ebook img

UPADHYAY-DISSERTATION-2014 PDF

422 Pages·2014·16.84 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview UPADHYAY-DISSERTATION-2014

ON THE ROLE OF DEFECT INCOMPATIBILITIES ON MECHANICAL PROPERTIES OF POLYCRYSTALLINE AGGREGATES: A MULTI-SCALE STUDY A Thesis Presented to The Academic Faculty by Manas Vijay Upadhyay In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Mechanical Engineering Georgia Institute of Technology December 2014 Copyright (cid:13)c 2014 by Manas Vijay Upadhyay ON THE ROLE OF DEFECT INCOMPATIBILITIES ON MECHANICAL PROPERTIES OF POLYCRYSTALLINE AGGREGATES: A MULTI-SCALE STUDY Approved by: Professor Laurent Capolungo, Advisor Professor Claude Fressengeas School of Mechanical Engineering Universit´e de Lorraine Georgia Institute of Technology LEM3/CNRS France Professor David McDowell Professor Hamid Garmestani Department of Mechanical Department of Materials Science and Engineering & Materials Science and Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Professor Mohammed Cherkaoui Date Approved: 1 October 2014 Department of Mechanical Engineering Georgia Institute of Technology To my parents, Vijay Ishwarlal Upadhyay and Shweta Vijay Upadhyay, and my sister, Trusha Vijay Upadhyay, for their unwavering support throughout this journey. iii ACKNOWLEDGEMENTS I would like to thank: my dissertation advisor and mentor Dr. Laurent Capolungo for his enthusiastic support for my work during the entire duration of this thesis. My colleagues Pierre-Alexandre Juan, Nicolas Bertin, Aaron Dunn and Cameron Sobie who have been the best lab mates and friends that one can ask for. My collaborators Dr. VincentTaupinandDr. ClaudeFressengeasfortheirpatienceandvaluableinputs during the various discussions that we had over the past five years. My dissertation reading committee for their valuable inputs on the thesis objectives. The staff at both Georgia Tech Lorraine and Georgia Tech Atlanta for their help and for being my family away from home. The Georgia Tech library department for always providing me with the literature that I asked for. This PhD has resulted in several international collaborations for which I am very grateful to Dr. Laurent Capolungo who has always encouraged me to pursue them. I would like to thank them for their confidence in my work, especially Dr. Ricardo Lebensohn. And last but not the least, I would like to thank my parents Vijay Ishwarlal Upadhyay and Shweta Vijay Upadhyay, and my sister Trusha Vijay Upadhyay for their belief in my capabilities and their unwavering support during the pursuit of PhD. iv TABLE OF CONTENTS DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iv LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Scope of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3.1 Superscripts and subscripts . . . . . . . . . . . . . . . . . . . 12 1.3.2 Mathetical notations and formulae . . . . . . . . . . . . . . . 12 1.3.3 Field variables . . . . . . . . . . . . . . . . . . . . . . . . . . 13 II INCOMPATIBLE THEORY OF LINE CRYSTAL DEFECTS . . 15 2.1 Discrete line defects . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 Statics of discrete dislocations . . . . . . . . . . . . . . . . . 21 2.1.2 Statics of discrete disclinations . . . . . . . . . . . . . . . . . 31 2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.2.1 Geometric equivalence between disclinations and dislocations 40 2.2.2 Connecting disclinations to crystallography: State of the art 48 2.2.3 Experimental observation of disclinations . . . . . . . . . . . 61 2.2.4 Need for a fully continuous approach . . . . . . . . . . . . . . 64 2.3 Continuously distributed line defects . . . . . . . . . . . . . . . . . . 68 2.3.1 Geometric fields of a compatible body . . . . . . . . . . . . . 68 2.3.2 Geometric fields of continuously distributed dislocations . . . 72 v 2.3.3 Geometric fields of continuously distributed dislocations and disclinations . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 2.4 Understanding incompatibility . . . . . . . . . . . . . . . . . . . . . 85 2.5 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . 92 2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 III MULTI-SCALE STATIC AND DYNAMIC FIELD THEORY OF CONTINUOUSLY DISTRIBUTED DEFECTS . . . . . . . . . . . 96 3.1 Higher order/grade multi-scale elastic constitutive laws . . . . . . . 