ebook img

Unravelling the internal architecture of the Alnö alkaline PDF

35 Pages·2017·22.7 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Unravelling the internal architecture of the Alnö alkaline

SolidEarthDiscuss.,doi:10.5194/se-2017-3,2017 ManuscriptunderreviewforjournalSolidEarth Published:23January2017 c Author(s)2017.CC-BY3.0License. (cid:13) Unravelling the internal architecture of the Alnö alkaline and carbonatite complex (central Sweden) using 3D models of gravity and magnetic data MagnusAnderssonandAlirezaMalehmir DepartmentofEarthSciences,UppsalaUniversity,Villavägen16,SE-75236,Uppsala,Sweden. Correspondenceto:MagnusAndersson([email protected]) Abstract. The Alnö complex in central Sweden is one of the largest alkaline and carbonatite ring-shaped intrusions in the world. Presented here is the 3D inversion of ground gravity and aeromagnetic data that confirms some of the previous ideas aboutthe3Dgeometryofthecomplexbutalsosuggeststhatthecomplexmaycontinuelaterallyfurthertonorththanearlier expected. The gravity and aeromagnetic data show the complex as (i) a strong positiver Bouguer anomaly, around 20 mGal, 5 one of the strongest gravity gradients observed in Sweden, and (ii) a strong positive magnetic anomaly, exceeding 2000 nT. Magnetic structures are clearly discernible within the complex and surrounding area. Petrophysical measurements (density, bulk magnetic susceptibility, and magnetic remanence) were used to constrain the 3D inversion. Both gravity and magnetic inversion models suggest that dense (> 2850 kg/m3) and magnetic (> 0.05 SI) rocks extend down to about 3.5–4 km depth. Previousstudieshavesuggestedasolidifiedmagmareservoiratthisapproximatedepth.Theinversionmodelsfurthersuggest 10 thattwoapparentlyseparateregionswithintheintrusionwithgravityandmagnetichighsarelikelyconnectedatdepth,starting from800–1000m,implyingacommonsourcefortherocksobservedinthesetworegions.Themodellingoftheaeromagnetic data indicates that a more than 3 km wide ring-shaped magnetic high in the bay that can be a hidden part of the complex, linkingasatelliteintrusioninSöråkeronthenorthernsideofthebaytothemainintrusionontheAlnöIsland.Whiletherimof theringmustconsistofhighlysusceptiblerockstosupportthemagneticanomaly,thecentrehasarelativelylowmagnetisation 15 andisprobablymadeupoflow-susceptiblewall-rocksormetasomatisedwall-rocksdowntoabout2km.Belowthisdepththe 3Dsusceptibilitymodelshowshighermagneticsusceptibilityvalues.Fromtheseobservationsthesolidifiedmagmachamber isinterpretedtoextendfurthertonorththanhaspreviouslybeensuggested. 1 Introduction Althoughalkalineandcarbonatiterocksmakeupasmallportionofthecrust’svolume,theyarefoundinallcontinents,various 20 geologicalsettingsandemplacedduringvariousgeologicalperiods,fromArchaeantothepresent-day(TreimanandSchedl, 1983; Le Bas, 1987; Berger et al., 2009). The only carbonatite volcano that have been recorded to be active in the modern timeistheOldoinyoLengailocatedintheEastAfricanRiftinnorthernTanzania(e.g.,Dawson,1962;Dawsonetal.,1990; WoolleyandChurch,2005;MattssonandVuorinen,2008).TheAlnöcomplex,locatedtothesouthofKlingefjärdenbayon thenorthernpartofAlnöIsland(Figure1),wasoneofthefirstcarbonatiteandalkalinelocalitiestobedescribedandhassince 1 SolidEarthDiscuss.,doi:10.5194/se-2017-3,2017 ManuscriptunderreviewforjournalSolidEarth Published:23January2017 c