Astronomy&Astrophysicsmanuscriptno.astroph-castelletti (cid:13)cESO2016 January20,2016 − Unveiling the origin of HESS J1809 193 G.Castelletti1,,E.Giacani1,2,andA.Petriella1,3 1 InstitutodeAstronomíayFísicadelEspacio(IAFE),UBA-CONICET,CC67,Suc.28,1428BuenosAires,Argentina e-mail:[email protected] 2 FADU,UniversityofBuenosAires,BuenosAires,Argentina 3 CBC,UniversityofBuenosAires,BuenosAires,Argentina Received<date>;Accepted<date> 6 1 0 ABSTRACT 2 Aims.ThemaingoalofthispaperistoprovidenewinsightsontheoriginoftheobservablefluxofγraysfromHESSJ1809−193 n usingnewhigh-qualityobservationsintheradiodomain. a Methods.WeusedtheExpandedVeryLargeArray(nowknownastheKarlG.JanskyVerylargeArray,JVLA)toproduceadeep J full-synthesisimagingat1.4GHzofthevicinityofPSRJ1809−1917.Thesedatawereusedinconjunctionwith12COobservations 9 fromtheJamesClerkMaxwellTelescopeinthetransitionlineJ=3−2andatomichydrogendatafromtheSouthernGalacticPlane 1 SurveytoinvestigatethepropertiesoftheinterstellarmediuminthedirectionofthesourceHESSJ1809−193. Results.Thenewradiocontinuumimage,obtainedwithasynthesizedbeamof8′′×4′′andasensitivityof0.17mJybeam−1,reveals ] withunprecedented detailalltheintensitystructuresinthefield.NoradiocounterparttotheobservedX-rayemissionsupposedto E beapulsarwindnebulapoweredbyPSRJ1809−1917isseeninthenewJVLAimage.Wediscoveredasystemofmolecularclouds H ontheedgeofthesupernovaremnant(SNR)G11.0−0.0shockfront,whichispositionallycoincidentwiththebrightestpartofthe TeVsource HESSJ1809−193. Wedetermine, onthebasisof kinematicandmorphological evidences, aphysical linkoftheSNR . h withthecloudsforwhichweestimatedatotal(molecularplusatomic)massof∼3×103 M andatotalprotondensityintherange ⊙ p 2-3×103cm−3. - Conclusions.Weproposeasthemostlikelyoriginoftheveryhigh-energyγ-rayradiationfromHESSJ1809−193ahadronicmech- o anismthroughcollisionsofionsacceleratedattheSNRG11.0−0.0shockwiththemolecularmatterinthevicinityoftheremnant. r st Keywords. ISM:individualobjects:HESSJ1809−193-ISM:supernovaremnants:G11.0−0.0-ISM:cloudsISM-Radiocontinuum: a general [ 1 v1. Introduction significanceconsiderablytoavaluewellabove10σ.Thedetec- 2 tionoftheTeVsourceoccursinanareaofradius0◦.25±0◦.02. 6Sincetheirdiscovery,Galacticγ-raysourceshavebeenlinkedto Fitting theexcessmap with a 2D symmetricGaussian, Renaud 9a variety of astrophysicalphenomena like X-ray binaries, star- etal.(2008)estimateditsbest-fitpositionatR.A.=18h09m52s, 4forming material, remnants of supernova explosions, and pul- Dec.=−19◦23′42′′(J2000.0). 0sarwindnebulae(PWNs),amongothers(deNaurois2015).The .importanceofabroadbandapproachusingmultiwavelengthob- The peak of the VHE emission lies about 6′ to the south 1 0servations for understanding the γ-ray emission processes has of PSR J1809−1917, a middle-aged (τ =51 kyr) and energetic 6beenfirmlydemonstratedoverthecourseof thelast fewyears. (spin-downluminosityE˙=1.8×1036ergs−1)82.7msradiopul- 1Good examplesof this class of studies performedespecially in sar, discovered during the Parkes Multibeam Pulsar Survey of :the radio and X-rays bands are those presented by Aharonian the Galactic Plane (Morris et al. 2002). Using dispersion mea- v etal.(2008),H.E.S.S.Collaborationetal.(2011),Gotthelfetal. suredata,distancesof∼ 3.5and∼ 3.7kpcwerederivedtothis i X(2014),ontheγ-raysourcesnamedHESSJ1713−381(linkedto pulsar by Cordes & Lazio (2002) and Morris et al. (2002), re- rthesupernovaremnant(SNR)CTB37B),HESSJ1731−347(in spectively. In the X-ray domain, on the basis of Chandra ob- aSNRG353.6−0.7),andHESSJ1640−465(inPSRJ1640−4631, servations, Kargaltsev & Pavlov (2007) reported the detection SNRG338.3−0.0),respectively.Surprisingly,thereisstillasig- of emission from PSR J1809−1917 and synchrotron emission nificantfractionof casesforwhich theproductionmechanisms fromtheassociatedpulsarwindnebula.TheoverallX-raymor- ofγrayshasnotbeenestablished1. phology of the nebula is dominated by a bright inner compo- In this paper we focus on the very high-energy (VHE) nent, 3′′ ×12′′ in diameter,elongatedin the north-southdirec- sourceHESSJ1809−193.Itwasdiscoveredduringthesystem- tion(withthepulsarclosetoitssouthend),whichinturnisim- atic