo- logicalsettings.SamplesfromtheArcticIslandsbelongtothe SverdrupBasin,whereasthosefromthecontinentalmarginbe- long to the Anderson Plain Syncline (Yorath et al. 1975, Plauchut and Jutard 1976). The Sverdrup Basin developed by rifting during the mid-Carboniferous and was filled by up to 9000m of Mesozoic sediment. Upper Cretaceous strata of the Kanguk and Expedition formations rest unconformally upon Lower Cretaceous rocks. A diachronus unconformity (Late Albian-Late Cenomanian) is present throughout the basin. A major Late Cenomanian transgression transformed the Arctic Islandregioninanoffshoreshelf.BytheendoftheCretaceous, sediment supply increased and the region was occupied by pro-deltaandfluvial-deltaicplains(Embry1991).IntheAnder- son Plain Syncline, Mesozoic strata rest unconformably on a PaleozoicsequenceandareunconformablyoverlainbytheUp- 304 Micropaleontology,vol.48,no.4,2002 TEXT-FIGURE1 GlobaldistributionofselectedCampanian-Maastrichtiandiatomaceousdeposits(SeeTable1).1=AlphaRidge,ArcticOcean;2=ArcticArchipelago, Canada(thisstudy);3=NorthernContinentalMargin,Canada(thisstudy);4=UralMountains,Russia;5=Gdansk,Poland;6=CentralNegev,Israel;7= NinetyeastRidge,IndianOcean;8=TongaTrench,PacificOcean;9=CampbellPlateau,PacificOcean;10=Kerguelen,Plateau,SouthernOcean;11= SeymourIsland,Antarctica;12=MorenoGulch,California. per Tertiary Beaufort Formation. The Upper Cretaceous se- theheadofSlidreFjordonFosheimPeninsula(JeletzkyinWall quence is represented by the Smoking Hills and Mason River 1983).ForaminiferaldataindicateanagerangefromTuronian formationsoftheAmudsenGulfGroup(Yorathetal.1975). toLateCampanian(Wall1983).Thedepositionalenvironment oftheKangukFormationatSlidreFjordisinterpretedtobema- MATERIALSANDMETHODS rineofshallowtomoderatedepthontheshelf(J.H.Wall,pers. CretaceoussiliceousmicrofossilsintheCanadianArcticArchi- comm.). pelago (Banks Island) were first identified as reworked ele- mentsinglacialsediments(Vincentetal.1983)fromtheDuck HoodooDome,EllefRingnesIsland,DistrictofFranklin.Hoo- HawkBluff,MorganBluff,NelsonRiver,andPrinceofWales dooDomeisadouble-plunginganticline,coredandpiercedlo- formations.Thatreportstimulatedthepresentstudy. cally by a Carboniferous halite diapir (Stott 1969). The 12 samplesexaminedherecamefromthe390m-thickKangukFor- Four stratigraphic sections within the Canadian Arctic Archi- mationatHoodooDome,GSCsection73BAA-10002(text-fig. pelagoandcontinentalmarginwereexamined(text-fig.4,col- 2,site2b;text-fig.4,columnB).Unfortunately,nosectionde- umns A-D). Samples were collected by scientists from the scriptionorstratigraphiccolumnisavailablefromthislocality. Geological Survey of Canada (GSC) (P. T. Chamney, A. F. Other studies of the Kanguk Formation at Hoodoo Dome Embry,J.C.Harrison,andJ.H.Wall)andkindlyprovidedby (Blakwill1974,BlakwillandHopkins1976)reportathickness David McNeil of the GSC. From these sections, one hundred ofabout450m,dividingthislithostratigraphicunitintotwoin- andtwelvesampleswereanalyzedtodeterminethepresenceof formal(lowerandupper)membersbasedonthepresenceofan siliceousmicrofossils.Forty-nineofthesecontainedenoughsi- escarpment-forming, red-brown siltstone between those units. liceous microfossils to warrant a detailed diatom survey Thelowermembercomprisesabout240mofsoft,slightlysilty, (text-fig.4). pyritic,blackshalewithabundantthinbedsandlaminationsof SlidreFjord,EllesmereIsland,DistrictofFranklin.TheSlidre yellow-grayjarositicclay.Nearthebaseofthissection,thebeds Fjord GSC section 74RV-38 is located at 79°47.4'N, 85°22'W arepinkandbrick-redduetotheoxidationofiron-sulfidemin- (text-fig.2,site2a;J.H.Wall,pers.comm.).Atotalof29sam- erals. No