Author(s)2017.CC-BY3.0License. (cid:13) thenbeenextensivelystudied(e.g.,Högbom,1895;vonEckermann,1948;Kresten,1980,1990;Vuorinen,2005;Meertetal., 2007;Skeltonetal.,2007).Despiteitsuniquegeologyandglobalsignificance,theprojectionofsurfacegeologicaldatahave untilrecentlybeenthemainsourceofinformationtoshedlightonthedeeperstructures(e.g.,vonEckermann,1948;Kresten, 1980, 1990; Mattsson et al., 2014). Kresten (1980) suggested the presence of a shallow magma chamber on the basis of 2D 5 projections using measurements of dip and dip direction of alkaline and carbonatite sheet intrusions and concluded that the Alnö intrusion was emplaced in two stages. Boulders with carbonatite breccia and accretionary lapilli fragments have been found at Sälskär skerries (von Eckermann, 1960), and was suggested by Kresten (1990) to relate to surface or near-surface volcanicactivity. The complex is characterised by a strong gravity (> 20 mGal) and magnetic high on the northern part of the Alnö Island. 10 Howevergeophysicalanomaliesarealsoobservedatitsimmediatemarginstothenorth,onsomesmallerislandsandonthe northern side of the Klingefjärden bay. The bay also features a ring-shaped magnetic structure (Figure 2b). There is still no concreteevidence(e.g.,fromdeepboreholes)connectingthestructuresobservedontheAlnöIslandwiththemagneticring- shaped structure in the bay. Using a combination of reflection seismic data, surface geological studies and the presence of largeaccretionarylapilliblocksfoundinSälskärskerries(Figure1)Anderssonetal.(2013)alsosuggestedthepossibilityof 15 a shallow fossil magma chamber at around 3–4 km depth, indicated by an anomalous region of low and diffuse reflectivity onstacked2Dreflectionseismicdata.Acaldera-stylevolcanismwasinterpretedtoformthecomplexwithastrongexplosive volcanismoccurringattheendofthemagmaemplacement,likelysomewhereinthebaywherethemagneticring-structureis observed(Figure2b). Aspartofaninterdisciplinarygeophysicalstudyinvolvingreflectionseismics(Anderssonetal.,2013),anisotropyofmag- 20 neticsusceptibility(Anderssonetal.,2016)andpotentialfieldmethods(thisstudy),newsurfacegravityandmagneticdatawere collectedtoprovideinformationaboutthedeeperinteriorofthecomplexandwiththeaimtotestifashallowmagma-chamber can be verified independently by 3D modelling of potential field data over the complex. We propose that by estimating the thicknessoftheintrusionitispossibletoindirectlyinferthelocationofthemagmachamber.Tothebestofourknowledge,the currentstudyandrecentstudiesconductedovertheAlnöcomplexarethemostdetailedgeophysicalinvestigationsconducted 25 onanycarbonatitecomplex.Thisillustratesthepotentialofanintegratedgeological,petrophysicalandgeophysicalapproach tobetterunderstandtheinternalarchitectureofsuchintrusions.TheAlnöintrusiononthemainislandandtheinferredvolcanic activity in the bay would put Alnö among the few unique geological sites where intrusive and extrusive activities have been recordedatthesamelocality(cf.WoolleyandChurch,2005). Significant physical property contrasts (e.g., density or susceptibility) must exist between adjacent lithologies in order to 30 delineate them using gravity and magnetic modelling methods. These criteria, as illustrated later in this paper, exist for the Alnörocktypesjustifyingtheapplicationofhigh-resolutionmodellingtoinvestigatethevariouslithologicalentitiesforming thecomplex.Successfulcasestudies(cf.Oldenburgetal.,1997;DutraandMarangoni,2009)exist,whichshowtheinversion of potential field data (e.g., gravity and magnetic) in many different geological settings. Inversion can also be conducted in conjunctionwithreflectionseismicdatainordertoreducetheambiguitywheninterpretingtheresults(e.g.,RoyandClowes, 35 2000;Malehmiretal.,2009;Hedinetal.,2013).AlthoughAnderssonetal.