search for VHE γ radiation from pulsars in the Galactic mersed in a halo of lower surface brightness ∼ 20′′ × 40′′ in plane survey performedby the High Energy Stereoscopic Sys- size and elongatedin the same direction. The energyspectrum tem (H.E.S.S.)Collaboration(Aharonianet al. 2007).Since its of the PWN is characterized by a power law index Γ = 1.4, firstdetection,newdatawererecordedincreasingthe detection while its luminosity is L ∼ 4 × 1032 erg s−1 between 0.8 and 7 keV at a distance of 3.5 kpc. The X-ray nebula is also em- Sendoffprintrequeststo:G.Castelletti beddedina fainterbutstill clearly detectableemission thatex- 1 For alist of the discovered VHE γ-raysources see the online TeV tends∼ 4′ southwardofthepulsar(Kargaltsev&Pavlov2007). γ-raycatalogTeVCathttp://tevcat.uchicago.edu. Lateron,astudyperformedwiththeSuzakusatelliteconfirmed Articlenumber,page1of7 A&Aproofs:manuscriptno.astroph-castelletti theexistenceofdiffusenon-thermalX-rayemissionawayfrom Table1.SummaryofJVLAobservations the pulsar up to ∼ 20′ (Anada et al. 2010) in the direction of HESSJ1809−193.Onthebasisofthisdetectionalongwiththe factthatthepulsarisenergeticenoughtopowerthebulkofthe Configuration Date Hours observed γ-ray emission, PSR J1809−1917 and its nebula are C 2012Feb5 1.5 considered the most likely counterpartto HESS J1809−193 to C 2012Feb18 1.5 date. The offset of the VHE centroid from the pulsar position B 2012Jun20 1.5 isnotatypicalasis exemplifiedbyVelapulsarPSR B0833−45 B 2012Jun21 1.0 associated with HESS J0835−455 (Aharonian et al. 2006a) and PSR B1823−13 with HESS J1825−137 (Aharonian et al. 2006b).ThisPWNeoffsetcanbeexplainedbyeitherahighspa- tial velocity of the pulsar (van der Swaluw et al. 2004) or the evolution of the SNR blastwave into an inhomogeneous inter- targetwas observedat intervals of ten minutes, each bracketed stellarmedium(ISM).Thus,anasymmetricreverseSNRshock by the phase calibrator source J1834−1237.The standard cali- reachesonesideofthePWNsoonerthantheotherside,crushing brator3C286wasusedforfluxandbandpass.Thefluxdensity thePWN(Blondinetal.2001).Thisscenariohasbeenproposed scalewassetaccordingtothePerley-Butlercoefficientsderived forthe PSRJ1809−1917/HESSJ1809−193system(Kargaltsev attheJVLAin2010. &Pavlov2007)andcouldbetestedthroughthedetectionofra- Data processing for each observing run of the JVLA was dioemissionfromtherelicelectronsofthecrushedPWN. fullyperformedwith the CommonAstronomySoftwareAppli- Remarkably, the presence of other possible sites of ener- cations(CASA)package.Foreachdataset,afterupdatingthean- geticparticlessuchasradiosupernovaremnantsandHIIregions tennapositionsandremovingobviouslycorrupteddatabyhand, within the extension of HESS J1809−193 hampers a decisive we determine appropriate complex antenna gains for the cali- conclusionontheoriginoftheγraysandmakesitnecessaryto brators, which were then applied to the target data. The final revisethePWNscenarioconsideredfortheVHEsource. calibratedvisibility data fromall the available observationsfor Inthispaper,wereportonnewhigh-qualitysynthesisimag- eachconfigurationwerecombinedintoasingleuv-dataset,be- ing obtained from observations carried out with the Expanded forestartingtheimagingprocess.Duringdeconvolutionweem- Very Large Array (or the Karl G. Jansky Very Large Ar- ployed the Multi-Scale Multi-Frequency Synthesis imaging al- ray as it is now commonly known) of a large region toward gorithm(Rau&Cornwell2011)tosimultaneouslydealwiththe HESS J1809−193.The purposesof our research are the detec- multiple scales and the variationsof the spectral indices of the tion of the radio counterpartto the proposedX-ray PWN pow- sourcesinthefield.Inaddition,weusedtheCASAimplementa- ered by PSR B1809−1917and/or any trace of the alleged host tionoftheW-Projectionalgorithmtocorrectfortheskycurva- SNR of this pulsar,aswell as the identificationof otherpoten- ture.TheimagingprocesswasperformedbyadoptingtheBriggs tialparticleacceleratorsinthefieldasalternativecandidatesthat robustparameterequalto 0,a compromisebetweenthe natural produce the VHE γ-ray emission. Additionally, we outline the anduniformweightingschemesofvisibilities. discoveryofmolecularmaterialadjacenttotheSNRG11.0−0.0 AftercombiningthedatafromtheCandBconfigurationsthe well within the perimeter of HESS J1809−193and analyze its resultingFWHMofthesynthesizedbeamis8′′.3×4′′.4,P.A.