ebook img

UNIVERSITY OF CALIFORNIA SAN DIEGO Impact resistant and energy absorbent natural keratin ... PDF

213 Pages·2017·10.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview UNIVERSITY OF CALIFORNIA SAN DIEGO Impact resistant and energy absorbent natural keratin ...

UC San Diego UC San Diego Electronic Theses and Dissertations Title Impact resistant and energy absorbent natural keratin materials: horns and hooves Permalink https://escholarship.org/uc/item/4kn4z9dp Author Huang, Wei Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA SAN DIEGO Impact resistant and energy absorbent natural keratin materials: horns and hooves A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Materials Science and Engineering by Wei Huang Committee in charge: Professor Joanna McKittrick, Chair Professor Shengqiang Cai Professor Yu Qiao Professor Jan Talbot Professor Michael Tolley 2018 Copyright Wei Huang, 2018 All rights reserved The Dissertation of Wei Huang is approved, and is acceptable in quality and form for publication on microfilm and electronically: ____________________________________________________________ ____________________________________________________________ ____________________________________________________________ ____________________________________________________________ ____________________________________________________________ Chair University of California San Diego 2018 iii TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................... iv LIST OF FIGURES ....................................................................................................................... ix LIST OF TABLES ....................................................................................................................... xxi ACKNOWLEDGEMENTS ........................................................................................................ xxii VITA .......................................................................................................................................... xxiv ABSTRACT OF DISSERTATION .......................................................................................... xxvii CHAPTER 1: INTRODUCTION ....................................................................................................1 1.1 Introduction to biological materials science......................................................................1 1.2 Impact resistance and energy absorption in biological materials ......................................3 1.2.1 Bone and antler ..........................................................................................................6 1.2.2 Nacre ........................................................................................................................12 1.2.3 Mantis shrimp dactyl club ........................................................................................14 1.3 Bioinspired designs .........................................................................................................16 1.3.1 Freeze casting...........................................................................................................16 1.3.2 Additive Manufacturing ...........................................................................................19 1.3.3 Bottom-up synthesis of nanocomposites .................................................................22 CHAPTER 2: BACKGROUND OF KERATIN ...........................................................................25 2.1 Natural keratin materials .................................................................................................25 2.2 Classification of keratin materials ...................................................................................26 2.2.1 Soft vs. hard .............................................................................................................26 2.2.2 Mineralized vs. non-mineralized .............................................................................27 iv 2.2.3 Offensive vs. defensive ............................................................................................28 2.3 Structure and properties of keratin ..................................................................................29 2.3.1 Multi-phase compositions ........................................................................................29 2.3.2 Multi-scale hierarchical structure ............................................................................31 2.3.3 Multi-mechanical properties ....................................................................................33 CHAPTER 3: STRUCTURE AND PROPERTIES OF BIGHORN SHEEP HORN ....................37 3.1 Introduction to bighorn sheep horn .................................................................................37 3.2 Experiments and methods ...............................................................................................40 3.2.1 High resolution X-ray micro-computed tomography (HR µ-CT) ...........................41 3.2.2 Optical and scanning electron microscopy imaging ................................................42 3.2.3 Transmission electron microscopy imaging ............................................................43 3.2.4 Compression tests ....................................................................................................43 3.2.5 Hopkinson bar impact recovery tests and failure surface imaging ..........................45 3.2.6 Statistical analysis ....................................................................................................46 3.3 Results and discussions ...................................................................................................46 3.3.1 Hierarchical structure of horn ..................................................................................46 3.3.2 Strain rate, anisotropy and water dependency of mechanical properties .................52 3.3.3 Hopkinson bar impact recovery test results and failure mechanisms ......................58 3.4 Conclusions .....................................................................................................................65 CHAPTER 4: STRUCTURE AND PROPERTIES OF DIFFERENT HORNS ...........................69 4.1 Introduction .....................................................................................................................69 4.2 Experiments and methods ...............................................................................................74 v 4.2.1 Materials preparation ...............................................................................................74 4.2.2 Structural characterization .......................................................................................74 4.2.3 Water absorption and FTIR .....................................................................................75 4.2.4 Compression and tensile tests ..................................................................................75 4.2.5 Impact tests ..............................................................................................................77 4.2.6 Statistical analysis ....................................................................................................78 4.3 Results and discussions ...................................................................................................78 4.3.1 Microstructures of the different horns .....................................................................78 4.3.2 Compression tests ....................................................................................................81 4.3.3 Tensile tests ..............................................................................................................88 4.3.4 Drop tower impact tests ...........................................................................................92 4.4 Conclusions .....................................................................................................................95 4.5 Supplementary information .............................................................................................97 CHAPTER 5: WATER EFFECTS ON HORN KERATIN .........................................................101 5.1 Introduction ...................................................................................................................101 5.2 Materials and methods ..................................................................................................102 