macrofossils are known from this member, however pleswereexaminedfromthe260.5m-thickKangukFormation thepresenceofmollusksWatinocerassp.andtherecognitionof (text-fig. 4, column A). There is no available section descrip- theMytiloideslabiatusZoneatthesamestratigraphiclevelon tion or stratigraphic column from this locality. At an adjacent theadjacentAmundRingnesIslandindicatesanEarlyTuronian site(GSClocality79EL-3,RemusCreek,FosheimPeninsula, ageforthelowerunit(JeletzkyinBlakwillandHopkins1976). EllesmereIsland),theKangukFormationunconformablyover- The upper member comprises circa 210m of dark-brown-gray lies the Upper Albian to Cenomanian Hassel Formation (Wall shaly siltstone and silty shale, with abundant small red-brown 1983) and consists of approximately 220m of dark-gray shale ironstonenodulesandafewjarositicclaybeds.Acollectionof withminoramountsofsiltstoneandsandstone.Thinbentonite well-preserved mollusks suggests the base of the upper unit is seams are characteristic of the lower part of this formation. lateEarlyorearlyLateSantonianinage(Jeletzky inBlakwill Macrofossilsdonotprovidereliableagecontrolatthissite,but and Hopkins 1976). The depositional environment of the LowerSantonianammonitesarereportedfromthisformationat KangukFormationatHoodooDomerepresentsamiddleouter 305 P.M.TapiaandD.M.Harwood:UpperCretaceousdiatombiostratigraphyoftheArcticarchipelagoandnortherncontinentalmargin,Canada TEXT-FIGURE2 DiatomaceousdepositsintheCanadianArctic(areas2and3inFig.1).2a=SlidreFjord,EllesmereIsland;2b=HoodooDome,EllefRingnesIsland;2c= CapeNares,EglintonIsland;3=HortonRiver,NorthwestTerritories. shelf setting in the lower unit and an upper shelf to pro-delta andsandstonewithafewbedsofbrownferruginoussandstone. settingintheupperunit(BlakwillandHopkins1976). The age of the Kanguk Formation at Eglinton Island is San- tonian to Campanian, based on fossil mollusks (Jeletzky in Cape Nares, Eglinton Island, District of Franklin. The Cape Plauchut and Jutard 1976) and Senonian based on fossil Naressection(GSC87EL-16)islocatedat75°38'N,119°22'W radiolaria and foraminifera (Fischer in Plauchut and Jutard (text-fig. 2, site 2c; J. H. Wall, pers. comm.). The 20 samples 1976).TheLowerShaleandEglintonmembersareconsidered examined here came from a 156m measured section of the tobeUpperTuroniantoLowerCampanianbasedonthepres- Kanguk Formation at Cape Nares (text-fig. 4, column C). No ence of the foraminiferal Dorotia smokyensis assemblage and section description or stratigraphic column is available from Trocammina ribstonensis (J. H. Wall, pers. comm.). The this locality. The Kanguk Formation at Eglinton Island was depositionalenvironmentisinterpretedtobenearshoretoopen studied by Plauchut and Jutard (1976), who reported a marine for the lower part of the Lower Shale Member and a 312m-thick unit unconformably overlying the Upper Albian shallowtomoderatedepthmarineshelfenvironmentfortherest HasselFormation.TheKangukFormationisdividedintothree of the formation (Plauchut and Jutard 1976, J. H. Wall, pers. members: the Lower Shale, Eglinton Sandstone, and Upper comm.). Shale members. (1) The Lower Shale Member is 200m-thick andcontainstwounits;thelowerpart(110m)comprisesgrayto Horton River Section, District of Mackenzie, Northwest Terri- blackshale,siltandsandstonewiththinbandsofyellowjarosite tories.TheHortonRiversequenceisacompositesectioncon- andconcretionarymassesofmudstoneanddarkironstone,and structed from three adjacent outcrops on the Anderson Plains theupperpart(90m)comprisesbrowntoblackshaleandminor (text-fig.2,area3).The51samplesexaminedherecamefrom silt with