ebook img

Unlocking the nature of ultraluminous X-ray sources using their X-ray spectra PDF

0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Unlocking the nature of ultraluminous X-ray sources using their X-ray spectra

Astron.Nachr./ANTBC,No.TBC,789–793(2010)/DOIpleasesetDOI! Unlocking the nature of ultraluminous X-ray sources using their X-ray spectra JeanetteC.Gladstone1,⋆,TimothyP.Roberts2andChrisDone2 1 DepartmentofPhysics,UniversityofAlberta,Edmonton,Alberta,T6G2G7,Canada 2 DepartmentofPhysics,UniversityofDurham,SouthRoad,DurhamDH13LE,UK 1 1 ReceivedTBC,acceptedTBC 0 PublishedonlineTBC 2 n Keywords accretion,accretiondisks-blackholephysics-X-rays:binaries a J WeexplorethenatureofultraluminousX-raysourcesthroughdetailedinvestigationsoftheirspectralshapeusingsomeof thehighestqualitydataavailableintheXMM-Newtonpublicarchives.Phenomenologicalmodelsallowustocharacterise 5 their spectra, while more ‘physically-motivated’ models enable us to explore the physical processes underlying these 2 characteristics.Thesephysicalmodelsimplythepresenceofextreme(probablysuper-Eddington)accretionontostellar massblackholes. ] E H (cid:13)c 2010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim . h 1 Introduction 2 Characterising the spectra ofULXs p - o r Formorethan30years,bright(LX ∼> 1039ergs−1),extra- Twomainfeatureshavebeenhighlightedbypreviousstud- t galactic,non-nuclearsourceshavebeenobservedinX-rays, ies ofULX spectra:a softexcess,modelledbya cooldisc s a yetthenatureoftheseultraluminousX-raysources(ULXs) withapower-lawtail,andabreakathigherenergies.Glad- [ is still unknown. Their luminosity precludes the possibil- stone,Roberts&Done(2009;GRD09hereafter)usedsome 1 ityofstandardstellarmassblackholes(StMBHs)accreting of the highest quality ULX data (∼> 10,000 EPIC counts; v isotropically below the Eddington limit, whilst their loca- based on SRW06) currentlyavailable in the XMM-Newton 9 tionwithinhostgalaxies-alongwithdynamicalfrictionar- ScienceArchive(XSA1)(asampleof12sources,withLX 5 guments - rules out super-massive black holes (SMBHs). ∼1039–afew1040ergs−1)toseeifeachofthesefeatures 8 4 The simplest explanationis that these objectsare interme- arepresentinthemajorityofULXspectra. . diate in both mass and luminosity between the black hole Tolookforasoftexcess,eachspectrumwasfitwithan 1 0 categoriesmentionedabove,intermediatemassblackholes absorbedpower-law.Adisccomponent(DISKBBinXSPEC; 1 (IMBH;Colbert&Mushotzky1999)thatareaccretingina Mitsudaetal.1984)wasthenaddedtothemodeland∆χ2 1 knownstate.AnalternativeisthattheyareStMBHsthatare found.Animprovement(∆χ2>30)wasfoundin11spec- : either exceedingthe Eddingtonlimit, by undergoingsome tra,anexampleofwhichcanbeseeninFigure1(a)(seealso v i formofsuper-Eddingtonaccretion(e.g.Begelman2002),or tables 4 & 5 in GRD09 for results). Seven of the sample X circumventingitviageometricorrelativisticbeaming(e.g. showed cooldiscs (kTin < 0.5 keV), while the remaining r Kingetal.2001;Ko¨rding,Falcke&Markoff2002). sampledisplayedamorestandardStMBHtemperature. a Simple phenomenologicalmodelsrevealed warm disc- The possible break at higher energies was investigated likespectrainASCAdata,suggestingpossiblerapidlyspin- by comparingpower-lawand broken power-lawfits above ning(Kerr)StMBHs (Makishimaetal. 2000).Increasesin 2keV(seeFigure1(b)).Thisprovidedclearevidencefora spectral quality allowed fitting of two component models break in the energyspectrumabove 3 keV in 11 of the 12 (multi-coloureddisc +power-law),indicatingthepresence sources(>98percentstatisticalimprovementusingF-test; ofasoftexcessatlowerenergies,wellfitbyacooldisc.The seealsotable6ofGRD09). cooldisc(kT ∼0.2keV)indicatedthepossiblepresence A soft excess and a break above ∼ 3 keV appear to in of an IMBH (∼ 1000M , Miller et al. 2003). However, be almostubiquitousin thissample, althoughtheirspectra ⊙ analysisofhigherqualitydatashowedevidenceofaspectral can be split into two distinct categories using these mod- breakat a fewkeV (e.g.Stobbart,Roberts& Wilms 2006, els. The first displays a warm disc and a break (kTin ∼> SRW06 hereafter), curvature not seen in standard states. 0.8 keV; E ∼ 4 keV). On closer inspection it is ev- break ThustheaccretionflowsinULXsmaynotsimplybescaled ident that each component is modelling the same spectral upversionsofthoseseeninGalacticblackholebinaries. feature.Inthiscasewefindthatthepower-lawcontributes to emission at both higher and lower energies, broadening ⋆ Correspondingauthor:e-mail:[email protected] 1 Seehttp://xmm.esac.esa.int/xsa/ (cid:13)c 2010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 790 J.Gladstone,T.Roberts,C.Done:UnlockingthenatureofULXs 10−3 10−3 10−4 E FE E FE 10−5 5×10−4 2 5 10 10−60.2 0.5 1 2 5 10 Energy (keV) Energy (keV) Fig.1 XMM-NewtonEPICpndatafor(a)NGC5408X-1,(b)NGC1313X-2and(c)M81X-6.Ineachcase onlypn dataisshownandtheyhavebeenrebinnedforclarity.Disccomponentsareplottedinred,power-lawsareplottedingreen andthecombinedmodelinblue.Plots(a)and(c)demonstratethetwotypesoffitreceivedwhencombininganabsorbed disc and power-law model. NGC 5408 X-1 (a) has kT ∼ 0.19 kev, Γ ∼ 2.7, while M81 X-6 displays a warmer disc in (kT ∼1.42kev)withΓ∼2.6.Thefirstmayindicatethatthesourceisinthenewultraluminousstatewhilstthesecond in spectrum is of a source describedby a modified accretiondisc (perhapsin the high, veryhighstate). Plot (b)shows the clearpresenceofabreakintheenergyspectrumabove2keV. thediscmodel(seeFigure1(c)).Thisisprobablyduetothe unrealistic.Thisappearstoindicatethatthesimplifiedslim DISKBB providinga poor description of the broader spec- discmodelisaninadequatedescriptionofhighqualityULX trum expected from more realistic disc models (Done & data. A more complex version of the slim disc (e.g. rela- Davis2008;Hui&Krolik2008).Thesecondcategoryex- tivisticslimdiscinSadowskietal.2010)shouldinsteadbe hibitsacooldisc(kTin ∼<0.8keV)andbreakathigheren- appliedtoinvestigatethistheoryfurther. ergies(4∼< Ebreak ∼<7keV),thataretwodistinctspectral features.Thisnewcombinationofobservationalcharacter- 3.2 Comptonisationmodels isticsindicatethatthesesystemsareresidinginanaccretion statenotcommonlyseeninGalacticX-raybinaries,an“ul- ComptonisationmodelshavebeenappliedtoGalacticblack traluminousstate”.Toexplorethenatureofthisnewspec- holebinariesformanyyearswithgreatsuccess.GRD09ap- tralstate,wediscussmorephysicallymotivatedmodels. plied them to their sample as a starting point for further study. Two separate Comptonisation models were applied (COMPTT, Titarchuk 1994; EQPAIR, Coppi 1999), each in 3 Testing physicallymotivatedmodels combinationwithadisc. The majority of the GRD09 sample were found to be 3.1 Slimdiscs parameterisedbyacoolaccretiondiscwithacool,optically thickcorona(τ ∼>6),irrespectiveofComptonisingmodel. The slim disc model suggests that the accretion disc can Thisisverydifferentfromstandardblackholestates.Only become so optically thick that energyreleased in the mid- sources in the very high state (VHS) have parameters that plane does nothave time to diffuseto the photospherebe- areevenclosetothoseobservedforULXs(lowstate-τ ∼< fore being lost over the event horizon (Abramowicz et al. 2, kT ∼ 50 keV; VHS - τ ∼ 3 and kT ∼ 20 keV), and e e 1988). This causes the disc to swell, creating a geomet- systems residing in this state are accreting at some of the rically ‘slim’ disc. The change in disc structure causes a highestknownaccretionrates.Hereweobservegreaterop- change in temperature gradient, represented by rp. Some ticaldepthsandlowerelectrontemperatures.Thisindicates authorshavelookedforevidenceofthischangingdiscstruc- thatwemaybeobservingULXstatesthataremoreextreme ture with ‘p-free’ (DISKPBB in XSPEC; e.g. Watarai et al. than the VHS, and possibly super-Eddington accretion on 2001), searching for a shift from the standard value of p to StMBHs. However, we must note that the discs remain (≃0.75),toavalueof∼0.5(e.g.Vierdayantietal.2006). cool,thatcouldalsobearguedassupporttoIMBHs. GRD09 appliedthissimplified versionof the slim disc Thereareintrinsicissueswiththeaccretionstructurede- model to their sample. Initial results, at first glance, ap- scribed above. The model assumed that an optically thick peared to be in agreement with the slim disc model, with coronadoes notinterceptthe line of sightto inner regions p∼0.4–0.6(seeGRD09table7).However,closerinspec- oftheaccretiondisc,andthattheunderlyingdiscspectrum tionrevealedthatwhiletheinner-disctemperaturesofsome isindependentofthepresenceofacorona(Kubota&Done sources range from 1–3 keV, which can be expected for 2004).Eachassumptionisflawed.Anopticallythickcorona super-Eddington accretion, 4 of the sample exhibit higher could easily mask the inner regionsof the disc, while two temperatures(6–13keV),temperaturesthatarephysically opticallythick media in such close proximityrequiresthat (cid:13)c 2010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org Astron.Nachr./AN(2010) 791 the energeticsofthesystemmustbeconsidered.Bothma- tures have been noted in some StMBHs (e.g. Miller 2007) terialandenergywouldberemovedfromtheaccretiondisc & SMBHs (e.g. Tanaka et al. 1995). Caballero-Garc´ıa & in order to launch (and feed) the corona,depleting the ac- Fabian (2010) chose to apply this model to some of the cretiondiscandalteringitsemissionspectrum. highestqualitydataavailableinXSA.Theauthorsproposed thatULXspectracouldbeexplainedbyanX-rayirradiated discaroundarapidlyspinningblackhole.Heretheauthors 3.3 Energeticallycoupleddiscandcorona usedREFLIONX(Ross&Fabian2005)incombinationwith In order to correctthe flawed assumptionsoutlined above, theKerrkernelKDBLUR(Laor1991)orKERRCONV(Bren- GRD09 applied DKBBFTH (Done & Kubota 2006), incor- neman&Reynolds2006).Theturnoverathigherenergies poratingtheenergeticdisc-coronacouplingmodelofSvens- wouldbeexplainedbyarelativistically-broadenedironline, son&Zdziarski(1994).Itassumesthat,astheaccretionrate whilst an absorbed power-law models the underlyingcon- increases, material and energy are fed into the corona. By tinuum, representing the emission source illuminating the conservingenergy,whilstcalculatingthefraction(f)dissi- disc. This implies that both the soft excess and the high patedinthecorona,thismodelisabletoretrievedetailsof energybreakarepossiblesignaturesofanX-rayirradiated theunderlyingdiscincludingitsresultingluminosity. accretiondisc.The authorsalso notethatnostatistical im- Figure2(left) showsHoIX X-1,whichclearlydemon- provements are found with the addition of a disc compo- stratesthatneitherspectralfeaturegivesdirectinformation nent,theyarethereforeunableto commentonthe massof on the inner-disc temperature. The high energy turn over theblackholeresidingwithinULXs,orontheimpliedac- is described by the corona, whilst the soft excess provides cretionrateofthesesystems. the transitional radius(the outermostradiusof the corona, TheresultsofthisstudyindicatethatULXsfallintotwo beyond which the disc is clearly visible). The inner disc majorgroups.Somespectraappeartobedominatedbyare- (dashedred line) is notvisible to the observer.Figure 8 in flectioncomponent,whilstothersareinapower-lawdomi- GRD09 shows fits for the entire sample over-plotted with natedstate.Itisarguedthatthesecorrespondtotwoofthe therecovereddisccomponent.Therecovereddiscspectrum regimesdiscussedinMiniutti&Fabian(2004),inwhichthe isthespectrumthatwouldbeobservedifthecorona(andits heightoftheprimarysourceofX-raysisvaried.Thisallows effects)couldberemovedfromthe system,ascan beseen theobservertoseedifferingamountsofthecontinuumand overlaidinthreeofthesampleinFigure2(right). reflectioncomponents. If we consider those systems initially characterised by a warm disc (plus power-law), we find that the recovered 4 Spectral variability disc(fromDKBBFTH)isverysimilartotheactualspectrum (see Figure 2(right-i)). These disc-like spectra are similar in shape to those of Galactic StMBHs residing in the high Recent work attempted the test the findingsof Section 3.3 andveryhighstate(whenband-passisconsidered;seealso bystudyingaseriesofreasonablequalityspectraofHolm- figure9inDoneetal.2007).Thiswouldindicatethatthey berg IX X-1 (Vierdayantiet al. 2010a). XMM-Newton and arepossiblyresidinginthehighorVHS.Oftheremaining Swiftdata(groupedbycountrate)werecombinedtostudy spectra,wefindtheytwocategories,thosewithatempera- spectralvariationsoverlongtimescales,withthesourcelu- turethatwouldindicatethepresenceofaStMBH(seeFig- minosity varying by a factor of 3–4. When the data is fit ure2(right-ii)),andthosewith a cooldisc moreindicative with a combineddisc andComptonisingcoronamodelthe ofan IMBH(see Figure2(right-iii)).Thefirstgroup’spa- resultsagreewiththoseinSection3.2,thespectraarewell rameters suggest that we are observing extreme StMBHs fitbyacoolopticallythickcorona.Bycomparingresultant residing in the ultraluminous state, probably accreting at fits the authorsnotethatthe temperatureof the coronaap- super-Eddingtonrates. In the second case, we may be ob- pearedtodecrease,withacorrespondingincreaseinoptical serving IMBHs, or we may be observing something else. depth,astheluminosityofthesystemincreased.Pintore& Theorypredictsthata photosphereandwindare keycom- Zampieri (2010) also report on similar work within these ponentsofsuper-Eddingtonaccretion(e.g.Begelmanetal. proceedings, results that appear to be in agreement with 2006; Poutanen et al. 2007) and this new spectral struc- thepredictionsofsuper-Eddingtonaccretion,andtheideas ture could provide observational evidence for such a pho- outlined by GRD09 (see the authors’ conference proceed- tosphere.Inthis case, bothmassand energywouldbe lost ingsforfurtherdetails).However,theresultsofVierdayanti from the system whilst launching the wind. If this is the et al. (2010a)also show further complexity in the spectral case, these sources are residing in an extreme ultralumi- variability of these sources, with differences appearing in nous state. In order to pursue this further, new models are thespectralshapeofthesesystemswhenthesamelevelof requiredtofullyexplainthephysicsofsuchasystem. fluxatdifferenttimes.Inordertoexplorethesedifferences in more detail, more in-depth studies are requiredinto the spectralvariabilityofthesesystemswithhighqualitydata. 3.4 Reflectionmodels Another work published this year adds further support X-ray reflectionmodelshave also been proposedas a way to GRD09, namely a study of the Galactic black hole bi- to unlock the nature of ULXs, as X-ray reflection signa- naryGRS1915+105,whichhasbeenobservedtoaccreteat www.an-journal.org (cid:13)c 2010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 792 J.Gladstone,T.Roberts,C.Done:UnlockingthenatureofULXs Fig.2 (Left) XMM-Newton EPIC pn data from Ho IX X-1 (plotted in black and rebinned for clarity), fitted with an absorbedultraluminousmodel(DKBBFTH,in blue).Variouscomponentsoftheaccretionsystemdescribedbythemodel areoverlaid.Disccomponentsareshowninredwhilstthecoronaisingreen.Thevisibleregionsoftheouterdiscandthe opticallythickcoronaareplottedwithasolidline,whilstthecalculatedmaskedemissionfromthecooled,energetically- coupled inner disc is plotted wited a dotted line. (Right panels) XMM-Newton EPIC-pn X-ray spectra for three ULXs fromGRD09.Thespectraare de-absorbed&unfoldedandshowonespectrumfromeachsuggestedspectralregime:(i) the modified disc (M33 X-8); (ii) ultraluminous (Ho IX X-1); (iii) and extreme ultraluminous (possibly photosphere- dominated;HoIIX-1)states.Theintrinsicdiscspectrum,recoveredwhenthecoronaisaccountedfor,isinred. super-Eddingtonrates(givenbestestimatesofmassanddis- ysis methods,such as spectralor temporalvariability with tance).Thespectralevolutionofthissourceshowssimilar- highqualitydata.Theearlyresultsofsuchstudiesappearto itiestothatofULXs,andthefindingsofSection3.3(Vier- supportthepredictionsoftheenergeticallycoupleddiscand dayanti et al. 2010b).When fitting extreme spectra of this coronamodel,butlargerstudiesofsuchhighqualityX-ray sourcewithadiscplusComptonisationmodel,theauthors dataarerequiredtoconfirmthis. foundevidenceof increasingopticaldepthwithincreasing luminosity.Thisprovidesstrongsupportfortheideaofex- References tremeaccretionontoStMBHs. AbramowiczM.A.,etal.,1988,ApJ,332,646 5 The ultraluminous state? BegelmanM.C.,2002,ApJ,568,L97 BegelmanM.C.,etal.,2006,MNRAS,370,399 BrennemanL.W.,ReynoldsC.S.,2006,ApJ,652,1028 The ultraluminousstate is an observationallydefinedstate Caballero-Garc´ıaM.D.,FabianA.C.,2010,MNRAS,402,2559 inwhichweobservethepresenceofacooldiscandabreak ColbertE.J.M.,MushotzkyR.F.,1999,ApJ,519,89 inthespectrumabove3keV.Thequestionsthatcontinueto CoppiP.S.,1999,ASPC,161,375 surround this ‘state’, and these sources, relate to the mass DoneC.,KubotaA.,2006,MNRAS,371,1216 oftheblackholeresidingatthecentreofthesesystemsand DoneC.,etal.,2007,A&ARv,15,1 theiraccretiongeometry. DoneC.,DavisS.W.,2008,ApJ,683,389 GladstoneJ.C.,RobertsT.P.,DoneC.,2009,MNRAS,397,1836 A range of models have been applied to the spectra of HuiY.,KrolikJ.H.,2008,ApJ,679,1405 thesesystemsinanattempttoanswerthesequestions,with KingA.R.,etal.,2001,ApJ,552,L109 many suggesting extreme accretion onto StMBHs. Similar Ko¨rdingE.,FalckeH.,MarkoffS.,2002,A&A,382,L13 spectralevolutionhasbeenobservedintheextremeGalac- KubotaA.,DoneC.,2004,MNRAS,353,980 tic StMBH GRS 1915+105,lendingfurthersupportto this LaorA.,1991,ApJ,376,90 claim. MakishimaK.,etal.,2000,ApJ,535,632 Miller,J.M.,etal.,2003,ApJ,585,L37 Atpresent,however,theresultsofsuchstudiessuggest MillerJ.M.,2007,ARA&A,45,441 thatweneedtoexploitawiderbandpasstodifferentiatebe- MiniuttiG.,FabianA.C.,2004,MNRAS,349,1435 tween these models. When comparingthe fits from physi- MitsudaK.,etal.,1984,PASJ,36,741 cally motivated models(excludingthe slim disc scenario), Pintore F., Zampieri L., 2010, AN, accepted, arXiv, we find that reduced χ2 values are very similar in almost arXiv:1011.2026 allcaseswherethereareoverlapsinoursamples.Therefore PoutanenJ.,etal.,2007,MNRAS,377,1187 withthecurrentdata,itappearsthatanunambiguousdeter- RossR.R.,FabianA.C.,2005,MNRAS,358,211 Sa¸dowskiA.,etal.,2011,A&A,527,A17 mination of the accretion geometry of ULXs using single StobbartA.M.,RobertsT.P.,WilmsJ.,2006,MNRAS,368,397 snapshotXMM-Newtonobservationsaloneisunlikely.Wal- SvenssonR.,ZdziarskiA.A.,1994,ApJ,436,599 ton et al. (2011) show that a wider bandpass can at least TanakaY.,etal.,1995,Natur,375,659 differentiateoptically-thickcoronamodelsfromreflection- TitarchukL.,1994,ApJ,434,570 dominatedspectra.Analternativeistoturntodifferentanal- VierdayantiK.,etal.,2006,PASJ,58,915 (cid:13)c 2010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org Astron.Nachr./AN(2010) 793 VierdayantiK.,etal.,2010a,MNRAS,403,1206 VierdayantiK.,etal.,2010b,PASJ,62,239 WataraiK.,MizunoT.,MineshigeS.,2001,ApJ,549,L77 Walton D. J., et al., 2011, MNRAS, accepted, arXiv, arXiv:1101.4541 www.an-journal.org (cid:13)c 2010WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.