ebook img

Unsteady aerodynamics in the gust and manoeuvre response of flexible aircraft PDF

108 Pages·2016·10.7 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Unsteady aerodynamics in the gust and manoeuvre response of flexible aircraft

Unsteady aerodynamics in the gust and manoeuvre re- sponse of flexible aircraft Thesis report D. Westerveld elft D eit sit r e v ni U e h c s ni h c e T Unsteady aerodynamics in the gust and manoeuvre response of flexible aircraft Thesis report by D. Westerveld toobtainthedegreeofMasterofScience attheDelftUniversityofTechnology, tobedefendedpubliclyon7October2016,at13:00. Studentnumber: 41060332 Projectduration: September4,2015–October7,2016 Thesisregistrationnumber: 089#16#MT#FPP Thesiswordcount: 36706 Thesiscommittee: Prof.dr.ir.L.L.M.Veldhuis, TUDelft,chairman Dr.ir.M.Voskuijl, TUDelft,supervisor Dr.A.Elham, TUDelft,supervisor Dr.-ing.R.Schmehl TUDelft,externalcommitteemember Anelectronicversionofthisthesisisavailableathttp://repository.tudelft.nl/. Summary In the strive for ever decreasing fuel consumption, aircraft wings have become more slender and, in turn,moreflexible. Thisbringswithitachangeinaircrafthandlingqualities,anditcanhaveaneffect onthestructuraldesignofthewing. Italsobringsthepossibilityofharnessingthisstructuralflexibility for beneficial effects like load alleviation control. For optimal results this structural flexibility needs to be taken into account from the start of the aircraft design, which calls for an aeroelastic design framework. Inthisworkpartofsuchadesignframeworkisconstructed. Theobjectiveofthisstudyis aninvestigationintotheeffectofunsteadyaerodynamicsonthegustresponseofflexibleaircraft. This is realised by implementing an unsteady aerodynamic model, a gust model and a coupling of these modelstoanaeroelasticflightmechanicstool. First, the aerodynamic model used as a comparison to the developed unsteady aerodynamic model was discussed. This is a quasi-steady aerodynamic model, based on Theodorsen’s work under con- sideration of zero frequency motion. This model is included in the flight mechanics tool. Next to this, theadaptionofthegustmodelexistingintheaeroelasticflightmechanicstoolboxwasdiscussed. This adapted gust model is based on the 1−cos gust model defined in regulations and is able to model gusts in space, meaning that a time-delay effect can be modelled. This time-delay effect implies that thefrontoftheaircraftseesthegustatanearliertimethantherearoftheaircraft. Withthisgustmodel, thesimulationcasesusedinthisworkweredefined. Thesecasesweredefinedforatypicalshort-haul passengeraircraft,flyingatcruisealtitude. Theusedgustsrangedfrom10to200metersinlength. The simulations were performed with the developed unsteady aerodynamic model, and the quasi-steady aerodynamicmodelasreference. Theunsteadyaerodynamicmodeldevelopedforthisworkistheunsteadyvortexlatticemethod. This potentialflowmethodallowsformodellingtime-varyingaerodynamicsaroundliftingsurfaces,including themovementofthewakebehindthisliftingsurface. ThemodelhasbeenimplementedasaMATLAB program,andisverifiedtoworkcorrectlyforwingswithsweepanglessmallerthan30∘. Aslightoffset in the aerodynamic center is predicted by the model, as well as an underprediction of induced drag. Theliftwasfoundtobepredictedcorrectly,includingitstime-dependentbehaviour. Theaerodynamicmodelhasbeencoupledtoaflightmechanicstool,thatcansimulateflexibleaircraft. This flight mechanics tool works by means of a rigid aircraft specifying the flight mechanics motion, andamodeshaperepresentationoftheaircraftwingsthatspecifytheflexiblewingbendingandmove- ment. The coupling required some coordinate transformations to make both models consistent with each other. These transformations were shown to be implemented correctly. Next to this, the trim algorithm included in the flight mechanics tool has been adapted to work with the new aerodynamic model. Thisadaptionhasbeenperformedbyincludingatrimobjectiveontheunsteadyaerodynamics, in the form of the change of bound vortex strength over time. Next to this, the original trim algorithm hasbeenextendedbymeansofalongitudinalautopilottrimfunctionthatcanflytheaircrafttoasteady state. Several results have been generated in this work. First of all, the original and adapted gust model werecompared. Itwasfoundthatthegusttime-delayeffectcanhaveaprofoundeffectontheaircraft gustbehaviour,especiallyforshort(highfrequency)gusts. Itwasfoundthattheoverallloadpeakson the aircraft increase in duration, due to being engulfed in the gust for a longer time. Moreover, it was seenthatthereisatendencyoftheaircrafttopitchupatfirst,onceonlythefrontoftheaircrafthitsthe gust. Secondly,theresultsoftrimwithbothaerodynamicmodelswerecompared. Itwasfoundthatthe unsteadyaerodynamicmodelrequireslessthrustfortrimmedflight,andabout10degreeslesselevator deflection. This is attributed to an underprediction of pitching moment in the unsteady aerodynamic model. Afterthis,thegustresponsesimulationhavebeencarriedout. Theresultsofthesesimulations showed a phase shift in the response of the aircraft modelled with unsteady aerodynamics. This is due to the modelling of the time-history of the flow with unsteady aerodynamics. While the overall reactions of the aircraft with unsteady aerodynamics were found to be slower, the aircraft reacted iii iv 0.Summary earlier to a gust. This is due to the gust model that, in combination with the unsteady aerodynamic model, takes into account the total wing geometry. No differences in behaviour other than the phase shift were found between the two aerodynamic models. What was found is larger forces predicted by the unsteady aerodynamic model. Due to uncertainty in the modelling capability of the unsteady aerodynamic model no conclusion could be drawn whether this stemmed from the actual unsteady behaviour,orjustadifferenceinforcemodelling. Finally,theaircraftbehaviourafteranelevatorimpulse has been simulated. This proves that manoeuvre loads can also be simulated with the current work. The elevator impulse simulation showed that the unsteady aerodynamics led to an increase of 18% in the period of the short period motion. This is due to the delay between angle of attack and force changeinunsteadyaerodynamics. Overall, it is concluded that the influence of unsteady aerodynamics in the gust response of flexible aircraft is not significant. The relative differences between the models were small. Together with the factthatthecomputationtimeoftheunsteadyaerodynamicmodelismuchlargerthanthequasi-steady model,itisconcludedthatunsteadyaerodynamicsshouldnotbeusedformodellingthegustresponse ofconventionalflexibleaircraft. However,resultshaveindicatedthatunsteadyaerodynamicscanlead to a response difference for flexible wings, compared to rigid wings. Finally, while not performed in this work, the current model allows for simulating the aircraft in longitudinal and lateral motions with wings of variable structural flexibility. This allows for control law design and modelling with unsteady aerodynamicsasapotentialapplication. Contents Summary iii Preface vii Nomenclature ix ListofFigures xiii ListofTables xvii 1 Introductionandbackground 1 1.1 Unsteadyaerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Flightmechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Aeroelasticflightmechanics . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Loadprediction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 Flightenvelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.2 Gustsandturbulence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Aeroservoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Thesisobjective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.6 Thesisoutline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Simulationcases 11 2.1 Quasi-steadyaerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Gustanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Gustmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Gustimplementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Simulationcases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.1 Aircraftchoice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3.2 Flightparameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.3 Gustprofiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.4 Outputfromthecases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Aerodynamicmodel 19 3.1 Potentialflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 UnsteadyVortexLatticeMethod. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.1 Referenceframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.2 Calculationoftheflowfield . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.3 Calculationoftheaerodynamicforcesandmoments. . . . . . . . . . . . . 25 3.3 Verificationandvalidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.1 Gridconvergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.2 Computationtime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.3 Steadyflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.4 Unsteadyflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4 Aeroelasticflightmechanics 33 4.1 Aeroelasticflightmechanicstoolbox. . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.1 Aircraftmodel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.2 Structuralmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 v vi Contents 4.1.3 OutputsoftheFMT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 Connectingtheunsteadyaerodynamics . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.1 ChangestotheSimMechanicsmodel. . . . . . . . . . . . . . . . . . . . . 36 4.2.2 FMTtoUVLM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2.3 UVLMtoFMT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3 Trim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3.1 Quasi-steadyaerodynamictrim . . . . . . . . . . . . . . . . . . . . . . . . 40 4.3.2 UVLMtrim. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3.3 Finishingtrimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.4 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4.1 Wingshape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4.2 Fightpath. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4.3 Aerodynamicforces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Resultsanddiscussion 49 5.1 Effectoftime-delayingustvelocities . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2 Trimresults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.3 Gustresponse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.1 Aircraftloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.2 Aircraftflightmechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.3 Wingtipdeflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.4 Elevatorpulseresponse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6 Conclusionsandrecommendations 63 6.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Bibliography 69 A UVLMImplementation 73 A.1 Theunsteadyvortexlatticemethod . . . . . . . . . . . . . . . . . . . . . . . . . . 73 A.1.1 Geometryandflightpathdefinition. . . . . . . . . . . . . . . . . . . . . . . 73 A.1.2 Calculationofvorticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 A.1.3 Calculationofaerodynamicproperties . . . . . . . . . . . . . . . . . . . . 74 A.1.4 Solvingthewake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 A.2 Usermanual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 B Additionstoflightmechanicstoolbox 79 B.1 Addedfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 B.2 Addedblocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 C Gustsimulations 83 C.1 Loadfactorandwingrootbendingmoment. . . . . . . . . . . . . . . . . . . . . . 83 C.2 Flightmechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 C.3 Wingtipdeflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 C.4 Airspeedandaltitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 D Wakeshapes 87 Preface This report marks the end of my time as a student at Delft University of Technology after six years. During this time I’ve learned a lot about engineering, aircraft, spacecraft and myself. I’ll always look backfondlyonmytimeinDelft. Ifirstwanttothankmysupervisors,MarkVoskuijlandAliElham. Mark,thisisthesecondtimeyou’ve been my supervisor and again it was very helpful to have you as supervisor. Thanks for motivating me,andsettingmeontrackaftereverymeeting. Ali,intheoriginalgoalofthisthesistherewasapart dedicatedtoflutterandoptimisation. ThispartI’vedroppedoverthecourseofthethesisasitwasabit toomuchtochew,butI’dliketothankyouforstickingwithmeevenafterdroppingmostofyourtopic. Finally, I would like to thank Leo Veldhuis for being the chair of my committee, and Roland Schmehl foracceptingtobemyexternalcommitteemember. IwillalsoliketothankthepeopleinKamertje1. You’vemadetheworkoverthepastyearalotmore enjoyable. It was very nice to always have someone to discuss results with, to help people with their work,tohavecoffeebreaks,anddrinksduringtheweekends. ThelunchissomethingI’mgoingtomiss most. Jelle,thanksforproofreadingthisreport! Finally, these years in Delft would not be possible if it was not for my parents. Thanks for supporting meduringalltheseyears. Ifitwasn’tforyou,IwouldnotbewhereIamtoday. DaanWesterveld 21September2016 vii

Description:
The unsteady aerodynamic model developed for this work is the unsteady vortex lattice method. This potential . 3.2.3 Calculation of the aerodynamic forces and moments . For conceptual and preliminary design purposes, the Wagner, Theodorsen and Küssner functions are still in use
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.