(2013)used2.5Dforwardmodellingofthegravity 2 SolidEarthDiscuss.,doi:10.5194/se-2017-3,2017 ManuscriptunderreviewforjournalSolidEarth Published:23January2017 c Author(s)2017.CC-BY3.0License. (cid:13) Easting (km) 622 623 624 625 626 627 628 629 630 3 3 3 3 9 9 6 6 Söråker 2 43 2 3 3 69 50 37 69 43 30 Klingefjärden bay 31 25 31 69 52 69 21 51 0 0 93 Alnö1 93 Northing (km) 69236924692569266927692869296 60˚6F35˚0e1700n˚˚ Aln10˚ö3240˚20˚ 30˚AAK3ll04nn"o"""""˚"0"""""""˚l"öö""""a""""""""""""""""""""""""""""""""""""""22""""""""""""""7""""""""""""0""""""""""""""˚""""""""""""""""""""""6"""""""""""""5""""""""""""""˚"""""""""""4"""""""""""""6""0""""""""""""0"˚""""""""""""˚"""""""6""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""AA""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""ll""""""""""""""""""""""nn"""""""""""""""Ss""""""""""""""""""""""""""""""""""""""""""""""""""""""""k"""öö""""""""ä""""""""""""""""""""""""""""""""e""""""""""""""""""""""""""""""""""""""""""l"""33"""""""""""s"""""""""""""r"""""""""""""""""""""""""""""""""""""""r"""k"""""""""""""""""i""""""""""""""eä""""""""""""""""""""""""""""""""sr""""""""""""""""""" """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""AA""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""9""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""ll"""""""""""""""""""""""nn"""""""""""""""""""""""""""""""""""""öö""""""""""""""""""""""""""""""""""""""""""""""""22"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""Hh"""""""""""""""""""""""""""""o"""""""""ö""""""""""""""""""""l""""""""r"""m"""""""""""""""""""""""n""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""ie"""""n""""AA""""n"""""g"""""""""""""ll"s""""""""nn"""""""""-""""""""""""""AA"öö""""""""""""""""33""B"ll"""""""nn"""""""""""o"""""""""""""""""öö"""""""""""""""t"""""""""h""1"""11""""""""n3"""""""""""""i""""""a""""""3"""""n""""0"""""""1"" """"""S"""8"""""""""""""""e"""""""""""""a 69236924692569266927692869296 622 623 624 625 626 627 628 629 630 Rock sampling Fenite Carbonatite Pyroxenite Granite site Ijolite Nsyeepnhiteeline Migmatite """"""""""""""""""""""""""""""""""S(Aelinsöm1i-cA llinnöe3s) 37Water depth Figure1.GeologicalmapoftheAlnöalkalineandcarbonatitering-complex,centralSweden.Samplesforpetrophysicalmeasurementswere takenfromrepresentativerocktypesintheintrusionarea.Blacklinesshowavailablereflectionseismicprofiles(Alnö1,2,and3)fromthe studyarea(Anderssonetal.,2013).TheinsetmapofnorthernEuropeshowsthelocationoftheAlnöcomplex,thecoevalFencomplexin southernNorwayandtheswarmofalkalineandcarbonatiteintrusionsinnorthernFinlandandnorthwesternRussia.Thegeologicalmapis kindlyprovidedbytheGeologicalSurveyofSweden.ThecoordinatesystemisSWEREF99TM(UTMzone33N). datafromthestudyareaalongsidethereflectionseismicprofilestoaidintheinterpretation,itisclearthatthecomplexshapeof thelithologicalunitsandtheir3Dgeometry,bothatthesurfaceandmostlikelyatdepth,justifyafull3Dmodelling.Therefore, 3 SolidEarthDiscuss.,doi:10.5194/se-2017-3,2017 ManuscriptunderreviewforjournalSolidEarth