=- relationship with the production of the detected γ-ray photons 169◦.62, and the noise level is 0.17 mJy beam−1. The final ra- throughahadronicmechanism. dio map of the field is shown in Fig. 1. This is the first high- resolution image of the region towards HESS J1809−193 that 2. Data providesunprecedentedsensitivitytotheradioemissionsurpass- ingbymorethananorderofmagnitudethesensitivityofavail- 2.1.Newradioobservations able radio images at the same frequency.As can be seen from thisfigure,thisisacomplexregionofourGalaxy,fullofSNRs The radio continuum observations at L-band were performed andHIIregions,allofthemindicatedinthefigure. under the shared-riskcommissioning phase with the Expanded Very Large Array (EVLA2) of the National Radio Astronomy Observatory3initsBandCarrayconfigurationsassummarized 2.2. Surroundingmedium inTable1(programcode12A-166).Thephasecenteroftheob- servationswaslocatedatR.A.=18h09m43s,Dec.=−19◦17′38′′ The interstellar medium properties of the region around (J2000.0).Thecorrelatorwasconfiguredtogivea1GHzwide- HESSJ1809−193wereinvestigatedusingtheneutralhydrogen band in full polarization. The baseband was comprised of six- (HI) data from the Southern Galactic Plane Survey (McClure- teen64MHzsub-bandsorspectralwindows(SPWs)containing Griffithsetal.2005)whichmapstheatomicgaswithanangular 64frequencychannels.BothinB-andC-arraydata,significant resolution of 2′, a velocity resolution of 0.82 km s−1, and an interferencewasfoundespeciallyaffectingtheSPWsinthefre- rmssensitivityof1K.Wealsoexploredthe12COJ=3−2tran- quency range ∼1.5-1.7 MHz, which was entirely removed. In sition in the region using observations extracted from the data addition, ten channels at the edges of the SPWs were flagged archive of the James Clerk Maxwell Telescope (JCMT, Mauna owingtotheroll-offofthedigitalfiltersinthesignalchain.Our Kea, Hawaii). The observations (project ID: M10AU20) were obtained using the HARP-ACSIS instrument and have angular 2 Hereafter,weusetheacronymJVLAtorefertoeitherdataorimag- and spectral resolutions of 14′′ and 0.42 km s−1, respectively. ing products obtained from the Expanded Very Large Array observa- WeusedthereduceddataproducedbythestandardORAC-DR tionscarriedoutunderourprogramcode12A-166. 3 TheNationalRadioAstronomyObservatory(NRAO)isafacilityof pipelines,whicharepresentedinunitsofcorrectedantennatem- theNationalScienceFoundationoperatedbyAssociatedUniversities, peratureTA∗. To convertto main beam temperatureTmb, we ap- Inc. under cooperative agreement with the National Science Founda- plied the relation Tmb = TA∗/ηmb, where ηmb is the main beam tion. efficiency.FollowingBuckleetal.(2009),weusedηmb =0.6. Articlenumber,page2of7 G.Castellettietal.: UnveilingtheoriginofHESSJ1809−193 0.38 0.39 0.42 0.47 0.54 0.64 0.75 0.88 1.03 1.21 1.40 0 0 0: 0 9: 1 - SNR G11.4-0.1 0 0 5: 0 0 0 0: 1 SNR G11.1+0.1 0 0) 5:0 0. 1 PSR J1809-1917 0 0 2 J n ( 00 HII G011.034+0.062 o 0: HHEESSSS JJ11880099--119933 ati 2 n HII G011.034+0.061 cli De 00 SNR G11.0-0.0 HII G010.957+00.022 5: 2 0 0 0: 3 HII G010.877+00.084 0 0 5: 3 0 0 0: 4 11:00 30.0 18:10:00 30.0 09:00 08:30 Right Ascension (J2000.0) Fig.1.Radiocontinuumimageat1.4GHzoftheregionsurroundingthepulsarPSRJ1809−1917constructedusingtheCandBconfigurations oftheJVLA.TheintensityscaleisbasedonasquarerootrelationinunitsofmJybeam−1.Thefinalbeamsizeis8′′.3×4′′.4withaposition angleof∼−170◦.Thenoiselevelis0.17mJybeam−1 withoutconsideringattenuationoftheprimarybeam.ThenamesofSNRsandHIIregions lyingwithinthefieldareindicated.ThelocationofPSRJ1809−1917isshownwithayellowplussign,whilethebest-fitpositionofthecentroid ofHESSJ1809−193isindicatedwithagreencross.ThewhitedashedcircledenotesthemeasuredextensionoftheVHEsourceintermsofthe sigma(rms)ofasymmetric2DGaussianfittotheTeVdata(Renaudetal.2008). 