Upper bounds for the error in some interpolation and extrapolation 1 1 designs 0 2 n a Michel Broniatowski1,Giorgio Celant2, Marco Di Battista2 , J 3 Samuela Leoni-Aubin3 2 ] T Upper bounds for the error in some interpolation and extrapola- S . tion designs Michel Broniatowski1,Giorgio Celant2, Marco Di Battista2 h t , Samuela Leoni-Aubin3 a m 1Universit´e Pierre et Marie Curie, LSTA,e-mail:[email protected] [ 2University of Padua, Department of Statistical Sciences, 3INSA Lyon, ICJ, e-mail: [email protected] 1 v 2 Abstract 5 3 This paper deals with probabilistic upper bounds for the er- 4 ror in functional estimation defined on some interpolation and . 1 extrapolation designs, when the function to estimate is supposed 0 1 to be analytic. The error pertaining to the estimate may depend 1 on various factors: the frequency of observations on the knots, : v the position and number of the knots, and also on the error com- Xi mitted when approximating the function through its Taylor ex- pansion. Whenthenumberofobservations isfixed,thenallthese r a parameters aredetermined by thechoice of the design andby the choice estimator of the unknown function. AMS (2010) Classification: 62K05, 41A5 1 Introduction Consider a function ϕ defined on some open set D ⊂ R and which can be observed on a compact subset S included in D. The problem that we consider is the estimation of this function through some interpolation or extrapolation techniques. This turns out to define a finite set of points s in a domain S˜ included in S and the number of measurement i of the function ϕ at each of these points, that is to define a design P := (s ,n ) ∈ S ×N, i = 0,...,l, S $ S . The points s are called i i i n o 1 e the knots, n is the frequency of observations at knot s and l+1 is the i i number of knots. The choice of the design P is based on some optimality criterion. For example, we could choose an observation scheme that minimize the variance of the estimator of ϕ. ThechoiceofP hasbeeninvestigated bymanyauthors. HoelandLevine and Hoel ([8] and [9]) considered the case of the extrapolation of a poly- nomial function with known degree in one and two variables. Spruill, in a number of papers (see [12], [13], [14] and [15]) proposed a technique for the (interpolation and extrapolation) estimation of a function and its derivatives, when the function is supposed to belong to a Sobolev space, Celant (in [4] and [5]) considered the extrapolation of quasi-analytic functions and Broniatowski-Celant in [3] studied optimal designs for an- alytic functions through some control of the bias. The main defect of any interpolation and extrapolation scheme is its extreme sensitivity to the uncertainties pertaining to the values of ϕ on the knots. The largest the number l +1 of knots, the more unstable is the estimate. In fact, even when the function ϕ is accurately estimated on the knots, the estimates of ϕ or of one of its derivatives ϕ(j) at some point in D may be quite unsatisfactory, due either to a wrong choice of the number of knots or to their location. The only case when the error committed while estimating the values ϕ(s ) is not amplified in i the interpolation procedure is the linear case. Therefore, for any more envolved casethechoice ofl and(s ,n )must behandledcarefully, which i i explains the wide literature devoted to this subject. For example, if we estimate ϕ(v),v ∈ S(cid:31)S, by ϕ\(s ) := ϕ(s )+ε(k), where ε(k) denotes k k the estimation error and S a Tchebycheff set of points S, we obtain e ϕ(v)−ϕ\(sek) ≤ max|ε(k)| Λl(v,sk,0), k (cid:12) (cid:12) (cid:16) (cid:17) (cid:12) (cid:12) where Λl(v,si(cid:12),j) is a functio(cid:12)n that depends on S, the number of knots and on the order of the derivative that we aim to estimate (here 0), and (see [2] and [10] ) e l 1 2k +1 2 max Λ (v,s ,0) := ctg π ∼ ln(l +1) when l → ∞. l k k=0,...,l l+1 4(l+1) π k=0 (cid:18) (cid:19) X If equidistant knots are used, one gets (see [11]) 2l+1 max Λ (v,s ,0) ∼ , γ = 0,577 (Euler-Mascheroni constant). l k k=0,...,l el(lnl +γ) When the bias in the interpolation is zero, as in the case when ϕ is polynomial with known degree, the design is optimized with respect to 2 the variance of the interpolated value (see [8] ). In the other cases the criterion that is employed is the minimal MSE criterion. The minimal MSE criterion allows the estimator to be as accurate as possible but it does not yield any information on the interpolation/extrapolation error. In this paper, we propose a probabilistic tool (based on the concen- tration of measure) in order to control the estimation error. In Section 2 we present the model, the design and the estimators. Section 3 deals with upper bouns for the error. Concluding remarks are given in Section 4. 2 The model, the design and the estimators Consider an unknown real-valued analytic function f defined on some interval D : f : D := (a,b) → R v 7→ f (v). We assume that this function is observable on a compact subset S in- cluded in D, S := [s,s] ⊂ D, and that its derivatives are not observable at any point of D. Let S := s ∈ S,k = 0,...,l be a finite subset of k l+1 elements in the set S. Tnhe points sk are caloled the knots. Observations Y , i = 1,.e..,n are geneerated from the following location- i scale model Y (s ) =f (s )+σE(Z )+ε , j k k j j ε :=σZ −σE(Z ), j = 1,...,n , k = 0,...,l, j j j k where Z is a completely specified continuous random variable, the lo- cation parameter f (v) and the scale parameter σ > 0 are unknown parameters. E(Z),ς respectively denote the mean and the variance of Z, and n is the frequency of observations at knot s . k k Weassumetoobserve(l+1)i.i.d. samples, Y (k) := (Y (n ),...,Y (n )),k = 1 k nk k 0,...,l, and Y (n ) i.i.d. Y (n ), for all i 6= k, i = 0,...,l. i k 1 k The aim is to estimate a derivative of f (v), f(d)(v), d ∈ N, at a point v ∈ (a,s). Let ϕ(v) := f (v)+σE(Z), and consider the Lagrange polynomial l v −s j L (v) := . sk s −s k j j=k,j=0 6 Y We are interested in interpolating (or extrapolating) some derivatives of 3 ϕ, ϕ(d), with d ∈ N, l L ϕ(d) (v) := ϕ(s )L(d)(v). l k sk k=0 (cid:0) (cid:1) X The domain of extrapolation is denoted U := D(cid:31)S. It is convenient to define a generic point v ∈ D stating that it is an observed point if it is