Published:23January2017 c Author(s)2017.CC-BY3.0License. (cid:13) Easting (km) (a) 616 620 624 628 634 6936 6936 AArreeaa ffoorr iinnvveerrssiioonn 6932 6932 KKlliinnggeeffjjäärrddeenn bbaayy m)6928 6928 ng (k AAllnnöö hi ccoommpplleexx Nort6924 6924 6920 6920 6916 6916 616 620 624 628 634 -35-32 -28 -25 -22 -19 -16 -13 -10 -7 mGal Easting (km) (b) 616 620 624 628 634 6936 6936 MMaaggnneettiicc rriinngg-- 6932 ssttrruuccttuurree 6932 m)6928 6928 g (k Northin6924 AcAcoollnnmmööpp lleexx 6924 6920 6920 AAlluummiinniiuumm ssmmeelltteerr RRööddöönn rraappaakkiivvii 6916 iinnttrruussiioonn 6916 616 620 624 628 634 50578 506065062650646 50668507035077050971 nT Figure2.Gravitydata.(a)BougueranomalymapoftheAlnöarea.“Plus”signsindicatethelocationsofthegravitystations.Thegravity stationsareabout100mapartinsideandabout1kmapartoutsidetheintrusionarea.(b)Aeromagneticmapofthearea,theflightlinesrun north-southwith200mdistancebetweenprofiles,atanominalflight-heightof60m.Themagneticanomalyinthesouth-easterncorner ofthemapisrelatedtoanolderrapakivigraniteintrusionoutcroppingatRödönIsland.Asemi-circularanomalywithabout2kmextent (low-magneticinsidehigh-magneticarea).Theanomalyinthesouthernpartofthemapisrelatedtoanaluminiumsmelter.Inbothmaps watersurfacesareindicatedwithpalecolour.Therectanglewithadashedlineshowstheareaofinterest,thedataforinversionwereextracted fromthisarea. the 3D modelling of gravity and magnetic data from Alnö is the major focus of this study with the main objectives of (1) estimatingthedepthextentoftheintrusionintheAlnöIslandinordertoindependentlyverifytheinterpretationoftheshallow fossil magma chamber, (2) studying the petrophysical properties of different geological units on the island and using them asconstraintsintheinversionandinterpretation,and(3)providinginformationaboutthepotentiallinkbetweentheintrusion 4 SolidEarthDiscuss.,doi:10.5194/se-2017-3,2017 ManuscriptunderreviewforjournalSolidEarth Published:23January2017 c Author(s)2017.CC-BY3.0License. (cid:13) andthemagneticring-structureinthebay,whichcanbeanimportantpieceofthepuzzleoftheemplacementofthecomplex. Samplesfromrepresentativerocktypeswerecollectedandtheirpetrophysicalpropertiesmeasured;inthisstudywepresent density, magnetic susceptibility and natural magnetic remanence (NRM). Gravity and magnetic data were inverted with the helpofaprioriinformationobtainedfromthepetrophysicalmeasurements.Weshowhowthemodellingresultssuggesttwo 5 separateregionswithintheintrusionthatareassociatedwithgravityandmagnetichighs.Theyarelikelyconnectedatdepthsat 800–1000mbelowthesurface,implyingacommonsourcefortherocksobservedinthesetworegions.Themodellingsuggests thatamorethan3kmwidering-shapedmagneticanomalyobservedadjacenttothemainintrusion,intheKlingefjärdenbay, iscausedbyabowl-shapedregionofhighlymagneticmaterial.Thecentreofthebodyishosttoaregionofmaterialswitha lowmagneticsusceptibilitythatextenddowntoabout2kmdepth.Thehighlymagneticfloorofthe“bowl”maybeconnected 10 withtheonshoreintrusionatthisdepth. 