3. Resultsanddiscussion ris et al. 2002), we obtain a pulsar magnetic field strength B =3.2×1019(PP˙)1/2=1.5×1012Gingoodagreementwiththat p 3.1. TeVemissionfromaPWN derived for most young pulsars in SNRs (Gaensler & Slane 2006).On the otherhand,to quantifythe propertiesofthe am- Figure 1 shows the region covered by the bient medium where the pulsar is propagating we inspected PSR J1809−1917/HESS J1809−193 system. From the new the structure of the HI emission in a large region surrounding image no evidence is found, down to the noise level of our PSR J1809−1917in the velocityinterval28-31km s−1 (all the data, for the radio counterpart to either the X-ray PWN or the velocitiesmentioned in this work are relative to the local stan- surroundingradioshellassociatedwithitshostSNR. dard of rest) corresponding to the distance range estimate to TherearemanypulsarsforwhichthesearchofradioPWNe PSRJ1809−1917of3.5-3.7kpc(accordingtotherotationcurve yieldednegativeresults(e.g.,Gaensleretal.2000;Giacanietal. model of the Milky Way of Fich et al. 1989, with the galac- 2009,2014).Inthesecases,thefailuretodetectthenebularemis- tic distance R0=8.5 kpc and the rotation velocity at the Sun sion has been explained as a consequence of two main phys- Θ=220 km s−1). Figure 2 shows a HI large-scale feature sur- ical conditions based on either a high magnetic field that in- roundingthepulsar,whichatfirstglancelookslikeablownwind hibits the production of synchrotron radiation at longer wave- bubblegeneratedby the stellar wind of the progenitorstar. We lengthsorsevereadiabaticlossesthatoccurinyoungandener- crudelyestimate the volume density of the ambientatomic gas geticpulsarslyinginaverylowambientdensity(∼0.003cm−3). in the cavity by integrating the column density distribution NH In the case of PSR J1809−1917, using the parameters previ- withinthementionedvelocityrangeandassumingforthecavity ously derived for this object (P=82.7 ms, P˙=2.55×1014, Mor- asphericalgeometrywitharadiusof∼9′atadistanceof3.6kpc Articlenumber,page3of7 A&Aproofs:manuscriptno.astroph-castelletti calsimulationsof thisprocessestimate a crushingtimescaleof ≤ 103E−1/2(M /M )5/6η−1/3 yr,whereE isthetotalmechan- 51 ej ⊙ 51 icalenergyof the SN explosionin unitsof 1051 erg, M is the ej ejectedmass,andηistheambienthydrogendensityincm−3(van 65 70 74 79 83 88 93 97 102 106 111 derSwaluwetal.2004).InthecaseofPSRJ1809−1917,ifwe assume that E is equal to unity, M =10 M and we use the 51 ej ⊙ 0 0 hydrogendensity derivedfromour study of the HI distribution 0: 9:0 in the region of the pulsar (η=1.5 cm−3), we obtain a crushing 1 - timescale of ∼6 kyr. This time is considerably lower than the characteristic age of the pulsar even if we consider an initial 0) J2000.20:00 reenqeurgiryesotfhteheexeixstpelnocseioonfoafS1N05R0,ebrgu.tTtahkiisngreilnictoPcWonNsisdceernaatiroion on ( thecharacteristicageofPSRJ1809−1917,theradioemissionof nati theallegedremnantmighthavedissipatedthroughtheactionof Decli0:00 radiativeshocks, makingthe SNR forwardshock undetectable. 4 Thus,a relic TeV PWN originfor HESSJ1809−193cannotbe dismissed. Itshouldbe pointed,however,outthatthis scenario 00 is not completely consistent with the location of the pulsar in 00: the cometary shaped nebula observed in X-rays in the vicinity 0: -2 ofPSRJ1809−1917.Indeed,asnoticedbyAnadaetal.(2010) 13:00 12:00 11:00 18:10:00 09:00 08:00 07:00 bothChandraandSuzakuobservationssuggestthatthepulsaris Right Ascension (J2000.0) movingtowardsthecenteroftheHESSJ1809−193source. Fig.2.NeutralhydrogendistributiontowardsPSRJ1809−1917andits nebula. The overlaid contours represent the HI emission at 100, 103, 3.2.TeVemissionfromahadronicmechanism 107, 110, and 120 K. The blue dashed annulus approximately delim- itsthehigher densitygasof theregion,whiletheplussignmarksthe Inoursearchforanalternativeexplanationoftheobservedγ-ray positionofPSRJ1809−1917. emission,the SNR G11.0−0.0thatlies in projectionwithin the brightest region of the VHE source appears to be a promising (an average between the 3.5 and 3.7 kpc). After subtracting an candidatefortheaccelerationofparticlesviaπ0-decayemission