Downloaded from orbit.dtu.dk on: Mar 27, 2019 Unsteady Aerodynamic Forces on NACA 0015 Airfoil in Harmonic Translatory Motion Gaunaa, Mac Publication date: 2002 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Gaunaa, M. (2002). Unsteady Aerodynamic Forces on NACA 0015 Airfoil in Harmonic Translatory Motion. MEK-FM-PHD, No. 2002-02 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. MEK-FM-2002-02 Unsteady Aerodynamic Forces on NACA 0015 Airfoil in Harmonic Translatory Motion by Mac Gaunaa Dissertation submitted to Technical University of Denmark in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering Fluid Mechanics Department of Mechanical Engineering Technical University of Denmark April, 2002 Fluid Mechanics Department of Mechanical Engineering Building 403 Technical University of Denmark DK-2800 Lyngby, Denmark Copyright (cid:1)c Mac Gaunaa, 2002 Printed in Denmark by DTU-Tryk, Lyngby MEK-FM-2002-02 / ISBN 87-7475-258-8 This thesis has been typeset using LATEX2e. Preface This dissertation is submitted in partial fulfillment of the requirements for the Ph.D. degree. The dissertation is based on the experimental, theoretical and numerical work carried out during the period from August 1998 to December 2001 at the Fluid Mechanics Section at the Department of Mechanical Engineering, Technical University of Denmark. The work has been carried out under the guidance of Professor Poul Scheel Larsen, to whom I would like to express my deepest gratitude for inspiring supervision. I also wish to thank Associate Professor Jens Nørkær Sørensen for valuable inputs, and Andreas G Jensen, Danish Maritime Institute, for fruitful discussions on the art of experimental work. For fruitful discussions and insights Martin O.L. Hansen and Niels Sørensen are thanked. Finally, I would like to thank Mia for her love and patience with me during the course of my study. It is acknowledged that the experimental setup was financed by the Danish Technical Research Council, through the Research Frame Program on Computational Hydrody- namics. Technical University of Denmark Copenhagen, April 2002 Mac Gaunaa Abstract The unsteady two-dimensional aerodynamic forces acting on a NACA 0015 airfoil un- dergoing harmonic translatory motions have been investigated experimentally and the- oretically/numerically. The focus of the experimental investigations was to determine the factors that influence the aerodynamic damping of harmonic translatory motion. Specifically, mea- surements of unsteady pressure distributions were undertaken at a range of incidences, movement directions, amplitudes and reduced frequencies matching real life conditions for the flap and lead-lag motion of wind turbine rotors. From the experimental results it was seen that the maximum negative aerodynamic damping take place at moderate stall at an incidence of about 15o, at a movement direction close to the chordwise direction, and that the aerodynamic damping at 150 and 20o for the stalling cases decreases as the reduced frequency is decreased. The dependance on the amplitude of the motion was weak. Up to three distinctively different stall modes occurring in both steady and unsteady experiments at incidences 15o ≤ α ≤ 20o was observed. Both the mean and dynamic characteristics was found to differ from mode to mode. As a part of the theoretical work an unsteady panel code was implemented. This code was used to investigate the differences in the dynamic response of an airfoil un- dergoing heaving motion and pitching motion. Another application of the panel code was to compute the effect of the imposition of wind tunnel walls on the dynamic response of the airfoil. From these results dynamic tunnel corrections was derived. Adifferentpartofthetheoreticalworkconcernedthedevelopmentofanewheuristic stall model, which can be considered an ‘interpolation’ between quasi-stationary theory and unsteady potential theory. Comparison with the experimental results shows very goodagreementintheattachedcases, butthenewmodelfailstoreproducethefeatures of the moderately and deeply stalled flows due to the assumption of similarity between the dynamics in the attached and stalling cases. Comparison of results obtained with a Navier-Stokes solver showed excellent agree- ment with the experimental data for incidences up to 8o. Fully turbulent flow was assumed in the Navier-Stokes simulations. The differences between the results for inci- dences 12o and above were caused by too late predicted onset of stall in the simulations, and that the Navier-Stokes solver predicted a strong effect from vortex shedding at in- cidence 20o, which was not found in the experiments. The overall features of the aerodynamic damping was captured correctly for incidences up to 15o. The discrepancies at 20o was caused by the strong vortex dynamics in the predictions. Synopsis De instationære to-dimensionelle aerodynamiske kræfter p˚a et NACA 0015 vingeprofil som udfører harmoniske