2 Geologicalbackgroundandearlierstudies 2.1 Geologicalsetting TheAlnöcarbonatitecomplex(Figure1)wasemplacedintoPalaeoproterozoicmigmatiticcountryrockat584±7Ma(Meert etal.,2007).Carbonatiteswithvariablegrainsizesandcompositionsoccurasdykesandsheetintrusions(Figure3a,b)(von 15 Eckermann, 1948; Kresten, 1979, 1990; Morogan and Lindblom, 1995). Carbonatites are igneous rocks that contain more than 50 volume percent of calcite or other carbonate minerals (Le Maitre et al., 2002). The Alnö complex also contains a wide variety of alkaline silicate igneous rocks (e.g., nepheline syenite and ijolite), which are rich in feldspathoid minerals (e.g., nepheline) but lack quartz (Vuorinen, 2005). Pyroxenite occurs as lenses and small intrusions (Figure 3a). Alnöite, a mafic alkaline silicate rock that belongs to the kimberlite family and is melilite-rich, occurs as dykes and diatremes in the 20 Alnöcomplexandinthesurroundingcountryrock(vonEckermann,1948).However,theyaretosmalltobeindicatedonthe geological map. The intrusion is surrounded by fenite, which is country rock that has undergone metasomatic alteration by CO -rich solutions from the intruding carbonatite and alkaline silicate rocks (Morogan and Woolley, 1988; Morogan, 1989; 2 Skelton et al., 2007). The degree of alteration varies with distance from the intrusion, from nearly unaltered approximately 500mawaytoastronglyfenitisedvarietywithnofreequartzremainingclosetotheintrusion(MoroganandWoolley,1988; 25 Kresten,1990).Thefluid-rockinteractiontypicallyaddsNa2O,K2O,CaO,MgOandFeOandreducesSiO2 content(Kresten andMorogan,1986;Vuorinen,2005). Thesubsurfacegeologicalstructuresinthecomplexwereinitiallyinferredfromsurfacegeologicalmappingofdipanddip direction of the alkaline silicate rocks and the carbonatite sheet intrusions (von Eckermann, 1948; Kresten, 1980, 1990). A dome-shapedmagmachamberwiththeroofat~1.5kmbelowthecurrentlandsurfacewassuggestedtohavesuppliedsteeply 30 dippingradialdykesandshallowtomoderatelydippingcarbonatitecone-sheets(Kresten,1980,1990).The“Sälskärbreccia” has been described from boulders found close to the Sälskär skerries (Figure 3c, d); they contain fragments of carbonatites andmeliliticlapilliinacarbonatitematrix(Kresten,1990).Thebouldersareassumedtobemoreorlessinsitualthoughno outcropwithbrecciaarefound(Kresten,1990).Thebrecciaisinterpretedtobetheproductofexplosivecarbonatiticvolcanism 5 SolidEarthDiscuss.,doi:10.5194/se-2017-3,2017 ManuscriptunderreviewforjournalSolidEarth Published:23January2017 c Author(s)2017.CC-BY3.0License. (cid:13) Figure3.(a)Coarse-grainedcarbonatiteinoutcrop.Amorecompetentpyroxenitedykeshowsboudinagestructure.Ayoungerfine-grained carbonatitedyke(brown)cross-cutstheboudinage.(b)Afine-grained(dark)carbonatitedykecross-cutsacoarse-grainedcarbonatitedyke. (c)AboulderofbrecciainthewaterbetweenthewesternandeasternSälskärskerries.Thebouldercontainsfragmentsofcarbonatitesand meliliticlapilliinacarbonatitematrix.Theboreholemarksare2.5cmindiameter.(d)Asamplefromtheboulderin(c),showingcarbonatite fragmentsandlapillis. (Kresten,1990;Anderssonetal.,2013).About500msurfaceerosionisestimatedtohaveoccurredinthestudyarea(Kresten, 1990)sincethetimeofintrusion. Small-scalepetrophysicaldataareavailablefromtheAlnöIsland.Forexample,Piper(1981)andMeertetal.(2007)focussed onpalaeomagneticpropertiesandnaturalremanentmagnetisationmeasuredonorienteddrillcores;emphasiswasgiventothe 5 emplacement time and the palaeogeographic position of Baltica during the Neoproterozoic era. Malehmir et al. (2013) and Anderssonetal.(2013)publishedmeasurementsofultrasonicvelocitiesanddensitiesofacollectionofsamplesfromanumber oflocalitiesinAlnö. 