appropriatebackgroundleveltoaccountfordiffuseemissionthat arisingfromproton-protoncollisions.Inthiscontext,wesearch maycomefromfargaswhoseemissionisdetectedatthesame for spatial correspondences between matter concentration and radialvelocitiesinthisdirectionoftheGalaxy,theobtainedam- theγ-rayphotonsobservedinHESSJ1809−193. bientmediumdensityis∼1.5cm−3. Regardlessofwhetherthis Afteracarefulinspectionofthewhole12CO(J=3−2)data HIstructurerepresentstheimprintleftintheISMbyapastevent cube in the environment of HESS J1809−193, we identified that ended in a SN explosionor simply inhomogeneitiesin the molecularmaterialatdifferentvelocitiesthatshowstightspatial medium,theobtainedvaluerulesoutthepossibilityofanexpan- correlation with both the SNR G11.0−0.0 and the γ-ray peak. sioninanareaofverylowdensity.Weconsequentlynotethatthe Theobservedmolecularcloudsarelimitedtothevelocityinter- conditionsinvokedtoaccountforthelackofanassociatedradio vals(+16kms−1, +27kms−1) and(+71kms−1, +78kms−1). nebulafailtoexplainthecaseofPSRJ1809−1917. Figure 3(a) shows the distribution of the 12CO emission inte- Nevertheless, we can still speculate that if the radio pulsar gratedinthelowervelocityrangeoverlaidwithcontoursdelin- wind nebula existed and if it were at least 4′ across (that is, a eatingthelocationoftheSNRG11.0−0.0.Atleastthreeclouds, sizesimilartothatofthefaintestX-rayemissionobservedwith whichwe refertoin thisworkasA,B, andCforconvenience, Chandra),thentheresultingupperlimitforthenebularfluxden- canbedistinguishedinthelarge-scaledistributionofthemolec- sity at 1.4GHz – consistentwith ournon-detection(ata sensi- ular gas. These components seen in projection on the plane of tivity of 0.2 mJy beam−1) – would be ∼250 mJy. Assuming a theskyoverlapthewesternouterborderofG11.0−0.0inallits typicalPWNradiospectralindexα=−0.3(S∝ να,Gaensler& extension. Feature A overlaps the flattened and intense region Slane 2006),we find thatthe mentionedfluxat1.4GHz corre- of the radio shell towards the south and delineates the western spondstoabroadbandradioluminosityintegratedbetween107 borderoftheSNR.CloudBcoincideswiththebrightestregion and1011HzofL ∼1.4×1032ergs−1(atadistanceof3.6kpc) of HESS J1809−193 (depicted as a 5σ significance contour in R and to an efficiencyǫ ≡ L /E˙∼ 7.7×10−5; both estimates are Fig.1ofKominetal.2008)andoneofitsextremesisincontact R significantlylowerthanthetypicalvaluesof L ∼ 1034 ergs−1 with the northwestern rim of G11.0−0.0. Finally, the molecu- R andǫ ≥ 10−4 observedinotherradioPWNe(Gaensler&Slane lar componentC, while located in the northern extreme of the 2006). However, this analysis should be taken with caution as remnant,stilllieswithintheextensionoftheγ-rayemission.We exceptions exist; for example, the pulsars PSR B1706−44 and adopt∼21kms−1asthesystemicvelocityofthemolecularmate- PSRB0906−49bothpowerobservableradionebulaewithvery rial;becauseoftheso-calledkinematicdistanceambiguityinthe lowefficienciesofabout10−6(Giacanietal.2001). innerGalaxy,thisresultsinanearandfarkinematicdistancesof As mentioned in Sect. 1, PSR J1809−1917 appears to be ∼2.9and∼13.6kpc,respectively.Figure3(b)showstheintensity the most viable counterpart to the HESS J1809−193 source in ofthe12COintegratedinthevelocityrangeof71-78kms−1,su- a leptonic scenario where the reverse shock from a surround- perimposedwithsomecontoursoftheradiocontinuumemission ing SNR has collided with the entire shock surface bound- from G11.0−0.0.From this image, a good correspondencecan ing the nebula powered by PSR J1809−1917. After this phase be seen between the flat western boundary of the remnant and an offset nebula is formed and HESS J1809−193 may corre- the moleculargas.Interestingly,partof the cloudprojectsonto spond to such nebula emitting in the VHE domain. Numeri- thebrightestγ-rayemission.Forthiscloudweadoptasystemic Articlenumber,page4of7 G.Castellettietal.: UnveilingtheoriginofHESSJ1809−193 2.4 0.93 (a) (b) 5:00 Cloud C 2.3 0.85 1 0.76 0 Cloud B 2.1 0 0)20: 0.68 0.9: 1.9 01 0- 2 0.60 nation (J25:00 SNR G11.0-0.0 11..67 0.52 ecli 0.43 D 00 1.4 0: 0.35 3 Cloud A 1.2 0.27 0 0 35: 1.1 0.18 0.89 0.10 40.0 20.0 18:10:00.0 40.0 20.0 09:00 Right Ascension (J2000.0) 0.72 Fig.3.Distributionofthe12COJ=3−2gasinthefieldcontainingtheSNRG11.0−0.0andtheTeVsourceHESSJ1809−193.a)Averagedintensity distributionofthe12COinthevelocityrangefrom16to27kms−1.b)Averagedintensitymapofthemoleculargasforvelocitiesbetween71and 78kms−1.Inbothpanelsthewhitecontoursdelineatetheradiocontinuumemissionat1.4GHz.Thewedgetotherightofeachpanelshowsthe 12COintensitiesinKkms−1. velocityof∼75kms−1,whichcorrespondstonear/fardistances ) of∼6/11kpc. nits FollowingRoman-Duvaletal.