97 3.1.1 Elastic constitutive laws for a simply connected body sub- jected to tractions and moments . . . . . . . . . . . . . . . . 98 3.1.2 Scale dependence of higher order elastic constants: non-locality108 3.1.3 Classification of higher order/grade elastic laws . . . . . . . . 109 3.1.4 Isotropic case - elasticity tensors and constitutive relationships 118 3.2 Fine scale static field theory of disclinations and dislocations . . . . 130 3.2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . 130 3.3 Fine scale dynamic field theory of disclinations and dislocations . . . 132 3.3.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . 132 3.4 Incompatibilities at meso-scale . . . . . . . . . . . . . . . . . . . . . 141 3.5 Meso-scale dynamic field disclination and dislocation mechanics . . . 142 3.5.1 Phenomenological meso-scale fields . . . . . . . . . . . . . . . 143 3.5.2 Plasticity beyond dislocations . . . . . . . . . . . . . . . . . 149 3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 IV TOWARDS A CONTIUOUS STRUCTURE SENSITIVE MODEL OF GRAIN BOUNDARIES: APPLICATIONS TO <001> SYM- METRIC TILT GBS AND TJS . . . . . . . . . . . . . . . . . . . . . 155 4.1 Incompatibility contribution to energy of <001> STGBs . . . . . . . 156 4.1.1 Disclination structural unit model . . . . . . . . . . . . . . . 156 4.1.2 GB energy in discrete static case: contribution of compatible elastic strains and curvatures . . . . . . . . . . . . . . . . . . 163 vi 4.1.3 GB energy in continuous dynamic case: contribution of in- compatible elastic strains and curvatures . . . . . . . . . . . 166 4.1.4 Continuous modelling at interatomic scale: rationalization . . 168 4.2 TJs from <001> STGBs . . . . . . . . . . . . . . . . . . . . . . . . 171 4.2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 4.2.2 Compatibility conditions . . . . . . . . . . . . . . . . . . . . 174 4.2.3 Relationship between TJ geometry and excess energy . . . . 180 4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 V TOWARDS A CRYSTAL PLASTICITY MODEL BEYOND DIS- LOCATIONSLIP:MESO-SCALEAPPLICATIONSTOFCCPOLY- CRYSTALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 5.1 Characterizing the microstructure: interfacial polar defect densities and curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 5.2 PMFDDM using a continuous fast Fourier transform technique . . . 201 5.2.1 Modelling framework . . . . . . . . . . . . . . . . . . . . . . 202 5.2.2 Numerical scheme . . . . . . . . . . . . . . . . . . . . . . . . 206 5.3 Capturing curvature contribution to polycrystalline response: strategy 213 5.3.1 Microstructures: elastic/plastic properties and geometry . . . 213 5.3.2 Characterizing microstructures with initial curvatures . . . . 216 5.3.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . 220 5.3.4 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 5.4 Benchmarking and validation of PMFDDM FFT with initial curvatures223 5.4.1 Comparison with EVP FFT . . . . . . . . . . . . . . . . . . 223 5.4.2 Gibbs phenomenon: correction using DFT . . . . . . . . . . 225 5.5 Pure elastic tensile loading: impact of initial curvatures on local elas- tic response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 5.6 Relaxationofinitialstresses: understandingtheroleofcurvatureplas- ticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 5.6.1 Strain plasticity . . . . . . . . . . . . . . . . . . . . . . . . . 244 5.6.2 Combined strain and curvature plasticity . . . . . . . . . . . 247 vii 5.7 Uniaxial tension: impact of residual curvature on stress-strain response253 5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 VI VIRTUAL DIFFRACTION: MULTI-SCALE CHARACTERIZA- TION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 6.1 Virtual diffraction peaks from a defected crystal: theoretical review . 261 6.2 A new average-strain based Fourier method . . . . . . . . . . . . . . 268 6.3 Establishing domains of applicability . . . . . . . . . . . . . . . . . . 275 6.3.1 Computational methodology . . . . . . . . . . . . . . . . . . 275 6.3.2 Applications to Dislocations in Single Crystal Microstructures 278 6.3.3 Dislocation discontinuity surface cut . . . . . . . . . . . . . . 292 6.4 Diffraction as a characterization technique . . . . . . . . . . . . . . . 