2.2 Reflectionseismicsandanisotropyofmagneticsusceptibility The seismic study by Andersson et al. (2013) focussed on the data acquisition, processing and interpretation of three high- 10 resolutionreflectionseismicprofilescrossingtheAlnöcomplex(Figure1);oneabout9kmlong(Alnö1)andtwoprofilesthat wereabout4kmlongeach(Alnö2andAlnö3).Theacquisitionwasperformedwithanominalsourceandreceiverspacingof 6 SolidEarthDiscuss.,doi:10.5194/se-2017-3,2017 ManuscriptunderreviewforjournalSolidEarth Published:23January2017 c Author(s)2017.CC-BY3.0License. (cid:13) 10m.AVIBSIST™hammerwasusedtogeneratetheseismicsignal(Anderssonetal.,2013)with3-5sweepsateachsource location. A diffuse reflection pattern in the centre of the longest profile (Alnö1) was interpreted to represent a shattered and sunkencentralcalderablockthatextendsdowntoabout3kmbelowthepresentdaylandsurface.Belowthecalderablocka seismically transparent zone was suggested to relate to an up to 1 km thick solidified saucer-shaped magma chamber; today 5 justapluton.Theseismicallytransparentzonesuggestsamorehomogenousrock,likelyamixtureofcarbonatiteandalkaline rock,whichdifferfromtherocksabovethemagmachamber.Themaximumdepthcontinuationofthecomplex(includingthe pluton) was estimated to about 4 km below the surface using 2.5D forward gravity modelling (Andersson et al., 2013). An initialup-domingindicatedfromtheseismicreflectivitypatternthatbeginswithflatlyingreflectorsfarfromtheintrusionat about4kmdepth,whichbecomegraduallymoresteeplydippingreflectorsclosertothesurfaceandtheintrusion,wasargued 10 tofavourthelocationofthefossilmagmachamber. Arecentlyconductedstudy focussingontheanisotropyofmagnetic susceptibility(AMS)ofcarbonatitedykesrevealed a patternofthemagneticfabricthatfollowstheorientationofthedykes(Anderssonetal., 2016).AMSresultsarecommonly presentedassusceptibilityellipsoidsanditwasfoundthatmostoftheAMSmeasurementsshowedoblateellipsoidshape.The dominanceofoblateshapewasinterpretedtorepresentre-orientationordeformationofmagnetitegrainsduetodykeclosure 15 atalatestageofmagmatransport,probablyduetopressuredropinthedyke(Anderssonetal.,2016). 3 Dataandmethods 3.1 Petrophysicalmeasurements TheabovementionedAMSstudywasthemainpurposetocollectdrillcores,buttheybecameavailabletothisstudybecause AMS measurements are conducted with a weak applied magnetic field which is non-invasive. The sample set constitutes a 20 collectionofblocksamplesanddrillcores(25.4mmindiameterandupto~10cmlong)fromthemainrocktypesavailable in outcrops in the Alnö Island and the small islands north of it (see Figure 1 for locations). The core samples were drilled with a handheld gasoline-powered drill. All drill cores and some of the block samples were oriented with a sun compass. Thesamplesweremeasuredfortheirdensityandbulksusceptibilities(k );somesampleswerealsomeasuredfortheirnatural m remanentmagnetisation(NMR).Thedensitymeasurementspresentedhereareanextensionofthedatasetthatwaspresentedin 25 Anderssonetal.(2013).Intotal207samplesweremeasuredfordensity,morethan250samplesforbulkmagneticsusceptibility and40samplesforremanentmagnetisation.Elasticwavevelocitiesatultrasonicfrequencywerealsomeasuredearlierbutnot shownnordiscussedhere(seeAnderssonetal.,2013;Malehmiretal.,2013).Table1showsasummaryofthephysicalproperty measurementsfordifferentrocktypesfromtheAlnöcomplex,whereasthedataispresentedinthesupplementaryinformation. 