thin bands of gray and green sand, which increase in thesethreeoutcropsoftheSmokingHillsandMasonRiverfor- abundance toward the top of the unit. (2) The Eglinton Sand- mations (text-fig. 4, column D). No section descriptions or stoneMemberis50m-thickandcomprisesgreen,grayorwhit- stratigraphiccolumnsareavailablefromanyofthese3locali- ish, indurated, medium to coarse quartz sandstone, gravel and ties. (1) The GSC location CR 16A-N68 (69°27'30"N, conglomerate. The contact between the Eglington and Lower 126°58'W) represents the Smoking Hills Formation (McIntyre Shalemembersistransitional.(3)TheUpperShaleMemberis 1974,Yorathetal.1975).Thisformationdisconformablyover- 62m-thickandcomprisesgraytogray-brownshale,siltyshale liesthemidAlbianHortonRiverFormation,andcomprisesap- 306 Micropaleontology,vol.48,no.4,2002 TEXT-FIGURE3 UpperCretaceousdiatombiostratigraphyin(A)UralMts.,Russia(fromStrelnikova1974),and(B)CampbellPlateau,SWPacific(fromHajós& Stradner1975).Notethedifferentscales.Strelnikova(1974)dividedRussiancoresinto4biostratigraphicaldivisions:1=FirstDiatomComplex,2= SecondDiatomComplex,3=ThirdDiatomComplex,4=ComplexwithStephanopyxisbiseriataandTriceratiumcellulosum;Hajós&Stradner(1975) erected9zonesfortwocoresinDSDPSite275:I=PseudopyxillajouseaeZone,II=AcanthodiscusantarcticusZone,III=Cerataulus-Odontotropis Zone,IV=KentrodiscusarmatusZone,V=BiddulphiasparsepunctataZone,VI=AnaulussubantarcticusZone,VII=EpitheliumrossicumZone,VIII= ChaseaornataZone,andIX=HorodiscusrugosusZone.Key:I=Diatomiteanddiatomaceousmudstone,II=Radiolariananddiatomaceousooze. proximately100mofavariablesequenceofblack,bituminous based on vertebrate fauna (Russell 1967) and Santonian to shale,beddedyellowjarosite,andlocallydarkmaroonbedsof Campanian based on palynomorphs (McIntyre 1974). The earthy hematite (Yorath et al. 1969, McIntyre 1974). The depositionalenvironmentisinterpretedtobenearshoretoopen Smoking Hills Formation is considered Lower Campanian marine(PlautchutandJutard1976).(2)TheGSClocationCR 307 P.M.TapiaandD.M.Harwood:UpperCretaceousdiatombiostratigraphyoftheArcticarchipelagoandnortherncontinentalmargin,Canada TEXT-FIGURE4 Schematicstratigraphiccolumnsofthestudiedsections.Thepositionsofdiatom-bearingsamplesareindicatedbysmallarrowsandGSCsamplecodes (e.g.C-34348).Barrensamplespostionsaremarkedbysmalldots.A=SlidreFjord,EllesmereIsland;B=HoodooDome,EllefRingesIsland;C=Cape Nares,EglingtonIsland;D=HortonRiver,NWT.NumberswithinthelithologiccolumnsareGSCcodesforstratigraphicsections.1=Diatom biostratigraphy(thisstudy);2and4=J.H.Wall(personalcommunication);3=Blakwill&Hopkins(1976);5=McIntyre(1974). 16B-N68 (69°28'N, 126°58'W) represents part of the Mason (McIntyre 1974). The Mason River Formation was dated as RiverFormation(McIntyre1974),whichatthislocalityisap- Campanian to Maastrichtian based on palynomorph biostrati- proximately125m-thickandcomprisesalowerunitcomposed graphy (McIntyre 1974) and the depositional environment is ofpalegray-weatheringshalewithminoramountsofmudstone thought to be marine shelf with minor continental influences andrusty,darkferruginousdolomiteconcretionarybeds.Thisis (PlautchutandJutard1976). overlainbyamiddleunitofmediumtolocallydarkgrayshale with some gypsum; and an upper unit of medium to Samplepreparation.Approximately1ccofunconsolidatedsed- dark-gray-brown and brown ferruginous shale that grades up- imentwasplacedintoa1000mlbeakeranddriedonahotplate. wardintograysandyshale(Yorathetal.1969,McIntyre1974). Afterthebeakercooled,10-20mlofconcentratedhydrochloric The Mason River Formation gradationally and conformably acidand40-50mlof30%hydrogenperoxidewereadded.This