(2009)weresolvedthekine- u y 20 maticdistanceambiguityforeachcloudusingthe12COinforma- ar r tioninconjunctionwiththecoldatomichydrogengasembedded bit within the molecular cloud. Because HI is present throughout ar ( the Galaxy, if the cloud is located at a near distance, a corre- ure 0 lation between the 12CO emission line from the cloud and an at r HIself-absorptionfeatureshouldbenoticedinthespectrumbe- pe m causetheatomicgasintheinteriorofthecloudiscolderthanthe e T rest of the Galactic atomic hydrogen located behind the cloud s-20 s alongthelineofsight.Onthecontrary,noabsorptionfeaturein e the HI spectrumshouldbe presentfora cloudplacedat the far ghtn 12HCIO kinematicdistancebecausethereisnowarmGalacticHIatthe ri B velocity of the molecular cloud to be absorbed. From the rota- -40 tion curve it is evident that the warm HI that could be located 0 20 40 60 80 100 beyondthefarmolecularcloudcanonlybeassociatedwithve- Velocity (km s-1) locities completely different from the velocity of the cloud of interest. In Fig. 4 we show the HI 21 cm and 12CO spectra in Fig.4.12COandHI21cmspectratowardsthemolecularmaterialiden- the direction of the molecular clouds identified at ∼21 km s−1 tifiedinthefieldof SNRG11.0−0.0.Thepeakbrightnesscentered at ∼21kms−1 correspondstothenearbycloudslocatedat∼3kpc,while and ∼75km s−1. At the lowervelocity,the HI 21cm spectrum thepeakat∼75kms−1iscausedbybackground12COgaslocatedatthe exhibits a deep self-absorption throughoutthe molecular emit- farkinematicdistance∼11kpcinthelineofsight. ting regionandhencewe assign to this cloudthe near distance (d∼3 kpc). Conversely, the emission feature in the HI 21 cm spectrum centered at 75 km s−1, which is in coincidence with a peakinthe12CO emission,revealedthatthiscloudislocated sition(Bolattoetal.2013).Themassforeachcloudisthende- atthefarkinematicdistance(d∼11kpc). terminedthroughthe relation M = µmHΣ[d2ΩN(H2)],with µ WeestimatethemassofthestructuresA,B,andCobserved beingthemeanmolecularmassequalto2.8assumingarelative at ∼21 km s−1 and the cloud identified at ∼75 km s−1. To do heliumabundanceof25%, mH the massof the hydrogenatom, Ωtheangularareasubtendedbythesource,anddthedistanceto this,wefirstcalculatetheH columndensityusingtheempirical 2 relation N(H ) = X ×W(12CO), where W(12CO) is the inte- thecloud.Inordertoestimatethetotalambientprotondistribu- 2 CO tion,weextendouranalysisoftheISMpropertiesbyexploring gratedlineCO fluxandX is theCO toH conversionfactor CO 2 forthe12COJ=3−2transition.Byassumingthatthegasisinlo- thecontributionoftheatomicgastothemassanddensityofthe calthermodynamicequilibrium,itmeansthatallmolecularlev- cloudsdefinedbythevelocityrangesusedforthe12COdata.Un- elsareexpectedtobeequallypopulated,andhencewecanuse dertheassumptionthatthe neutralatomicgasis opticallythin, XCO =(2±0.6)×1020cm−2Kkms−1,whichisthecanonicalcon- theHIcolumndensityisgivenasN(HI)=1.823× 1018 R Tbdv versionfactorbetweentheH andthe12COintheJ=1−0tran- (Dickey & Lockman 1990), where T [K] and v[km s−1] repre- 2 b Articlenumber,page5of7 A&Aproofs:manuscriptno.astroph-castelletti sent the intensity and velocity of the neutral gas, respectively. Thequestiontobeaddressed,therefore,iswhetherthecloud Thevolumedensitieswereestimatedassumingellipticrepresen- componentstracedbythe12CO emissionat∼21kms−1 canbe tationsofeachmolecularcloudwithadepthcomparabletothe considereda plausibleastronomicalenvironmentforproducing sizeoftheminoraxis.Theindividualestimatesforthemassand thedetectedphotonsinHESSJ1809−193.Topursuethispoint density of all the