3.1.1 Densityandmagneticsusceptibilitymeasurements 30 Prior to the preparation of sub-samples (21 mm long) suitable for AMS measurements (Andersson et al., 2016), the core samplesweremeasuredfortheirdensities.Theweightofeachsamplewasmeasuredinairandsubsequentlyinwaterallowing 7 SolidEarthDiscuss.,doi:10.5194/se-2017-3,2017 ManuscriptunderreviewforjournalSolidEarth Published:23January2017 c Author(s)2017.CC-BY3.0License. (cid:13) 106 Trend 3 105 Trend 2 104 ) I S µ (103 m k Trend 1 102 Fine-grained carbonatite Coarse-grained carbonatite Fenite Ijolite 101 Nepheline syenite Pyroxenite Migmatite Alnöite 100 2500 2600 2700 2800 2900 3000 3100 3200 3300 3400 Density (kg/m3) Figure4.Densityversusmagneticsusceptibility.Scatterplot,withverticalerrorbars(onestandarddeviation),showingthedensityversus mean bulk susceptibility (km) data measured in this study. The density of the samples (1 inch drill cores) were first measured and then subsequentlycutinto21mmlongsub-samplesandmeasuredforkm.Threetrendsareevident,whicharediscussedinthetext.Atotalof207 measurementsareplotted. thedensitytobecalculatedusingArchimedes’principle.Thebulksusceptibilitiesofthesub-samplesweremeasuredwithan Agico KLY-2 Kappabridge™ at Lund University. Some of the samples were measured with an AC Bridge at the Geological Survey of Sweden (SGU). The magnetic field used was 48 A/m inside the coil system for the AC Bridge (Puranen et al., 1993);thisvaluewaslaterusedtocalculatetheisolinesforKönigsbergerratioshowninthispaper.Figure4presentsdensity 5 versusbulkmagneticsusceptibilitymeasurementsforallthesamplesandsub-samples.Afocuswasgiventothecarbonatites (fine-andcoarse-grained),astheywerethemostinterestingrocktypeinthecomplexfortheAMSstudy.Thisisreflectedin themeasurements.Mostsamplesshowrelativelyhighmagneticsusceptibility,especiallysomeofthecarbonatites,nepheline syenitesandpyroxenites.Pyroxenite,ijoliteandnephelinesyeniteshowmuchhigherdensitythanthewallrocks(migmatite andfenite). 8 SolidEarthDiscuss.,doi:10.5194/se-2017-3,2017 ManuscriptunderreviewforjournalSolidEarth Published:23January2017 c Author(s)2017.CC-BY3.0License. (cid:13) 5 10 Q = 0.1 Q = 1 4 10 ) I Q = 10 S µ ( m k Fine-grained carbonatite 3 Coarse-grained carbonatite 10 Fenite Ijolite Nepheline syenite Pyroxenite Migmatite Alnöite 2 10 1 2 3 4 10 10 10 10 M (mA/m) r Figure5.Remanentmagnetisation(Mr)versusbulksusceptibility(km).IsolinesindicateKönigsbergerratios(Q)of0.1,1,and10.Afew rocksamplesshowhighremanentmagnetisation(Q 1);remanentmagnetisationdominatesoverinducedmagnetisationforthesesamples. ≥ Atotalof40measurementsareplotted. 3.1.2 Naturalremanentmagnetisation Naturalremanentmagnetisation(NRM)wasmeasuredwitharemanencemeter(BartingtonMAG-03MLS™fluxgatemagne- tometer) at SGU on a selection of block samples. The remanence meter has a lower limit of detection of 10 mA/m, with an errorof 5mA/m.Sampleswithrelativelyweakremanencethereforehaveconsiderableuncertainty(50%forasamplewith ± 5 aremanenceof10mA/m),butinthecaseofhigherremanencetheerrorisusuallynegligible.Sampleswithremanencelower than 10 mA/m were excluded from the study. Figure 5 presents the NRM measurements as a function of bulk susceptibility suggestingthatmostofthesampleshaverelativelylowremanentmagnetisation,essentiallywithaKönigsbergerratioofless than1. 