ebook img

Unsteady Computational Fluid Dynamics in Aeronautics PDF

432 Pages·2014·12.21 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Unsteady Computational Fluid Dynamics in Aeronautics

Unsteady Computational Fluid Dynamics in Aeronautics FLUID MECHANICS AND ITS APPLICATIONS Volume104 SeriesEditor: AndreTHESS DepartmentonMechanicalEngineering IlmenauUniversityofTechnology 98684Ilmenau,Germany AimsandScopeoftheSeries Thepurposeofthisseriesistofocusonsubjectsinwhichfluidmechanicsplaysa fundamentalrole. As well as the more traditional applications of aeronautics, hydraulics, heat and masstransferetc.,bookswillbepublisheddealingwithtopicswhicharecurrently in a state of rapid development, such as turbulence, suspensions and multiphase fluids,superandhypersonicflowsandnumericalmodelingtechniques. It is a widely held view that it is the interdisciplinary subjects that will receive intensescientificattention,bringingthemtotheforefrontoftechnologicaladvance- ment. Fluids have the ability to transport matter and its properties as well as to transmit force, therefore fluid mechanics is a subject that is particularly open to crossfertilizationwithothersciencesanddisciplinesofengineering.Thesubjectof fluidmechanicswillbehighlyrelevantindomainssuchaschemical,metallurgical, biologicalandecologicalengineering.Thisseriesisparticularlyopentosuchnew multidisciplinarydomains. The median level of presentation is the first year graduate student. Some texts are monographsdefiningthecurrentstateofafield;othersareaccessibletofinalyear undergraduates;butessentiallytheemphasisisonreadabilityandclarity. Forfurthervolumes: www.springer.com/series/5980 P.G. Tucker Unsteady Computational Fluid Dynamics in Aeronautics P.G.Tucker DepartmentofEngineering WhittleLaboratory UniversityofCambridge Cambridge,UK ISSN0926-5112 FluidMechanicsandItsApplications ISBN978-94-007-7048-5 ISBN978-94-007-7049-2(eBook) DOI10.1007/978-94-007-7049-2 SpringerDordrechtHeidelbergNewYorkLondon LibraryofCongressControlNumber:2013945727 ©SpringerScience+BusinessMediaDordrecht2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpub- lication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityforany errorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespect tothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) To myFamily Preface In2001Ipublished‘ComputationofUnsteadyInternalFlows’.Thistextwaslargely basedaroundincompressibleflowsolvermethodsandhencetypicallylowerspeed flows. The key premise behind the original text was that, in some sense, most en- gineeringflowsareintrinsicallyunsteady(evenifjustduetoturbulence).However, becauseofcomputationalexpense,thisaspectisoftenignored.Ofcoursecomputing powercontinuestorise.TheuseofGraphicalProcessorUnitsfornumberprocess- ingisshowingpromisewithrivaltechnologiesbeginningtoemerge. DetachedEddySimulationandrelatededdyresolvingmethodshaveaddedim- petustotheuseofunsteadyComputationalFluidDynamics.Simulationsthatpoten- tiallyrivaltremendouslyexpensiverig/windtunneltestsarenowappearing.Ano- table shoot from this emerging era is work around 2007 at the US Airforce Lab- oratory, who performed DES for a F/A-18 fighter configuration. Tail buffet was exploredandsuccessfulcomparisonmadewithrealflightdata(intermsofspectral shape of surface pressure data). This situation was not unforeseen. Around 1975, Chapman, Director of Aeronautics at NASA, proposed, using well founded scien- tific arguments,1 that when computers reached 1014 flops, eddy resolving simula- tions that could rival aerodynamic tests would emerge. Modern high performance computingprovisionnowexceedsChapman’sexpectations,reachingPetascaleand beyond. Hence, now the ability to directly predict turbulence, for complex engi- neeringsystems,withoutrecoursetoaccuracyreducingassumptionsbecomesever closer—even if advances in solver technology have not been as extensive as per- haps expected by Chapman. The current text focuses on aerospace. Hence, unlike theformer,italsoincludesdiscussionofcompressibleflowtechnology. With the projected demand for air transport set to double the world aircraft fleet by 2020 it is becoming urgent to take steps to reduce environmental im- pact with respect to noise and other emissions. Hence, the current text, hopefully, will contribute, in some sense, to the quest to use computers to improve aircraft 1Note,Chapman’souterboundarylayerscalingsareoptimisticbutthisaspectislesscriticalthan theinnerscalings. vii viii Preface and thus impact on this pressing environmental need. To make major technologi- calbreakthroughs,ultimately,extremelycloseairframeandengineintegrationwill be needed. This gives the requirement for coupled engine-airframe simulations. Also, increasingly multi-physics simulations will be required. Such endeavors do not marry well with the obvious accuracy benefits provided by making turbulent eddy-resolvingsimulations.Hence,thistextattemptstoexplorethesetensions. Inpreparingthetext,greatefforthasbeenmadetoremoveerrorsofatypograph- icalnature.Apologiesfortheerrorsthataredoubtlessfound. I would like to express my gratitude to past Researchers who have helped run manyofthesimulationscontainedinthistext.Especialthanksareduetomylongest servingteammembers—Drs.R.Jefferson-LovedayandJ.Tyacke. TheoriginaltextwaspreparedinWORD.ThenVadlamaniNagabhushanaRao leadanintrepidteamwhokindlyconvertedthetexttoLATEX,properlylinkingrefer- encesfiguresandequationstothetext.IamverygratefultotheLATEXteam:Ahmed Al-Shabab;ZaibAli,JiahuanCui,MahakMahak;JamesPage;VadlamaniNagab- hushanaRao,RobertWatsonandXiaoyuYang. Cambridge,UK PaulG.Tucker January2013 Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 AerospaceChallenges . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 LargeScaleSimulations . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 ComputationalCost . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.2 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 UnsteadyFlowSources . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.1 Turbomachinery . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.2 UnsteadyFlowandAirframes . . . . . . . . . . . . . . . . 21 1.5 PredictiveAccuracyofRANS . . . . . . . . . . . . . . . . . . . . 25 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ComputationalMethodsforUnsteadyFlows . . . . . . . . . . . . . . 33 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 OverviewofTemporalDiscretizations . . . . . . . . . . . . . . . 33 2.3 TemporalProfileAssumptionsforVariables . . . . . . . . . . . . 34 2.3.1 DependentVariableChangeswithTime . . . . . . . . . . 34 2.3.2 SpatialVariationoftheTimeDerivative . . . . . . . . . . 35 2.4 Two-LevelSchemes . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4.1 GeneralExplicitSchemes . . . . . . . . . . . . . . . . . . 36 2.5 Higher-LevelSchemes . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5.1 GearSchemes . . . . . . . . . . . . . . . . . . . . . . . . 38 2.6 OtherTemporalDiscretizationMethods. . . . . . . . . . . . . . . 38 2.7 ElementarySolutionAdaptedTime-StepApproaches . . . . . . . 41 2.7.1 RelatingErrorEstimatetoNewTime-Steps . . . . . . . . 42 2.7.2 AlternativeTechniques . . . . . . . . . . . . . . . . . . . 43 2.8 UnsteadyAdjointandTimeStepAdaptation . . . . . . . . . . . . 