overlies the Smoking Hills Formation and is unconformably solution was heated and left to react until the strong reaction overlain by a Recent unconsolidated gravel and sand unit ceased.Thebeakerwasthenfilledwithfilteredwaterand10ml (Plautchut and Jutard 1976). (3) The GSC location CR of5%Calgonsolution,stirred,andlefttosettleovernight.The 17A-N68 (69°58'30"N, 127°4'W) represents the upper part of next day, the supernatant solution (approximately 3/4 parts of the Mason River Formation, measuring approximately 62m thevolume)wasdecanted.Thebeakerwasrefilledwithfiltered 308 Micropaleontology,vol.48,no.4,2002 TABLE2 Selecteddiatomdata(totalcounts)fromSlidreFjordSectionofbothsize-fractions(greaterandlesserthan25m).Preservation:G=Good,M=Moderate, P=Poor;RelativeAbundance:A=Abundant,C=Common,F=Few,R=Rare. water,allowedtosettlefor6hoursandthendecanted.Thispro- fractionwassavedina125mlNalgenebottleafterthefinesedi- cedure was repeated four times to wash out the hydrochloric mentinthebeakerssettledovernight,andthesupernatantwater acid,hydrogenperoxideandCalgon,aswellastoremovethe was decanted. The coarse (=heavy) sediment residue that re- finerclaysize-fraction.Thecleanedsamplewasthenfilledwith mained in the 1000ml beaker after the 5 minute gravitational filtered water, stirred vigorously, and allowed to settle for 5 settlingperiodwasdriedinanelectricalovenat75°Candthen minutes.Thistimethesupernatantsolutionwassievedthrough savedinalabeledplasticsamplebag. a 25µm mesh and the finer fraction was collected in two 2000mlbeakers.Thisstepwasrepeatedfourtimesoruntilthe Strewnslidesofthe25µmsizefractionweremadefortheentire supernatantwaterwasclearafterfiveminutesofsettling.The set of samples in order to identify productive samples for sili- sampleofsize25µmwassavedina10mlvial.The25µmsize ceous microfossil analysis, and to determine if more chemical 309 P.M.TapiaandD.M.Harwood:UpperCretaceousdiatombiostratigraphyoftheArcticarchipelagoandnortherncontinentalmargin,Canada TEXT-FIGURE5 DiatomstratigraphyofselecteddiatomtaxaintheSlidreFjordsection.Relativeabundances(percentage)oftaxawerecalculatedafterthecombineddata (sumofgreaterandlesserthan25micrometerfractions).Crossesindicaterareoccurrences(usually<1%). treatment was needed. The samples containing siliceous throughout the diatom valves. Finally, these permanent slides microfossilswerethenconcentratedbyfloatingwiththeheavy werecuredunderultravioletlightfor15-20minutes. liquidsodiumpolytungstate(SPT)atadensityof2.2g/cc. TheslideswereexaminedusinganOlympusBH-2Transmitted LightMicroscopewithDifferentialInterferenceContrast.Pho- Thesodiumpolytungstateflotationtechniquerequiresthepre- tomicrographs were taken using B/W Technical Pan Kodak vious chemical treatment in order to release the diatoms from film,ASA25.Datawascollectedatmagnification×500(frac- thesedimentmatrixandcleanthefrustules.Theacid-resistant tion>25µm),and750X(fraction<25µm).Finalidentifications subsamplewasthenresuspendedin10mlofdistilledwater.To were made at magnification ×1250. Specimens were counted beginthefloatation,3.5mlofSPT(=2.2g/cc)wasplacedinthe following the convention stated in Schrader and Gersonde bottom of a 15ml disposable centrifuge tube. The subsample (1978).Atotalof500specimenswerecountedpersample,300 wasresuspendedandthe10mlsuspensionwascarefullyadded inthefraction>25µmand200atthefraction<25µm.Afterthe tothetopoftheSPTinordertopreventmixingofthesetwoso- counting process was completed, the rest of the slide was lutions.Thecentrifugetubewasthenfilledupwithdistilledwa- scanned for rarer diatoms. Several slides contained a limited terandcentrifugedatlowspeed(500rpm)for3minutes. The