a knot, an interpolation point if v ∈ S and an extrapolation point if v ∈ U. For all d ∈ N, for any v ∈ S, the Lagrange interpolation scheme con- verges for the function ϕ(d), that is, for l → ∞, L ϕ(d) (s) → ϕ(d)(s), ∀s ∈ S. l Interpolating the deri(cid:0)vativ(cid:1)e ϕ(d+i)(s ) at a point s ∈ S opportunely ∗ ∗ chosen, a Taylor expansion with order (m−1) of ϕ(d)(v) at point v from s gives ∗ m 1 i T (v) := − (v−s∗) L ϕ(d+i) (s ), s ∈ S, ϕ(d),m,l i! l ∗ ∗ i=0 X (cid:0) (cid:1) and we have lim lim T (v) = ϕ(d)(v), ∀v ∈ D. ϕ(d),m,l m l →∞ →∞ When ϕ(d) ∈ Cα(D), ∀α, l ≥ 2α −3, the upper bound for the error of approximation is given in [1], E := sup ϕ(d)(v)−T (v) ≤ M(m,l,α), t ϕ(d),m,l v D ∈ (cid:12) (cid:12) where M(m,l,α) = A((cid:12)α,l)+B(m), (cid:12) m 1 − 1 A(α,l) := K(α,l) sup ϕ(d+i+α)(s) sup|v −s |i , ∗ i! s S v U Xi=0 (cid:18) ∈ (cid:12) (cid:12) ∈ (cid:19) (cid:12) α (cid:12) π 4 K(α,l) := (s−s) 9+ ln(1+l) , 2(1+l) π (cid:18) (cid:19) (cid:18) (cid:19) |u−s |m ϕ(d+α)(v) ∗ and B(m) := sup . m! v (a,s) (cid:12) (cid:12)! ∈ (cid:12) (cid:12) Theoptimaldesignwrites (n ,s ) ∈ (N\{0})l+1 ×Rl+1, n := l n , n fixed , k k k=0 k where n is the total numbner of experiments and the (l + 1) knots are o P defined by s+s s−s 2k −1 s := − cos π, k = 0,...,l, k 2 2 2l +2 4 with n := n√Pk , [.] denoting the integer part function, and (see k Plk=0√Pk [3] for detailhs) i m m (u−s)α+β P := L(α)(s)L(β)(s) , k = 0,...,l. k (cid:12) α!β! sk sk (cid:12) (cid:12)Xβ=0Xα=0 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) The function(cid:12)ϕ cannot be observed exactly a(cid:12)t the knots. Let ϕ\(s ) k denote the least squares estimate of ϕ(s ) at the knot s and k k l L ϕ\(d+i) (v) := ϕ\(s )L(d+i)(v). (1) l k sk (cid:16) (cid:17) Xk=0 We estimate the d−th derivative of ϕ(v) at v ∈ D as follows m 1 i T (v) := − (v −s∗) L ϕ\(d+i) (s ), s ∈ S. ϕ(d),m,l i! l ∗ ∗ Xi=0 (cid:16) (cid:17) b The knots s are chosen in order to minimize the variance of T (v) k ϕ(d),m,l and it holds b lim lim lim T (v) = ϕ(d)(v), ∀v ∈ D. m l mink=0,...,l(nk)→∞ ϕ(d),m,l →∞ →∞ T (v) is an extrapolation esbtimator when v ∈ U and an interpola- ϕ(d),m,l tion estimator when v ∈ S. Fborafixeddegreel oftheLagrangescheme(1),thetotalerrorcommitted while substituting ϕ(d)(v) by T (v) writes ϕ(d),m,l E ϕ(d)(v) b:= ϕ(d)(v)−T (v). Tot ϕ(d),m,l Fortheinterpolation(cid:0)errorcon(cid:1)cerning ϕ(i+d), wehavethefollowingresult b presented in [6], p.293 : if ϕ(i+d) ∈ Cα(S), ∀α, l ≥ 2α−3, then sup ϕ(d+i)(s)−L ϕ(d+i) (s) ≤ M := K(α,l)sup ϕ(d+i+α)(s) . l 1 s S s S ∈ ∈ (cid:12) (cid:0) (cid:1) (cid:12) (cid:12) (cid:12) This e(cid:12)rror depends on the very(cid:12)choice of the knots a(cid:12)nd is contro(cid:12)lled through a tuning of l. The error due to the Taylor expansion of order (m−1) m 1 i ϕ(d)(v)− − (v −s∗) ϕ(d+i)(s ) ∗ i! i=0 X depends on s , it is a truncation error and it can be controlled through ∗ a tuning of m. 5 Let ϕ[(s ) be an estimate of ϕ(s ) on the knot s and k k k ε(k) := ϕ(s )−ϕ\(s ), k = 0,...,l k k denote the error pertaining to ϕ(s ) due to this estimation. ε(k) clearly k depends on n , the frequency of observations at knot