3.2 Gravityandmagneticdata 10 Groundgravityandmagneticdatahavebeencollectedsince2010inconjunctionwiththereflectionseismicstudies(Andersson etal.,2013)andinfollow-upfieldcampaignstoprovideamuchwiderareaandbettercoverageforthecurrentstudy.While 9 SolidEarthDiscuss.,doi:10.5194/se-2017-3,2017 ManuscriptunderreviewforjournalSolidEarth Published:23January2017 c Author(s)2017.CC-BY3.0License. (cid:13) ground magnetic data were also measured, they are not used in the modelling due to their limited areal coverage. Instead, high-resolutiontotal-fieldaeromagneticdatawereusedforthispurpose. 3.2.1 Acquisitionandpreparationofgravitydata Morethan400gravitydatapointswereacquiredduringtheyears2010to2012usingaLacosteRomberg™modelGgravimeter. 5 Mostpointsweremeasuredonland,butafewonthesea-ice(shallow-water)northoftheislandduringwinter2011.Thesame base-stationandinstrumentwereusedforallthefieldcampaigns.Standardprocessingofthedatawasapplied(tidalcorrection, latitudecorrection,terraincorrection)andtheBougueranomalywascalculatedwiththeassumptionofabackgrounddensity of 2670 kg/m3. These measurements were shifted and merged with additional gravity data points provided by SGU (Figure 2a).Intotal610gravitydatapointswereused,coveringthemaincomplexandthesurroundings.Weestimateabout0.1mGal 10 dataerrorinthepreparationofthedatauntilcompleteBouguerresponse;henceweusedanRMSmisfitof0.2mGalduring theinversion(Malehmiretal.,2016). TheBouguergravityanomalyisnotonlyabout20mGalhigheroverthecomplexthanforthebackgroundrocks(migmatites), italsoshowsastronghorizontalgradienttowardsthecentreofthecomplex.Thisisbyfarthemostnoticeablegravitygradient anomalyobservedinSweden.Thegravityanomalyclearlyillustratestheextentofthecomplex,especiallyonlandandinthe 15 southernandeasternpartsofthestudyareawhereitshowsthestrongestgradient(Figure2a). 3.2.2 Preparationofmagneticdata The aeromagnetic data (Figure 2b) used in this study were collected using a high-resolution caesium vapour magnetometer. The lines were flown in north-south directions at 60 m nominal altitude, with 16 m sampling spacing and 200 m flight line distance. The aeromagnetic data were delivered with ground clearance information from radar altitude measurements. The 20 groundclearanceandelevationdatawereaddedtogethertoobtainthecorrectlocationsabovesealevelforthemeasurements. Thedatasetwasdecimatedtoagridof100mby100m;thisprovidedadatasetcontaining18620datapointsfortheinversion. Errorinthesetypesofdataisestimatedtobeontheorderof1–5nT(afterallthenecessarycorrections). Theaeromagneticdatauniformlycoverthecomplexonlandbutalsooverthesea,revealingsmaller-scalestructures.Similar tothegravitydata,magneticdataclearlyshowtheextentofthecomplex,amagnetichighinthecentreofthecomplexonthe 25 mainislandandinadditionaring-shapedmagneticanomalyatthemarginofthecomplexinthebay.Twosmallerbutnoticeable magnetic anomalies are also observed in the southern part of the study area, one generated from a major industrial complex (analuminiumsmelter),andoneinthesouth-easterncornerfromtheRödönrapakivigraniteintrusion,whichhasbeendated to~1500Ma(Welin,1994;Lundqvistetal.,1990;Andersson,1997).ThemagneticanomalyovertheAlnöcomplexisonthe orderof2000nT(Figure2b),whichmakesthecomplexstandingoutfromthesurroundingmigmatiticrocks. 10

Description:
The modelling of the aeromagnetic data indicates that a more than 3 km wide ring-shaped magnetic high in the bay that can be a hidden part of the complex, linking a satellite intrusion in Söråker on the northern side of the bay to the main intrusion on the Alnö Island. While the rim of the ring
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.