5.2.1 Acquisition and preservation of horn samples .......................................................102 5.2.2 Synchrotron wide angle X-ray diffraction (WAXD) .............................................102 5.2.3 Fourier transform infrared spectroscopy (ATR-FTIR) ..........................................103 5.2.4 Tensile tests and fracture surface imaging .............................................................103 5.2.5 Viscoelastic behavior: Creep tests .........................................................................104 5.2.6 Compression recovery tests ...................................................................................105 vi 5.3 Results and discussions .................................................................................................106 5.3.1 Water effects on the structure of horn keratin .......................................................106 5.3.2 Water effects on tensile and creep properties ........................................................109 5.3.3 Water assisted recoverable behaviors ....................................................................113 5.4 Conclusions ...................................................................................................................117 5.5 Supplementary information ...........................................................................................119 CHAPTER 6: STRUCTURE AND PROPERTIES OF EQUINE HOOF ...................................122 6.1 Introduction ...................................................................................................................122 6.2 Experiments and methods .............................................................................................123 6.2.1 Micro- and nanoscale structural characterization ..................................................123 6.2.2 Compression tests and failure surface imaging .....................................................126 6.2.3 Modulus and hardness mapping through nanoindentation ....................................126 6.2.4 In-situ synchrotron X-ray computed tomography compression ............................127 6.3 Results and discussions .................................................................................................127 6.3.1 Hierarchical structure of equine hoof wall .............................................................127 6.3.2 Multi-scale mechanical behavior of equine hoof wall ...........................................132 6.3.3 Failure and energy absorption mechanisms ...........................................................136 6.4 Conclusions ...................................................................................................................140 CHAPTER 7: BIOINSPIRED DESIGNS BASED ON 3D PRINTING .....................................142 7.1 Introduction ...................................................................................................................142 7.2 Experiments and methods .............................................................................................143 7.2.1 3D printing of bioinspired horn and hoof structures ..............................................143 vii 7.2.2 Synchrotron X-ray micro-computed tomography ..................................................145 7.2.3 Drop-tower impact tests of 3D printed models ......................................................146 7.3 Results and discussions .................................................................................................146 7.3.1 Energy absorption properties of bioinspired designs .............................................146 7.3.2 Failure mechanisms in horns and bioinspired materials ........................................149 7.3.3 Impact resistance of bioinspired designs ...............................................................154 7.4 Conclusions ...................................................................................................................156 CHAPTER 8: SUMMARY AND FUTURE WORK ..................................................................158 8.1 Summary .......................................................................................................................158 8.2 Future work ...................................................................................................................164 REFERENCES ............................................................................................................................166 viii LIST OF FIGURES Figure 1.1 The materials development timeline from ancient to modern times. Images taken from: newsletter.echa.eu; dailymail.co.uk; shutterstock.com. .................................................................. 1 Figure 1.2 Common characteristics of biological materials [4]. ..................................................... 3 Figure 1.3 Young’s modulus as a function of density for biological and synthetic materials. Taken from [4]. .......................................................................................................................................... 4 Figure 1.4 The Wegst-Ashby map of toughness and Young’s modulus in natural materials. Fracture toughness is also shown in the map. Taken from [6]. ...................................................... 6 Figure 1.5 Hierarchical structures of human compact bone. From the left to the right, the collagen fibers comprise several mineralized collagen fibrils, which is formed by collagen molecule chain helices in nanoscale. Osteons have a lamellar structure and individual lamella consists of fibers arranged in geometrical patterns. Finally, the osteons and Haversian canals form compact bone structure. Taken from [24]. ............................................................................................................. 7 Figure 1.6 Crack-resistance curves (R-curves) and fracture behaviors of human cortical bones in different orientations. (a) R-curves for crack length less than 500 µm; (b) R-curves for longer crack length at 7000 µm. (c, d) In-situ SEM images and schematic showing crack propagation along transverse and longitudinal directions respectively [26]. ............................................................... 8 Figure 1.7 Intrinsic and extrinsic toughening mechanisms in human cortical bone. (a) Intrinsic toughening mechanisms exist at the front of the crack tip including microvoid coalescence, promotion of plasticity zone and cleavage fracture, whereas extrinsic toughening mechanisms, act as shielding local stresses or strains from promoting fracture, existing behind the crack tip. (b) Extrinsic mechanisms on the left side at the micro- to macro-level; intrinsic toughening mechanisms including microcracking and fibrillar sliding at sub-micron and nanoscale level [24]. ......................................................................................................................................................... 9 Figure 1.8 Compressive stress strain curves of antler in different loading orientations: (a) longitudinally and (b) transversely in both wet and dry conditions at different strain rates: 10−3, 100 and 103 s−1. Taken from [32]. ................................................................................................. 10 Figure 1.9 Failure mechanisms of antlers after compression in different orientations: left: transverse direction, which is perpendicular to the osteons; right: longitudinal direction, which is parallel with the osteons. The central arrow shows the changing of the length scale of the features taken by scanning electron microscopy. Taken from [32]. ........................................................... 12 Figure 1.10 The hierarchical structure of nacre. (a) Single mineral platelet as “brick” in nacre. The platelet is composed of millions of ~30 nm nanograins glued together by protein and chitins. (b) The microscale platelets stacked layer by layer. The interface between platelets provides several toughening mechanisms, including breakage of mineral bridges, organic glues in the interface, surface roughness due to the nano-asperities and interlocking sliding due to the uneven surface of platelets. (c) SEM image of the lamellar structure in nacre. Taken from [24]. ............................ 13 ix

Description:
CHAPTER 3: STRUCTURE AND PROPERTIES OF BIGHORN SHEEP HORN . Hopkinson bar impact recovery test results and failure mechanisms .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.