s . k k Finally, when n is fixed, the error committed while extrapolating de- pends on the design {(n ,s ) ∈ (N\{0})l+1 ×Rl+1, k = 0,...,l, n = k k l n }, on m and on l. k=0 k Without loss of generality, we will assume σ = 1. In this case we have Pϕ\(s ) =Y (s ) := Pnj=k1Yj(k). The general case when σ is unknown is k k nk described in [3]. In the next Section we will provide upper bounds for the errors in order to control them. Since ϕ is supposed to be an analytic function, we can consider the extrapolation as an analytic continuation of the function out of the set S obtained by a Taylor expansion from an opportunely chosen point s ∗ in S. So, the extrapolation error will depend on the order of the Taylor expansion and on the precision in the knowledge of the derivatives of the function at s . This precision is given by the interpolation error and ∗ by the estimation errors on the knots. The analyticity assumption also implies thattheinterpolationerror will quickly converge tozero. Indeed, for all integer r, the following result holds: l lim lrsup ϕ(j)(s)− L(j)(s)ϕ(s ) = 0. l s S (cid:12) sk k (cid:12) →∞ ∈ (cid:12) Xk=0 (cid:12) (cid:12) (cid:12) We remark that the ins(cid:12)tability of the interpolation(cid:12) and extrapolation (cid:12) (cid:12) schemes discussed by Runge (1901) can be avoided if the chosen knots form a Tchebycheff set of points in S, or if they form a Feteke set of points in S, or by using splines. Note that in all the works previously quoted the function is supposed to be polynomial with known degree (in [8] and [9]), to belongs to a Sobolev space (see [12], [13], [14] and [15]), or to be quasi analytic (in [4] and [5]), or analytic (in [3]). Moreover, S is chosen as a Tchebycheff set of points in S . Bernstein in[2] affirmedthatpolynomialsofelowdegreearegoodapprox- imations for analytic functions. In the case of the Broniatowski-Celant design ([3]), the double approximation to approach ϕ allows to choose anysubset ofS aspossible interpolationset. So, iftheunknown function is supposed to be analytic, then we can choose a small interpolation set in order to obtain a small interpolation error. 6 3 Upper bounds and control of the error The extrapolation error depends on three kinds of errors: truncation error, interpolation error and error of estimation of the function on the knots. In order to control the extrapolation error, we split an upper bound for it in a sum of three terms, each term depending only on one of the three kinds of errors. In the sequel, we will distinguish two cases: in the first case, we suppose that the observed random variable Y is bounded, in the second case Y is supposed to be a random variable with unbounded support. We suppose that the support is known. 3.1 Case 1: Y is a bounded random variable If τ ,τ (assumed known) are such that Pr(τ ≤ Y ≤ τ ) = 1, it holds 1 2 1 2 |ϕ(v)| ≤ R, where R := max{|τ |,|τ |}. Indeed, E(Y) = ϕ ∈ [−R,R]. 