43 2.8.1 AdjointMethodsforUnsteadyFlowDesignOptimization . 45 2.9 TemporalAdaptationUsingSpace-TimeElements/Volumes . . . . 45 2.10 ConvectiveSchemesforUnsteadyFlow. . . . . . . . . . . . . . . 47 2.11 ClassicalHigh-OrderApproaches . . . . . . . . . . . . . . . . . . 48 ix x Contents 2.11.1 CompactSchemes . . . . . . . . . . . . . . . . . . . . . . 48 2.11.2 DiscontinuousGalerkinScheme. . . . . . . . . . . . . . . 50 2.11.3 SpectralDifference,VolumeandCPRMethods . . . . . . 51 2.11.4 ENO/WENO . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.12 HighResolutionSpatialSchemes . . . . . . . . . . . . . . . . . . 52 2.12.1 DRPSchemes . . . . . . . . . . . . . . . . . . . . . . . . 52 2.12.2 CABARET . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.13 ConvectiveSchemesforDensityBasedSolvers andRelatedAspects . . . . . . . . . . . . . . . . . . . . . . . . . 55 2.13.1 TheMUSCLScheme . . . . . . . . . . . . . . . . . . . . 56 2.13.2 Monotonicity. . . . . . . . . . . . . . . . . . . . . . . . . 58 2.14 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2.15 SpatialOrderandSolutionAccuracy . . . . . . . . . . . . . . . . 60 2.15.1 GridStretching. . . . . . . . . . . . . . . . . . . . . . . . 62 2.15.2 HighOrderUpwinding . . . . . . . . . . . . . . . . . . . 64 2.15.3 AliasingandNumericalOrder . . . . . . . . . . . . . . . . 64 2.16 SmoothingControl . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.16.1 ShocksandLES . . . . . . . . . . . . . . . . . . . . . . . 69 2.17 MeshRelatedTechniques . . . . . . . . . . . . . . . . . . . . . . 69 2.17.1 BodyFittedGrids . . . . . . . . . . . . . . . . . . . . . . 70 2.17.2 OversetGrids . . . . . . . . . . . . . . . . . . . . . . . . 72 2.18 TheSubstantialDerivative . . . . . . . . . . . . . . . . . . . . . . 73 2.19 SimultaneousEquationSolution. . . . . . . . . . . . . . . . . . . 75 2.20 EvaluationofthePressureField . . . . . . . . . . . . . . . . . . . 76 2.20.1 PressureSubcycling . . . . . . . . . . . . . . . . . . . . . 76 2.20.2 Pressure-VelocityCoupling . . . . . . . . . . . . . . . . . 77 2.20.3 CompressibleFlowSolversandPressureRecovery. . . . . 78 2.21 BoundaryConditions . . . . . . . . . . . . . . . . . . . . . . . . 79 2.22 ImpactofGridTopologyonSolutionAccuracy. . . . . . . . . . . 81 2.23 FrequencyofUseofDifferentNumericalApproaches . . . . . . . 85 2.24 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3 TurbulenceandItsModelling . . . . . . . . . . . . . . . . . . . . . . 93 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.2 AveragingProcedures . . . . . . . . . . . . . . . . . . . . . . . . 94 3.2.1 TimeBasedAveraging. . . . . . . . . . . . . . . . . . . . 94 3.2.2 SpatialAveraging/Filtering . . . . . . . . . . . . . . . . . 96 3.2.3 DiscreteSpatialFilters. . . . . . . . . . . . . . . . . . . . 98 3.3 GoverningAveragedEquations . . . . . . . . . . . . . . . . . . . 99 3.3.1 (U)RANSEquations . . . . . . . . . . . . . . . . . . . . . 99 3.3.2 LESEquations . . . . . . . . . . . . . . . . . . . . . . . . 99 3.4 VLES/URANSModelling . . . . . . . . . . . . . . . . . . . . . . 100 3.5 (I)LESandDNS . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.5.1 FunctionalModels . . . . . . . . . . . . . . . . . . . . . . 103 3.5.2 StructuralModels . . . . . . . . . . . . . . . . . . . . . . 107

Description:
The field of Large Eddy Simulation (LES) and hybrids is a vibrant research area. This book runs through all the potential unsteady modelling fidelity ranges, from low-order to LES. The latter is probably the highest fidelity for practical aerospace systems modelling. Cutting edge new frontiers are d
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.