numberofspecimens,inthiscasethewholeslidewasscanned SPT/waterinterfacewascarefullypipettedoutandplacedinto andthetotalnumberoffrustulestakenintoaccount.Slideswith another centrifuge tube. To remove the SPT from the diatom less than 100 specimen counts should be regarded as highly frustules,theworkingaliquotwasresuspendedin15mlofdis- qualitative. tilledwaterandcentrifugedat1500rpmfor3minutes. Theres- iduewaswashedagain,uptofourtimesoruntilalloftheSPT RESULTS wasremoved. Thecleanedsubsamplewasstoredintoa10ml labeledvial. Thefossilmicrofloraatthestudiedsections TheCanadianArcticsamplesyieldedabundantmarinediatoms, Permanentslidesweremadeforbothsizefractions(greaterand silicoflagellates, radiolarians, chrysophyte statocysts, and pol- lesserthan25µm)usingcleaned,22x40mm,coverslides.The lenandspores.Diatomsarethedominantgrouppresentinthese cover slide was placed on a warm hot plate and six to eight samples and they show compositional changes throughout the drops of distilled water were added. One or two drops of the sections.Silicoflagellatesandchrysophytestatocystswillbethe concentratedsubsamplewereplacedintothewateratthemid- subjectofasubsequentpaper. dleoftheslideandthentwotothreedropsofalcohol(ethanol) were added. Alcohol helped disperse the sample across the SlidreFjordsection.Only5of29samplesfromthemeasured slide.TwotothreedropsofmountingmediumNorlandOptical 260.5m-thick Kanguk Formation contained sufficiently well- Adhesive # 61 (R.I. 1.56), was placed on a clean, labeled, preserved siliceous microfossils for biostratigraphic analysis 25x75mm, microscope slide. The microscope slide was fixed (text-fig. 4, column A, table 2). Six samples from the lowest over the dried cover slip, and then flipped over to warm the 36mcontainedonlyafewoccurrencesofpollenandspores.Si- NorlandOpticalAdhesiveforafewminutesonthehotplateto liceous microfossils were encountered in the interval 39m to reducethemedia’sviscosityandassureeffectiveimpregnation 42.5m(samplesC-34348,andC-34349).Poorpreservationand 310 Micropaleontology,vol.48,no.4,2002 TABLE3 Selecteddiatomdata(totalcounts)fromHoodooDomeSectionofbothsize-fractions(greaterandlesserthan25µm).Preservation:G=Good,M=Mod- erate,P=Poor;RelativeAbundance:A=Abundant,C=Common,F=Few,R=Rare. paucityofdiatomsinsampleC-34349,however,preventsitsin- The diatoms Gladius antiquus, Bilingua sp. 1, and Trochosira clusioninthefinalbiostratigraphicaccount.Intheinterval42.5 denticulatum first appear in the sample C-34348 at 39m to62.5monlyafewsporeswereobserved.Asecondhorizonof (text-fig.5,table2).Basilicostephanussp.1andActinoptychus siliceousmicrofossilsispresentintheintervalfrom62.5to72m heterostrophuswerenotobservedabove72m.TheFirstOccur- (samples C-34351 and C-34353). The interval from 82 to rence Datum (FOD) of Costopyxis antiqua is noted in sample 242.5misbarrenofsiliceousmicrofossils,butsomepollenand C-34351at62.5m,whereastheFODofTrinacriaindefinitais spores were present. A third interval that contains siliceous in C-34369 at 252.5m. Lepidodiscus elegans occurs only in microfossils occurs near the top of the section between 252.5 sample C-34353 at 72m. Common diatom taxa present in this and254.5m(samplesC-34369andC-34371). section are Basilicostephanus sp. 1, Costopyxis schulzii f. 311

Description:
Four sections were examined: (1) Slidre Fjord on Ellesmere Island; (2) Hoodoo Dome on Ellef. Ringnes .. Selected diatom data (total counts) from Hoodoo Dome Section of both size-fractions (greater and lesser than 25µm). Preservation: G= Petroleum Geology, Bulletin, 31(4): 246-281. WATKINS
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.