1 2 Let nk Y (k) j=1 j ε(k) := −ϕ(s ). k n P k The variables Y (k),∀j = 1,...,n ,∀k = 0,..,l, are i.i.d., with the same j k bounded support and for all k,E(Y (k)) = ϕ(s ), hence we can apply j k the Hoeffding’s inequality (in [7]): 2ρ2n k Pr{|ε(k)| ≥ ρ} ≤ 2exp − . (τ −τ )2 (cid:18) 2 1 (cid:19) In Proposition 1, we give an upper bound for the extrapolation error denoted by E . This bound is the sum of the three terms, M , ext Taylor controlling theerror associatedto thetruncationoftheTaylor expansion which defines ϕ(d), M , controlling the interpolation error and M , interp est describing the estimation error on the knots. Proposition 1 For all α ∈ N \ {0}, if ϕ(i+d) ∈ Cα(a,b), l ≥ 2α − 3, then, ∀u ∈ U, |E (u)| ≤ M +M +M , where ext Taylor interp est m (d+m)! s −u 1 ∗ M := R , Taylor m! b−a (b−a)d (cid:18) (cid:19) α 4 π K(l,α) := 9+ ln(1+l) , π 2(1+l) (cid:18) (cid:19)(cid:18) (cid:19) m 1 i R − s∗ −u (d+i+α)! M := K(l,α) , interp (s−s)d+α s−s i! i=0 (cid:18) (cid:19) X 7 m 1 l i Λ(l,m) := − (s∗ −u) L(d+i)(s ) , i! sk ∗ i=0 k=0 XX (cid:12) (cid:12) (cid:12) (cid:12) M := Λ(l,m) max |ε(k)| . est k=0,...,l (cid:18) (cid:19) Proof. ByusingtheCauchy’sTheoremonthederivativesoftheanalytic functions, we obtain ϕ(d)(u)−ϕ\(d)(u) = ϕ(d)(u)+m−1 ϕ(d+i)(s∗) (u−s )i −m−1 ϕ(d+i)(s∗) (u−s )i −ϕ\(d)(u) ∗ ∗ i! i! (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Xi=0 Xi=0 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) ≤ ϕ(d)(u)−m−1 ϕ(d+i(cid:12))(s∗) (u−s )i + m−1 ϕ(d+i)(s∗) (u−s )i −ϕ\(d)(u) (cid:12) ∗ ∗ i! i! (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Xi=0 (cid:12) (cid:12)Xi=0 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) ≤ (cid:12)(cid:12)supv∈U ϕ(d+m)(v) (s∗ −u)m+ m−(cid:12)(cid:12)1 ϕ(cid:12)(cid:12)(d+i)(s∗) (u−s∗)i −m−1 ϕ(\d+i)(s∗(cid:12)(cid:12)) (u−s∗)i m! i! i! (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12)Xi=0 Xi=0 (cid:12) (cid:12) (cid:12) ≤ R(m+d)! s∗ −u m + m−(cid:12)(cid:12)1 (s∗ −u)i ϕ(d+i)(s )−ϕ(\d+i)(s ) (cid:12)(cid:12) (b−a)dm! b−a (cid:12) i! ∗ ∗ (cid:12) (cid:18) (cid:19) (cid:12)Xi=0 (cid:16) (cid:17)(cid:12) (cid:12) (cid:12) ≤ R(m+d)! s∗ −u m +(cid:12)(cid:12) m−1 (s∗ −u)i ϕ(d+i)(s )−ϕ(\d+i)(s ) (cid:12)(cid:12) (b−a)dm! b−a i! ∗ ∗ (cid:18) (cid:19) Xi=0 (cid:12) (cid:12) (cid:12) (cid:12) ≤ M +m−1 (s∗ −u)i ϕ(d+i)(s∗)− (cid:12) lk=0Ls(dk+i)(s∗)ϕ(sk) (cid:12) Taylor Xi=0 i! (cid:12)(cid:12)+ lk=0Ls(dk+i)P(s∗)ϕ(sk)−ϕ(\d+i)(s∗)(cid:12)(cid:12) (cid:12) (cid:12) (cid:12) P (cid:12) (cid:12) (cid:12) m 1 i l ≤ M + − (s∗ −u) ϕ(d+i)(s )− L(d+i)(s )ϕ(s ) + Taylor i! (cid:12) ∗ sk ∗ k (cid:12) Xi=0 (cid:12) Xk=0 (cid:12) m 1 l i (cid:12) (cid:12) − (s∗ −u) L(d+i)(s )(cid:12)(cid:12) ϕ(s )−Y (k) (cid:12)(cid:12) i! sk ∗ k i=0 k=0 XX (cid:12) (cid:12) (cid:12) (cid:12) m 1 i ≤ M + − (s∗ −u) K(l,α) sup ϕ(d+i+α)(s) Taylor i! s S Xi=0 (cid:18) ∈ (cid:12) (cid:12)(cid:19) m 1 l i (cid:12) (cid:12) + − (s∗ −u) L(d+i)(s ) ϕ(s )−Y (k) i! sk ∗ k i=0 k=0 XX (cid:12) (cid:12) (cid:12) (cid:12) 8 m 1 i R − (s∗ −u) (d+i+α)! ≤ M + K(l,α) Taylor (s−s)d+α i! (s−s)i i=0 X m 1 l i + − (s∗ −u) L(d+i)(s ) ϕ(s )−Y (k) i! sk ∗ k i=0 k=0 XX (cid:12) (cid:12) (cid:12) (cid:12) m 1 l i ≤ M +M + − (s∗ −u) L(d+i)(s ) ϕ(s )−Y (k) Taylor interp i! sk ∗ k i=0 k=0 XX (cid:12) (cid:12) (cid:12) (cid:12) m 1 l i ≤ M +M + max |ε(k)| − (s∗ −u) L(d+i)(s ) Taylor interp k=0,...,l i! sk ∗ (cid:18) (cid:19) i=0 k=0 XX (cid:12) (cid:12) = M +M +M . (cid:12) (cid:12) Taylor interp est Proposition2yields thesmallest integer such thattheerrorofestimation is not greater than a chosen threshold with a fixed probability. Proposition 2 ∀η ∈ [0,1],∀ρ ∈ R+,∃n ∈ N such that ρ Pr max |ε(k)| ≥ ≤ η. k=0,...,l Λ(l,m) (cid:18) (cid:19) Proof. If, ∀k |ε(k)| ≥ ρ , then max |ε(k)| ≥ ρ . We have Λ(l,m) k=0,...,l Λ(l,m) ρ l ρ l 2ρ2 Pr max |ε(k)| ≥ ≤ Pr |ε(k)| ≥ ≤ 2exp − n . k=0,...,l Λ(l,m) Λ(l,m) (Λ(l,m))2 k (cid:18) (cid:19) k=0 (cid:18) (cid:19) k=0 (cid:18) (cid:19) Y Y So, we can choose 2 (l +1)ln2−lnη Λ(l,m)(τ −τ ) 2 1 n = . ∗ 2 ρ " # (cid:18) (cid:19) Proposition 3 gives an upper bound for the extrapolation error that dependson(l,m,n). Werecallthatthenumberofknotsl+1controlsthe interpolation error, m denotes the number of terms used in the Taylor expansion for ϕ(d) and n is the total number of observations used to estimate ϕ(s ),k = 0,..,l. Hence n controls the total estimation error. k Proposition 3 With the same hypotheses and notations, we have that ∀(ρ ,ρ ,ρ ) ∈ R(R+)3, |E (u)| ≤ ρ +ρ +ρ m l n ext m l n with probability η. η depends on the choice of (ρ ,ρ ,ρ ), which depends m l n on (m,l,n). 9 Proof. When (ρ ,ρ ) is fixed , we can choose (m,l) as the solution of m l the system: (M ,M ) = (ρ ,ρ ). Taylor interp m l We end the proof by taking ρ = ρ and n = n . n Λ(l,m) ∗ In the case of the estimation of ϕ(u) (i.e., when d = 0) we obtain for the couple (m,n) the explicit solution lnρ −lnR m m = , ln(s −u)−ln(b−a) ∗ 2 m 1 l i n = (l +1)ln2−lnη Λ(l)(τ2 −τ1) ,Λ(l) = − (s∗ −u) L(i)(s ) . 2 ρ i! sk ∗ " # (cid:18) (cid:19) i=0 k=0 XX (cid:12) (cid:12) When l ≥ 2α−3, l is the solution of the equation (cid:12) (cid:12) α m 1 i 4 π R − s∗ −u (i+α)! ρ = 9+ ln(1+l) . l α π 2(1+l) (s−s) s−s i! (cid:18) (cid:19)(cid:18) (cid:19) i=0 (cid:18) (cid:19) X Theorem 4, due to Markoff, provides an uniform bound for the deriva- tives of a Lagrange polynomial. Theorem 4 (Markoff) Let P (s) := a sj be a polynomial with real l j j coefficients and degree l. If sup |P (s)| ≤ W, then for all s in intS s S l ∈ P and for all l in N, it holds l2(l2 −1)... l2 −(j −1)2 2 j (j) P (s) ≤ W. l (2j −1)!! (s−s) (cid:0) (cid:1) (cid:18) (cid:19) (cid:12) (cid:12) (cid:12) (cid:12) Whenap(cid:12)pliedtot(cid:12)heelementaryLagrangepolynomial,itisreadilychecked that W = π. Indeed, |L (s)| = (−1)ksin 22kl+−21π cos((l+1)θ) ≤ sk (cid:12)(cid:12) l+(cid:0)1 (cid:1)cosθ−cos 22kl+−21π (cid:12)(cid:12) (cid:12) (cid:12) ≤ si(cid:12)(cid:12)n 22kl+−21π |cos((l+1)θ)| (cid:0) ≤ (cid:1)(cid:12)(cid:12) l+1 cosθ−cos 2k 1π (cid:12) (cid:0) (cid:1)(cid:12) 2l+−2 (cid:12) (cid:12) sin 2k 1π ((cid:12)l+1) θ− 2(cid:0)k 1π (cid:1)(cid:12) ≤ 2l+−2 (cid:12) 2l+−2 (cid:12) = π. l +1 1 sin 2k 1π θ− 2k 1π (cid:12) (cid:0) (cid:1)(cid:12) π 2l+−2(cid:12) 2l+−(cid:12)2 (cid:12) (cid:12) (cid:12) (cid:12) We used (cid:0) (cid:1)(cid:12) (cid:12) (cid:12) (cid:12) 2k −1 2k −1 |cos((l+1)θ)| = cos((l+1)θ)−cos (l+1) π ≤ (l+1) θ− π 2l +2 2l+2 (cid:12) (cid:18) (cid:19)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 10 (cid:12) (cid:12) (cid:12)