clouds are summarized in Table 2. The error we first calculate the γ-ray flux from HESS J1809−193taking in the cloud masses are estimated to be on the order of 45%, intoaccountthatthespectrumofthissourceisfitwellbyapure which mainly arises from the uncertainty in distance measure- power law (dF (E)/dE=N (E/1 TeV)−Γ) with a photon index γ 0 ments(∼30%). Γ=2.23andN =6.4×10−12TeV−1cm−2s−1(Renaudetal.2008), 0 Before discussing the possible role of the identified molec- whichimpliesFγ(>1TeV)=5.2×10−12phcm−2s−1.Then,we ular material as target ISM protons to produce the observed quantifytheambientdensityrequiredtopowertheobservedγ- γ rays, we estimate the distance to SNR G11.0−0.0 using the rayfluxthroughtheEq.(16)ofTorresetal.(2003),givenoures- HI absorption technique. While G11.0−0.0 itself is relatively timateofthedistancetothemolecularmaterial(d∼3kpc)along weak and has a thin shell, we construct the emission spectrum with other assumptions such as an efficiency θ=3% to convert againstthesouthernpartoftheSNRshellwherethereisadom- theacceleratedhadronsintocosmicraysandasupernovaenergy inantbrightfeature.Theabsorptionprofilewasobtainedbysub- outputof1051erg.Wefindthatatadistanceof3kpcanambient tractingthebrightradioshellemissionfromnearbyregionsde- densityofη3kpc∼40 cm−3 itwouldbe necessaryto producethe void of continuumemission. Both spectra are shown in Fig. 5; γ-rayemissiondetectedabove1TeV.Bycomparingthisdensity the most positive-velocityreliable absorptionfeature is seen at withthatmeasuredinthemolecularmaterialcomprisingClouds ∼20kms−1.Regardingthelowerlevelabsorptiondipintheve- A,B,andC,weconcludethatitisdenseenoughtogeneratethe locityrange∼50-65kms−1,webelievethatinviewofitsextent VHE emission hadronically.We also infer an expectedvolume and its association with relative low-amplitude emission, this densityη11kpc∼470cm−3forthemolecularmaterialidentifiedat featuremayrepresentfluctuationsintheHIemissionandhence ∼75kms−1,whichfavorsourinterpretationthatthisbackground wearenotconfidentthattheabsorptionisreal.Additionally,no gasatd∼11kpcisnotrelatedtotheproductionofγ-raysphotons absorptionisobservedatnegativevelocities.Therefore,wecon- inHESSJ1809-193. siderthevalue20kms−1asalowerlimittothesystemicvelocity ofG11.0−0.0,correspondingtonearandfarkinematicdistances of ∼3 and ∼13.8 kpc, respectively. However, if we regard the 4. Summary featureat50-65kms−1asreliable,theabsenceofabsorptionbe- tweenthesevelocitiesandthetangentpointat∼167kms−1indi- Atpresent,themostplausibleoriginfortheγ-rayemissionfrom catesthatanupperlimitonthedistancetotheSNRof∼5.2kpc HESSJ1809−193hasbeenexplainedbyaPWNpoweredbythe can be adopted.The distanceof ∼17kpc asderivedbyBrogan pulsarPSRJ1809−1917;however,thereisnoconclusiveobser- et al. (2004) using the Σ-D correlation between the linear di- vationalevidencetosupporttheproposedleptonicscenario.This ameter of the G11.0−0.0 shell and its radio surface brightness motivatedusto performthe first high-sensitivityradiostudyof isnotconsistentwiththerangeofpossiblevalues(3.0-5.2kpc) a large region containing the TeV source at 1.4 GHz using the thatwehavedeterminedforSNRG11.0−0.0throughHIabsorp- JVLA.Inaddition,weanalyzedtheISMofthisarea.Although tion.Suchadisagreementisnotsurprising,sinceithaslongbeen ourradioobservationssurpassthe sensitivity of available radio knownthattheΣ-Drelationshiphasalargeintrinsicdispersion. imagesby morethanan orderofmagnitude(noise levelof our image ∼0.17 mJy beam−1), there is no trace of radio emission associatedwiththeX-rayPWNdrivenbyPSRJ1809−1917nor anindicationoftheexistenceofa hostSNR. We alsoanalyzed the 12CO in the vicinity of HESSJ1809−193to investigatethe ) K possibilityofanyothercandidateinthefieldofviewthatcould re (100 explaintheproductionmechanismofthehigh-energyγ-rays.As u at a result of this analysis, we discovered a system of molecular per clouds(centeredatv∼21kms−1)thatincludesthreemaincom- m e 50 ponents(calledinthisworkcloudsA, B,andC).Thismaterial T iswellcorrelatedwiththeTeVsourceandmatchesthemorphol- s es ogy of the western edge of the SNR G11.0−0.0. The distance n ht to these clouds