295 6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 VIICONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 APPENDIX A — G-DISCLINATIONS: ELASTIC LAWS . . . . . 306 APPENDIX B — HIGHER ORDER ELASTICITY TENSORS . 313 APPENDIX C — MULTI-SCALE DESCRIPTIONS OF INTER- FACES IN CONTINUOUS MEDIA . . . . . . . . . . . . . . . . . . 320 APPENDIX D — KELVIN DECOMPOSITION OF AN ELASTIC- ITY TENSOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332 APPENDIX E — STATIC FDDM FFT IN HETEROGENEOUS ELASTICITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 APPENDIX F — DISCRETE FOURIER TRANSFORMS . . . . 348 APPENDIX G — PMFDDM ALGORITHM . . . . . . . . . . . . . 357 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 viii LIST OF TABLES 1 Free energy density and elastic laws of linear compatible models . . . 112 2 Free energy density and elastic laws of linear incompatible models . . 115 3 Isotropic elastic laws for compatible and incompatible media . . . . . 126 4 Structural unit decomposition of symmetric tilt GBs about the [001] axis158 5 CharacteristiclengthofthemajorityandminorityunitsandtheFrank’s vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 6 Legend for flowchart 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 211 7 Simulations to highlight the contribution of residual curvatures on the local and bulk mechanical response of nc materials . . . . . . . . . . . 222 8 Green’s function and fictive body force . . . . . . . . . . . . . . . . . 345 9 Legend for algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 357 ix LIST OF FIGURES 1.1 Microstructure of nickel discs subjected to high pressure torsion for (a) the central part of the disk after 5 rotations at 1 GPa pressure, (b) the edge of the disk after 5 rotations at 1 GPa and (c) the edge of the disk after 5 rotations at 6 GPa: Inset are the selective area electron diffraction patterns that were taken with an aperture size of 1.8 µm. (Adapted from Zhilyaev and Langdon et al. [483]) . . . . . . . . . . . 4 1.2 (a) View of the region along the Σ9 GB including the TJ and the quadruple point. Different boundaries are indicated, (b) Rigid body rotation measured in the form of a line profile along the Σ9 boundary and averaged over the width of the box. Two gradients of opposite sign emerge from the TJ and the quadruple point, respectively. The dotted line indicates the average grain misorientation. Due to the wavy character of the Σ9 boundary the rigid body rotation occurs as a periodically modulated signal along its length. Note the jump in rigid body rotation at ≈ 0.6 nm (adapted from R¨osner et al. [341]). . . . . 6 1.3 Schematic of different length scales and their associated plasticity. (Adapted from Cherkaoui and Capolungo [72]) . . . . . . . . . . . . . 6 2.1 Volterra’s dislocations and disclinations (adapted from Romanov and Kolesnikova [333]). Note here that |Ω(cid:126)| = ω . . . . . . . . . . . . . . . 17 2.2 Negative wedge disclination of strength |Ω(cid:126)| = −ω inserted into the region between the cut faces ABA’B’ of figure 2.1 . . . . . . . . . . . 19 2.3 A curved dislocation line l with a Burgers vector b in an infinite con- tinuous medium, bounded by an arbitrarily shaped defect surface S and encircled by an arbitrarily shaped Burgers circuit λ, traverses the Burgers surface σ at an arbitrary angle. The grey and black dotted arrows indicate the possible extensions of S and l, respectively. The line direction and the sense of λ make the crossings between l and σ negative according to the right-hand rule. . . . . . . . . . . . . . . . . 23 2.4 Semi-infinite defect surface S along the −x axis and bounded by the infinitelylongstraightdefectalongthez-axisin(a)3-dimensions. Blue arrows indicate the directions of infinite extension of S and the red dots indicate the critical points of intersection of the surface with the coordinateaxes. (b)z = 0planeshowingthedefectsurfacerepresented as a semi-infinite line bounded at the origin and extending along the −x axis. φ defines the angular position of the point ρ in the xy plane 25 x

Description:
2.36 Understanding incompatibility as interpreted in the work of Acharya .. ceived by Dr. Richard Feynman in 1950's, three decades before its Nanotechnology has been successfully implemented in many diverse fields with ap-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.