translatoriske bevægelser er blevet undersøgt eksperimentelt og teoretiskt/numeriskt. I de eksperimentelle undersøgelser har fokus været p˚a at bestemme de faktorer som influerer p˚a den aerodynamiske dæmpning af harmoniske translatoriske bevægelser. M˚alinger af instationære trykfordelinger er blevet udført for en række indfaldsvinkler, bevægelsesretninger, amplituder og reducerede frekvenser for værdier som svarer til typiskt forekommende for en vindmøllerotors flap- og kantvise svingninger. Fradeeksperimentelleresultaters˚as,atdenmaksimale,negativeaerodynamiskedæmp- ning forekommer ved moderat afløst strømning ved cirka 15o indfaldsvinkel, med en bevægelsesretining tæt p˚a den kantvise retning, og at den aerodynamiske dæmpning for de afløste strømninger ved indfaldsviklerne 15o og 20o aftager for aftagende reduc- eret frekvens. Afhængigheden af amplituden af bevægelsen viste sig at være svag. Der blev observeret op til tre forskellige afløsningsniveauer for b˚ade stationære og in- stationære eksperimenter for indfaldsvinkler i omr˚adet 15o ≤ α ≤ 20o. B˚ade middel- og dynamiske karakteristika for de aerodynamiske kræfter afviger fra tilsvarende størrelser for de andre afløsningsniveauer. Som en del af de teoretiske undersøgelser blev der implementeret en instationær panel kode. Denne blev brugt til at undersøge forskellen i den dynamiske respons af et vingeprofil under translatorisk og roterende bevægelse. I en anden applikation af panel koden, blev den anvendt til at beregne effekten af vindtunnel vægge p˚a det dynamiske respons af vingeprofilet. Disse resultater dannede basis for udledningen af dynamiske vindtunnelkorrektioner. Enandendelafdeteoretiskeundersøgelseromhandledeudviklingenafennyheuris- tisk stall model. Den nye stall model kan opfattes som en ‘interpolation’ mellem kva- sistationær teori og instationær potential teori. Sammenligning med eksperimentelle resultater viste for de ikke-afløste strømninger en god overensstemmelse, hvorimod modellen ikke kunne reproducere de dynamiske karakteristika for de moderate eller massivt afløste strømninger p˚a grund af antagelsen om lighed mellem strømnings dy- namikken i den afløste og den ikke-afløste strømning. Sammenligninger af resultater beregnet med en Navier-Stokes kode viste meget god overensstemmelse med de eksperimentelle data for indfaldsvinkler op til α = 8o. Navier-Stokes beregningerne antog en fuldt turbulent strømning. Forskellen mellem resultaterne for indfaldsvinkler fra 12o og derover skyldes at den beregnede strømning afløser senere end den m˚alte, og at Navier-Stokes beregningerne viste en kraftig effekt fra hvirvelafkastning ved indfaldsvinklen 20o, som ikke forekom i de eksperimentelle resultater. viii De overordnede karakteristika for den aerodynamiske dæmpning blev beregnet kor- rekt for indfaldsvinkler op til 15o. Uoverensstemmelserne ved 20o skyldes den kraftige hvirveldynamik i de beregnede resultater. Contents 1 Introduction 1 1.1 Objectives of the present work . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Outline of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Experiments 5 2.1 Previous studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Experimental targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Design considerations . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Test rig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5 Data processing and analysis . . . . . . . . . . . . . . . . . . . . . . . . 12 2.6 Measurement accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6.1 Pressure measuring system . . . . . . . . . . . . . . . . . . . . . 16 2.6.2 Angle of attack . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.6.3 Acceleration of pressure transducers . . . . . . . . . . . . . . . . 16 2.6.4 Wind tunnel corrections . . . . . . . . . . . . . . . . . . . . . . 17 2.6.5 Statistical Uncertainty . . . . . . . . . . . . . . . . . . . . . . . 18 2.7 Multiple stall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.8.1 Determination of distinct stall modes . . . . . . . . . . . . . . . 23 2.8.2 Stationary airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.8.3 1 DOF translatory oscillatory motion . . . . . . . . . . . . . . . 32 3 Theoretical Models 43 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 Analytic Unsteady Potential Theory . . . . . . . . . . . . . . . . . . . 45 3.2.1 Normal Force and Moment . . . . . . . . . . . . . . . . . . . . . 46 3.2.2 Tangential Force . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2.3 Lift and Drag Forces . . . . . . . . . . . . . . . . . . . . . . . . 53 3.2.4 Oscillatory Motion . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3 Quasi-steady Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.4 New Stall Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.5 Panel Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.5.1 Singularity Elements . . . . . . . . . . . . . . . . . . . . . . . . 68
Description: