ebook img

University of Groningen Abelian Sandpiles and the Harmonic Model Schmidt, Klaus PDF

40 Pages·2009·0.65 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview University of Groningen Abelian Sandpiles and the Harmonic Model Schmidt, Klaus

University of Groningen Abelian Sandpiles and the Harmonic Model Schmidt, Klaus; Verbitskiy, Evgeny Published in: Communications in Mathematical Physics DOI: 10.1007/s00220-009-0884-3 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2009 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Schmidt, K., & Verbitskiy, E. (2009). Abelian Sandpiles and the Harmonic Model. Communications in Mathematical Physics, 292(3), 721-759. https://doi.org/10.1007/s00220-009-0884-3 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 17-03-2023 Commun.Math.Phys.292,721–759(2009) Communicationsin DigitalObjectIdentifier(DOI)10.1007/s00220-009-0884-3 Mathematical Physics Abelian Sandpiles and the Harmonic Model KlausSchmidt1,2,EvgenyVerbitskiy3,4 1 MathematicsInstitute,UniversityofVienna,Nordbergstrasse15,A-1090Vienna,Austria. E-mail:[email protected] 2 ErwinSchrödingerInstituteforMathematicalPhysics,Boltzmanngasse9,A-1090Vienna,Austria 3 PhilipsResearch,HighTechCampus36(M/S2),5656AE,Eindhoven,TheNetherlands. E-mail:[email protected] 4 DepartmentofMathematics,UniversityofGroningen,POBox407,9700AK,Groningen,TheNetherlands Received:15January2009/Accepted:14April2009 Publishedonline:15August2009–©TheAuthor(s)2009.Thisarticleispublishedwithopenaccessat Springerlink.com Abstract: We present a construction of an entropy-preserving equivariant surjective mapfromthed-dimensionalcriticalsandpilemodeltoacertainclosed,shift-invariant subgroupofTZd (the‘harmonicmodel’).Asimilarmapisconstructedforthedissipative abelian sandpile model andisusedtoprove uniqueness and theBernoulliproperty of themeasureofmaximalentropyforthatmodel. Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722 1.1 Fourmodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 722 1.2 Outlineofthepaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723 2. APotentialFunctionandits(cid:1)1-Multipliers . . . . . . . . . . . . . . . . . . 723 3. TheHarmonicModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733 3.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734 3.2 Homoclinicpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734 3.3 Symboliccoversoftheharmonicmodel . . . . . . . . . . . . . . . . . 735 3.4 Kernelsofcoveringmaps . . . . . . . . . . . . . . . . . . . . . . . . . 739 4. TheAbelianSandpileModel . . . . . . . . . . . . . . . . . . . . . . . . . 744 5. TheCriticalSandpileModel . . . . . . . . . . . . . . . . . . . . . . . . . . 747 5.1 Surjectivityofthemapsξg: R∞ −→ Xf(d) . . . . . . . . . . . . . . . 747 5.2 Propertiesofthemapsξ , g ∈ I˜ . . . . . . . . . . . . . . . . . . . . . 754 g d 6. TheDissipativeSandpileModel . . . . . . . . . . . . . . . . . . . . . . . . 755 6.1 Thedissipativeharmonicmodel . . . . . . . . . . . . . . . . . . . . . 755 6.2 Thecoveringmapξ(γ): R(∞γ) −→ Xf(d,γ) . . . . . . . . . . . . . . . . 756 7. ConclusionsandFinalRemarks . . . . . . . . . . . . . . . . . . . . . . . . 758 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 759 722 K.Schmidt,E.Verbitskiy 1. Introduction Foranyintegerd ≥2let (cid:2) (cid:4) (cid:1) (cid:1) 1 1 (cid:3)d h = ··· log 2d−2 cos(2πx ) dx ···dx , (1.1) d i 1 d 0 0 i=1 h =1.166,h =1.673,etc.Itturnsoutthatford ≥2,h isthetopologicalentropyof 2 3 d threedifferentd-dimensionalmodelsinmathematicalphysics,probabilitytheory,and dynamicalsystems.Ford =2,thereisevenafourthmodelwiththesameentropyh . d 1.1. Fourmodels. Thed-dimensionalabeliansandpilemodelwasintroducedbyBak, TangandWiesenfeldin[3,4]andattractedalotofattentionafterthediscoveryofthe AbelianpropertybyDharin[8].Thesetofinfiniteallowedconfigurationsofthesandpile model isthe shift-invariantsubset R∞ ⊂ {0,...,2d −1}Zd defined in (4.4) and dis- cussedinSect.4.1In[10],Dharshowedthatthetopologicalentropyoftheshift-action σR onR∞ isalsogivenby(3.4),whichimpliesthateveryshift-invariantmeasureµ ∞ of maximal entropy on R∞ has entropy (1.1). Shift-invariant measures on R∞ were studiedinsomedetailbyAthreyaandJaraiin[1,2],JaraiandRedigin[13];however, thequestionofuniquenessofthemeasureofmaximalentropyisstillunresolved. Spanningtreesoffinitegraphsareclassicalobjectsincombinatoricsandgraphthe- ory.In1991,Pemantleinhisseminalpaper[17]addressedthequestionofconstructing uniformprobabilitymeasuresonthesetT ofinfinitespanningtreesonZd —i.e.,on d the set of spanning subgraphs of Zd without loops. This work was continued in 1993 byBurtonandPemantle[5],wheretheauthorsobservedthatthetopologicalentropyof thesetofallspanningtreesinZd isalsogivenbytheformula (1.1).Anotherproblem discussedin[5]istheuniquenessoftheshift-invariantmeasureofmaximalentropyon T (theproofin[5]isnotcomplete,butSheffieldhasrecentlycompletedtheproofin d [22]. This coincidence of entropies raised the question about the relation between these models.Apartialanswertothisquestionwasgivenin1998byR.Solomyakin[24]:she constructed injective mappings from the set of rooted spanning trees on finite regions ofZd into Xf(d) suchthattheimagesaresufficientlyseparated.Inparticular,thispro- videdadirectproofofcoincidenceofthetopologicalentropiesofαf(d) andσTd without makinguseofformula(1.1). Indimension2,spanningtreesarerelatednotonlytothesandpilemodels(cf.e.g., [19] for a detailed account) and, by [24], to the harmonic model, but also to a dimer model(moreprecisely,totheevenshift-actiononthetwo-dimensionaldimermodel)by [5]. However,theconnectionsbetweentheabeliansandpilesandspanningtrees(aswell asdimersindimension2),arenon-local:theyareobtainedbyrestrictingthemodelsto finiteregionsinZd (orZ2)andconstructingmapsbetweentheserestrictions,butthese mapsarenotconsistentasthefiniteregionsincreasetoZd. Inthispaperwestudytherelationbetweentheinfiniteabeliansandpilemodelsand thealgebraicdynamicalsystemscalledtheharmonicmodels.Thepurposeofthispaper istodefineashift-equivariant,surjectivelocalmappingbetweenthesemodels:fromthe 1 Inthephysicsliteratureitismorecustomarytoviewthesandpilemodelasasubsetof{1,...,d}Zd by adding1toeachcoordinate. AbelianSandpilesandtheHarmonicModel 723 infinite critical sandpile model R∞ to the harmonic model. Although we are not able to prove that this mapping is almost one-to-one it has the property that it sends every shift-invariantmeasureofmaximalentropyonR∞toHaarmeasureonXf(d).Moreover, itshedssomelightonthesomewhatelusivegroupstructureofR∞. Firstly,thedualgroupof Xf(d) isthegroup G = R /(f(d)), d d where R = Z[u±,...,u±] is the ring of Laurent polynomials with integer coeffi- d 1 d cientsinthevariablesu ,...,u ,and(f(d))istheprincipalidealin R generatedby (cid:5) 1 d d f(d) =2d− d (u +u−1).ThegroupG isthecorrectinfiniteanalogueofthegroups i=1 i i d of additionoperatorsdefinedonfinitevolumes,see[9,19](cf.Sect.7). Secondly,themapξ constructedinthispapergivesrisetoanequivalencerelation∼ Id onR∞with x ∼ y ⇐⇒ x −y ∈ker(ξ ), Id such that R∞/∼ is a compact abelian group. Moreover, R∞/∼, viewed as a dynami- calsystemunderthenaturalshift-actionofZd,hasthetopologicalentropy(1.1).This extends the result of [16], obtained in the case of dissipative sandpile model, to the criticalsandpilemodel. Finally,wealsoidentifyanalgebraicdynamicalsystemisomorphictothedissipative sandpilemodel.Thisallowsaneasyextensionoftheresultsin[16]:namely,theunique- nessofthemeasureofmaximalentropyonthesetofinfiniterecurrentconfigurations in the dissipative case. Unfortunately, we are not yet able to establish the analogous uniquenessresultinthecriticalcase. 1.2. Outlineofthepaper. Sect.2investigatescertainmultipliersofthepotentialfunc- tion(orGreen’sfunction)ofthesimplerandomwalkonZd.InSect.3theseresultsare usedtodescribethehomoclinicpointsoftheharmonicmodel.Thesepointsarethenused todefineshift-equivariantmapsfromthespace(cid:1)∞(Zd,Z)ofallboundedd-parameter sequencesofintegersto Xf(d).InSect.4weintroducethecriticalanddissipativesand- pilemodels.InSect.5weshowthatthemapsfoundinSect.3sendthecriticalsandpile modelR∞ onto Xf(d),preservetopologicalentropy,andmapeverymeasureofmaxi- malentropyonR∞toHaarmeasureontheharmonicmodel.Afterabriefdiscussionof furtherpropertiesofthesemapsinSubsect.5.2,weturntodissipativesandpilemodels in Sect. 6 and define an analogous map to another closed, shift-invariant subgroup of TZd.Themainresultin[16]showsthatthismapisalmostone-to-one,whichimplies that the measure of maximal entropy on the dissipative sandpile model is unique and Bernoulli. 2. APotentialFunctionandits(cid:1)1-Multipliers Letd ≥1.Foreveryi =1,...,dwewritee(i) =(0,...,0,1,0,...,0)fortheithunit vectorinZd,andweset0=(0,...,0)∈Zd. WeidentifythecartesianproductW =RZd withthesetofformalrealpowerseries d inthevariablesu±1,...,u±1 byviewingeachw =(w )∈ W asthepowerseries 1 d (cid:3) n d w un (2.1) n n∈Zd 724 K.Schmidt,E.Verbitskiy with w ∈ R and un = un2···und for every n = (n ,...,n ) ∈ Zd. The involution w (cid:9)→wn∗onW isdefined1by d 1 d d wn∗ =w−n, n∈Zd. (2.2) For E ⊂ Zd we denote by π : W −→ RE the projection onto the coordinates E d in E. Forevery p ≥1weregard(cid:1)p(Zd)asthesetofallw ∈ W with d ⎛ ⎞ 1/p (cid:3) (cid:11)w(cid:11) =⎝ |w |p⎠ <∞. p n n∈Zd Similarlyweview(cid:1)∞(Zd)asthesetofallboundedelementsinW ,equippedwiththe d supremumnorm(cid:11)·(cid:11)∞.Finallywedenoteby Rd =Z[u±11,...,u±d1]⊂(cid:1)1(Zd)⊂ Wd theringofLaurentpolynomials(cid:5)withintegercoefficients.Everyhinanyofthesespaces willbewrittenash =(hn)= n∈Zd hnun withhn ∈R(resp.hn ∈Zforh ∈ Rd). Themap(m,w)(cid:9)→um·wwith(um·w)n =wn−misaZd-actionbyautomorphisms oftheadditivegroupW whichextendslinearlytoan R -actiononW givenby d d d (cid:3) h·w = h un·w (2.3) n n∈Zd foreveryh ∈ R andw ∈ W .Ifwalsoliesin R thisdefinitionisconsistentwiththe d d d usualproductin R . d For the following discussion we assume that d ≥ 2 and consider the irreducible Laurentpolynomial (cid:3)d f(d) =2d− (u +u−1)∈ R . (2.4) i i d i=1 Theequation f(d)·w =1 (2.5) with w ∈ W admits a multitude of solutions.2 However, there is a distinguished (or d fundamental)solutionw(d)of (2.5)whichhasadeepprobabilisticmeaning:itisacer- tainmultipleofthelatticeGreen’sfunctionofthesymmetricnearest-neighbourrandom walkonZd (cf.[6,12,25,27]). Definition2.1. For every n = (n ,...,n ) ∈ Zd and t = (t ,...,t ) ∈ Td we set (cid:5) 1 d 1 d (cid:12)n,t(cid:13)= d n t ∈T.Wedenoteby j=1 j j (cid:3) (cid:3)d F(d)(t)= f(d)e2πi(cid:12)n,t(cid:13) =2d−2· cos(2πt ), t =(t ,...,t )∈Td, (2.6) n j 1 d n∈Zd j=1 theFouriertransformof f(d). 2 UndertheobviousembeddingofRd (cid:7)→(cid:1)∞(Zd,Z),theconstantpolynomial1∈Rdcorrespondstothe elementδ(0)∈(cid:1)∞(Zd,Z)givenby (cid:10) δ(0)= 1 if n=0, n 0 otherwise. AbelianSandpilesandtheHarmonicModel 725 (1)Ford =2, (cid:1) e−2πi(cid:12)n,t(cid:13)−1 w(2) := dt forevery n∈Z2. n T2 F(2)(t) (2)Ford ≥3, (cid:1) e−2πi(cid:12)n,t(cid:13) w(d) := dt forevery n∈Zd. n Td F(d)(t) The difference in these definitions for d = 2 and d > 2 is a consequence of the fact thatthesimplerandomwalkonZ2 recurrent,whileonhigherdimensionallatticesitis transient. Theorem2.2.([6,12,25,27])Wewrite(cid:11)·(cid:11)fortheEuclideannormonZd. (i)Foreveryd ≥2,w(d)satisfies(2.5). (ii)Ford =2, ⎧ ⎨ 0 if n=0, wn(2) =⎩− 1 log(cid:11)n(cid:11)−κ −c (cid:11)n1(cid:11)4(n41+n42)−34 +O((cid:11)n(cid:11)−4) if n(cid:14)=0, (2.7) 8π 2 2 (cid:11)n(cid:11)2 whereκ > 0andc > 0.Inparticular,w(2) = 0andw(2) < 0foralln (cid:14)= 0. 2 2 0 n Moreover, (cid:3)∞ 4·w(2) = (P(X =n|X =0)−P(X =0|X =0)), n k 0 k 0 k=1 where(X )isthesymmetricnearest-neighbourrandomwalkonZ2. k (iii)Ford ≥3, (cid:5) 1 d n4− 3 (cid:11)n(cid:11)d−2w(d) =κ +c (cid:11)n(cid:11)4 i=1 i d+2 +O((cid:11)n(cid:11)−4) (2.8) n d d (cid:11)n(cid:11)2 as(cid:11)n(cid:11)→∞,whereκ >0,c >0.Moreover, d d (cid:3)∞ 2d·w(d) = P(X =n|X =0)>0 forevery n∈Zd, n k 0 k=0 where(X )isagainthesymmetricnearest-neighbourrandomwalkonZd. k Definition2.3.Letw(d) ∈ W bethepointappearinginDefinition2.1.Weset d (cid:14) (cid:15) I = g ∈ R :g·w(d) ∈(cid:1)1(Zd) ⊃(f(d)), (2.9) d d where(f(d)) = f(d)· Rd istheprincipalidealgeneratedby f(d).Sincewn(d) = w−(dn) foreveryn∈Zd itisclearthat I = I∗ ={g∗ :g ∈ I }. d d d 726 K.Schmidt,E.Verbitskiy Theorem2.4.Theideal I isoftheform d I =(f(d))+I3, (2.10) d d where I ={h ∈ R :h(1)=0}=(1−u )· R +···+(1−u )· R (2.11) d d 1 d d d with1=(1,...,1). FortheproofofTheorem2.4weneedseverallemmas.Weset J =(f(d))+I3 ⊂ R . (2.12) d d d (cid:5) Lemma2.5.Let g = k∈Zd gkuk ∈ Rd. Then g ∈ Jd if and only if it satisfies the followingconditions(2.13)–(2.16). (cid:3) g =0, (2.13) k (cid:3) k∈Zd g k =0 for i =1,...,d, (2.14) k i k=((cid:3)k1,...,kd)∈Zd g k k =0 for 1≤i (cid:14)= j ≤d, (2.15) k i j (cid:3)k=(k1,...,kd)∈Zd g (k2−k2)=0 for 1≤i (cid:14)= j ≤d. (2.16) k i j k=(k1,...,kd)∈Zd Proof. Condition(2.13)isequivalenttosayingthatg ∈I .Inconjunctionwith(2.13), d (2.14)isequivalenttosayingthatg ∈I2:indeed,ifg ∈I ,thenitisoftheform d d (cid:3)d g = (1−u )·a (2.17) i i i=1 witha ∈ R fori =1,...,d.Then i d ∂g = (cid:3) g k ·uk1···ukj−1···ukd =−a +(cid:3)d (1−u )· ∂ai , ∂u k j 1 j d j i ∂u j k=(k1,...,kd)∈Zd i=1 j and ∂g (1)=0ifandonlyifa ∈I . ∂uj j d Ifg ∈I isoftheform(2.17)andsatisfies(2.14)weset d (cid:3)d aj = (1−ui)·bi,j (2.18) i=1 withbi,j ∈ Rd.Condition(2.15)issatisfiedifandonlyif ∂2g ∂a ∂a ∂u ∂u (1)=−∂ui − ∂uj =bi,j(1)+bj,i(1)=0 i j j i for1≤i (cid:14)= j ≤d. AbelianSandpilesandtheHarmonicModel 727 Finally,if g satisfies(2.13)–(2.14)andisoftheform (2.17)–(2.18)withbi,j ∈ Rd foralli, j,then(2.16)isequivalenttotheexistenceofaconstantc∈Rwith (cid:3) ∂a gkki2 =−2∂ui(1)=2bi,i(1)=c k=(k1,...,kd)∈Zd i fori =1,...,d. The last equation shows that bi,i −b1,1 ∈ Id for i = 2,...,d. By combining all theseobservationswehaveprovedthatgsatisfies(2.13)–(2.16)ifandonlyifitisofthe form (cid:3)d g =h · (1−u )2+h (2.19) 1 i 2 i=1 with c ∈ Z, h ∈ R and h ∈ I3. The set of all such g ∈ R is an ideal which we 1 d 2 (cid:5)d d denoteby J˜.Clearly,I3 ⊂ J˜and d (1−u )2 ∈ J˜.Since(1−u )2·(1−u−1)∈I3 d i=1 i i i d fori =1,...,d aswell,weconcludethat (cid:3)d (cid:3)d f(d) = (1−u )2− (1−u−1)·(1−u )2 ∈ J˜. (2.20) i i i i=1 i=1 Thisshowsthat J˜⊂ J ,andthereverseinclusionalsofollowsfrom(2.20)and(2.19). d (cid:17)(cid:18) Lemma2.6. I ⊂ J . d d Proof. Weassumethatg ∈ Id an(cid:5)dsetv = g·w(d).Inordertoverify(2.13)weargue bycontradictionandassumethat g (cid:14)=0.Ifd =2then k k (cid:5) g v =− k k log(cid:11)n(cid:11)+l.o.t., n 2π forlarge(cid:11)n(cid:11).Ifd ≥3,then (cid:5) κ g v = d k k +l.o.t. n (cid:11)n(cid:11)d−2 forlarge(cid:11)n(cid:11).Inbothcasesitisevidentthatv (cid:14)∈(cid:1)1(Zd). Bytaking(2.13)intoaccountonegetsthat,foreveryd ≥2, (cid:3) v =(g·w(d)) = g w(d) n n k n−k (cid:1)k (cid:5) g e2πi(cid:12)k,t(cid:13) = e−2πi(cid:12)n,t(cid:13) k(cid:5)k dt. Td 2d−2 dj=1cos(2πtj) Hencev =(v )isthesequenceofFouriercoefficientsofthefunction n (cid:5) g e2πi(cid:12)k,t(cid:13) H(t)= k(cid:5)k . 2d−2 d cos(2πt ) j=1 j 728 K.Schmidt,E.Verbitskiy Ifv ∈(cid:1)1(Zd),then H mustbeacontinuousfun(cid:5)ctiononTd.Sincet =0istheonly zeroof F(d) onTd (cf.(2.6)),thenumeratorG = g e2πi(cid:12)k,·(cid:13) mustcompensatefor k k thissingularity.ConsidertheTaylorseriesexpansionofG att =0: (cid:3) (cid:3)d (cid:3) (cid:3)d (cid:3) (cid:3) (cid:3) G(t)= g +2πi t g k −2π2 t2 g k2−4π2 t t g k k k j k j j k j i j k i j k j=1 k j=1 k i(cid:14)=j k +h.o.t. TheTaylorseriesexpansionof F(d)att =0isgivenby (cid:3)d F(d)(t)=4π2 t2+h.o.t. j j=1 Supposethat (cid:5) (cid:5) (cid:5) h(t)= a0+ dj=1bjtj + dj=1cjt2j + i(cid:14)=jdi,jtitj +h.o.t t2+···+t2+h.o.t 1 d iscontinuousatt =0.Then a =0, b =0 forall j, c =c forall j, d =0 foralli (cid:14)= j, 0 j j ij andforsomeconstantc.Ifanyoftheseconditionsisviolated,thenoneeasilyproduces examplesofsequencest(m) → 0asm → ∞withdistinctlimitslimm→∞h(t(m)).By applyingthisto H weobtain(2.13)–(2.16),sothatg ∈ J byLemma2.5. (cid:17)(cid:18) d ToestablishtheinclusionJ ⊆ I ,wehavetoshowthatforanyg ∈ J ,g·u ∈(cid:1)1(Zd), d d d whereu ∈ W oftheform d (cid:5) ω = id=1ni4, or ω = 1 with γ ≥d−2. n (cid:11)n(cid:11)d+4 n (cid:11)n(cid:11)γ Ford =2,wealsohavetotreatthecaseω =log(cid:11)n(cid:11). n Theseresultsareobtainedinthefollowingthreelemmas. Lemma2.7.Supposethatd ≥2andthatω∈ W isgivenby d (cid:10) 0 if n=0, ω = (cid:5) n id=1ni4 if n(cid:14)=0. (cid:11)n(cid:11)d+4 Ifg ∈ R satisfies(2.13),theng·ω∈(cid:1)1(Zd). d Proof. Let M =max{(cid:11)k(cid:11):g (cid:14)=0},andsupposethat(cid:11)n(cid:11)> M.Then k (cid:5) (cid:5) (g·ω) =(cid:3)g id=1(ni −ki)4 =(cid:3)g id=1ni4+O((cid:11)n(cid:11)3) n k (cid:11)n−k(cid:11)d+4 k(cid:11)n(cid:11)d+4(1+O((cid:11)n(cid:11)−1)) (cid:5)k (cid:2) (cid:4) (cid:16) k (cid:17) (cid:16) (cid:17) = id=1ni4 (cid:3)g +O 1 =O 1 . (cid:11)n(cid:11)d+4 k (cid:11)n(cid:11)d+1 (cid:11)n(cid:11)d+1 k (cid:5) Therefore, |(g·ω) |<∞. (cid:17)(cid:18) n n AbelianSandpilesandtheHarmonicModel 729 For the reverse inclusion J ⊂ I we need different arguments for d = 2 and for d d d ≥3.Westartwiththecased =2. (cid:5) Lemma2.8.Suppose that g = k∈Z2gkuk ∈ R2 satisfies (2.13). We set S+ = {k:gk >0}and S− ={k:gk <0}.Put (cid:3) (cid:3) M =2 g =2 |g | g k k k∈S+ k∈S− anddefinetwopolynomialsinthevariables(n ,n ): 1 2 (cid:18) (cid:19) (cid:20) (cid:18) P (n ,n )= (n −k )2+(n −k )2 gk = (cid:11)n−k(cid:11)2gk, + 1 2 1 1 2 2 k(cid:18)∈S+ (cid:19) (cid:20) k∈(cid:18)S+ (2.21) P−(n1,n2)= (n1−k1)2+(n2−k2)2 |gk| = (cid:11)n−k(cid:11)2|gk|. k∈S− k∈S− Letmg bethedegreeof P = P+− P−.If M −m ≥3, (2.22) g g theng·ω∈(cid:1)1(Z2),where (cid:10) 0 if n=(0,0), ω = n log(cid:11)n(cid:11) if n(cid:14)=(0,0). (cid:5) Proof. Since k∈Z2gk =0by(2.13), Mg =degP+ =degP−and mg =degP <max(degP+,degP−)= Mg. Letv =g·ω.Hence,forallnwith(cid:11)n(cid:11)>max{(cid:11)k(cid:11):k∈ S+∪S−},onehas (cid:21) (cid:21) (cid:21) (cid:16) (cid:17)(cid:21) |(g·ω)n|= 21(cid:21)(cid:21)(cid:21)log PP−+((nn11,,nn22))(cid:21)(cid:21)(cid:21)= 21(cid:21)(cid:21)(cid:21)log 1+ P+(n1,Pn−2)(n−1,Pn−2()n1,n2) (cid:21)(cid:21)(cid:21). ThereexistconstantsC,N suchthat (cid:21) (cid:21) (cid:21)(cid:21)(cid:21)P+(n1,n2)− P−(n1,n2)(cid:21)(cid:21)(cid:21)≤C(cid:11)n(cid:11)mg = C < 1 P−(n1,n2) (cid:11)n(cid:11)Mg (cid:11)n(cid:11)Mg−mg 2 for(cid:11)n(cid:11)≥ N.HencewecanfindanotherconstantC˜ suchthat ˜ C |(g·ω) |≤ n (cid:11)n(cid:11)Mg−mg forallsufficientlylarge(cid:11)n(cid:11).SinceM −m ≥3,wefinallyconcludethatg·ω∈(cid:1)1(Z2). g g (cid:17)(cid:18) Lemma2.9.Supposethatg ∈ J (cf.(2.13)–(2.16)),andthatω∈ W isgivenby d d (cid:10) 0 if n=0, ω = n 1 if n(cid:14)=0, (cid:11)n(cid:11)γ forsomeintegerγ ≥d−2.Theng·ω∈(cid:1)1(Zd).

Description:
Publisher's PDF, also known as Version of record abelian sandpile model and is used to prove uniqueness and the Bernoulli property of.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.