was constrained to be ∼3 kpc based on the as- g 0 ri sociation between 12CO emission and HI-self absorption fea- B tures, which also coincides within uncertainties with the kine- maticaldistancederivedforG11.0−0.0.Wecalculatedthetotal -100 -50 0 50 100 150 200 massandtotalprotondensityoftheA,B,andCclouds(taking Velocity (km s-1) intoaccountcontributionsfrombothHIand12CO,thevaluesare M ≃ 3×103 M andη ≃ 7.4×103cm−3,seeTable2),whichwe ⊙ Fig. 5. HI emission (thin line) and absorption (thick line) spectra to- assumedareinteractingwiththeremnantG11.0−0.0,andfound wardsSNRG11.0−0.0.Thedashedlineindicatesabsorptionatthe5σ thattheyindeedsatisfytherequiredamountoftargetmaterialto level,whereσisthenoiselevelintheHIdatacube. explaintheobservedTeVγ-rayfluxfromHESSJ1809−193as producedbyhadrons. Takingintoaccountthegoodmorphologicalcorrespondence We finally note that our analysis does not rule out a hy- betweentheremnantG11.0−0.0andthemolecularmateriallo- brid scenario in which contributions from relativistic leptons catedatthesamesystematicvelocity,wethereforeargueaphys- via inverse Compton process in the PSR J1809−1971 operate icalconnectionbetweenthem.Thisallowsustoresolvetheam- together with the hadronic process that we have proposed in biguityofthedistancetoG11.0−0.0:itislocatedatabout3kpc. thiswork.Inaddition,star formationactivitycanplayarolein Articlenumber,page6of7 G.Castellettietal.: UnveilingtheoriginofHESSJ1809−193 Table2.Derivedparametersforthemolecularclouds Feature CentralPosition N N Mass Totalprotondensity H2 H R.A.,decl.(J2000.0) ×1021[cm−2] ×1021[cm−2] ×103[M ] ×103[cm−3] ⊙ CloudAat21kms−1 18h09m46.3s,−19◦26′53′′ 5.3 2.2 0.8 1.9 CloudBat21kms−1 18h09m41.8s,−19◦21′38′′ 9.6 2.1 1.3 3 CloudCat21kms−1 18h09m51.3s,−19◦17′45′′ 6.4 2.5 0.7 2.5 Cloudat75kms−1 18h09m41.5s,−19◦24′33′′ 1.5 0.3 4.2 0.1 HESS J1809−193 as several bright HII regions lie within the boundaryoftheVHEsource. Acknowledgements. This research was partially funded by Argentina Grants awarded byANPCYT: PICT 0571/11 and 0902/13; CONICET:0736/11; and UniversityofBuenosAires(UBACYT).G.C.,E.G.,andA.P.areMembersof theCarreradelInvestigadorCientíficoofCONICET,Argentina. References Aharonian,F.,Akhperjanian,A.G.,BarresdeAlmeida,U.,etal.2008,A&A, 486,829 Aharonian,F.,Akhperjanian,A.G.,Bazer-Bachi,A.R.,etal.2007,A&A,472, 489 Aharonian,F.,Akhperjanian,A.G.,Bazer-Bachi,A.R.,etal.2006a,A&A,448, L43 Aharonian,F.,Akhperjanian,A.G.,Bazer-Bachi,A.R.,etal.2006b,A&A,460, 365 Anada,T.,Bamba,A.,Ebisawa,K.,&Dotani,T.2010,PASJ,62,179 Blondin,J.M.,Chevalier,R.A.,&Frierson,D.M.2001,ApJ,563,806 Bolatto,A.D.,Wolfire,M.,&Leroy,A.K.2013,ARA&A,51,207 Brogan,C.L.,Devine,K.E.,Lazio,T.J.,etal.2004,AJ,127,355 Buckle,J.V.,Hills,R.E.,Smith,H.,etal.2009,MNRAS,399,1026 Cordes, J. M. & Lazio, T. J. W. 2002, ArXiv Astrophysics e-prints [arXiv:astro-ph/0207156] deNaurois,M.2015,ArXive-prints[arXiv:1510.00635] Dickey,J.M.&Lockman,F.J.1990,ARA&A,28,215 Fich,M.,Blitz,L.,&Stark,A.A.1989,ApJ,342,272 Gaensler,B.M.&Slane,P.O.2006,ARA&A,44,17 Gaensler,B.M.,Stappers,B.W.,Frail,D.A.,etal.2000,MNRAS,318,58 Giacani, E.,Rovero, A. C.,Cillis, A.,Pichel, A.,&Dubner, G.2014, ArXiv e-prints[arXiv:1412.1673] Giacani,E.,Smith,M.J.S.,Dubner,G.,etal.2009,A&A,507,841 Giacani,E.B.,Frail,D.A.,Goss,W.M.,&Vieytes,M.2001,AJ,121,3133 Gotthelf,E.V.,Tomsick,J.A.,Halpern,J.P.,etal.2014,ApJ,788,155 H.E.S.S.Collaboration,Abramowski,A.,Acero,F.,etal.2011,A&A,531,A81 Kargaltsev,O.&Pavlov,G.G.2007,ApJ,670,655 Komin,N.,Carrigan,S.,Djannati-Ata˘i,A.,&etal.2008,InternationalCosmic RayConference,2,815 McClure-Griffiths,N.M.,Dickey,J.M.,Gaensler,B.M.,etal.2005,ApJS,158, 178 Morris,D.J.,Hobbs,G.,Lyne,A.G.,etal.2002,MNRAS,335,275 Rau,U.&Cornwell,T.J.2011,A&A,532,A71 Renaud,M.,Hoppe,S.,Komin,N.,etal.2008,inAmericanInstituteofPhysics ConferenceSeries,Vol.1085,AmericanInstituteofPhysicsConferenceSe- ries,ed.F.A.Aharonian,W.Hofmann,&F.Rieger,285–288 Roman-Duval,J.,Jackson,J.M.,Heyer,M.,etal.2009,ApJ,699,1153 Torres,D.F.,Romero,G.E.,Dame,T.M.,Combi,J.A.,&Butt,Y.M.2003, Phys.Rep.,382,303 vanderSwaluw,E.,Downes,T.P.,&Keegan,R.2004,A&A,420,937 Articlenumber,page7of7