UC San Diego UC San Diego Electronic Theses and Dissertations Title Acquiring latent linguistic structure using computational models Permalink https://escholarship.org/uc/item/0tx98383 Author Doyle, Gabriel R. Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITYOFCALIFORNIA,SANDIEGO Acquiringlatentlinguisticstructureusingcomputationalmodels Adissertationsubmittedinpartialsatisfactionofthe requirementsforthedegreeofDoctorofPhilosophy in Linguistics by GabrielR.Doyle Committeeincharge: ProfessorRogerLevy,Chair ProfessorEricBakovic ProfessorDavidBarner ProfessorCharlesElkan ProfessorAndrewKehler 2014 Copyright GabrielR.Doyle,2014 Allrightsreserved. The Dissertation of Gabriel R. Doyle is approved and is acceptable in qualityandformforpublicationonmicrofilmandelectronically: Chair UniversityofCalifornia,SanDiego 2014 iii TABLEOFCONTENTS SignaturePage........................................................ iii TableofContents ..................................................... iv ListofFigures ........................................................ vii ListofTables ......................................................... viii Acknowledgements.................................................... ix Vita ................................................................. xii AbstractoftheDissertation ............................................. xiii Chapter1 Introduction ............................................... 1 1.1 ComputationalModels ......................................... 3 1.2 Thelearningproblem .......................................... 6 1.3 AssessingComputationalModels ................................ 8 1.4 Overviewofthemodels ........................................ 13 1.4.1 Chapter2: ConstraintAcquisitionwithoutPhonologicalStructure 14 1.4.2 Chapter3: ConstraintAcquisitionwithPhonologicalStructure . 14 1.4.3 Chapter4: Multiple-CueWordSegmentation................ 15 1.4.4 Chapter5: BurstinessinTopicModels ..................... 16 Chapter2 Nonparametric learning of phonological constraints in Optimality Theory.................................................... 17 2.1 Introduction .................................................. 17 2.2 PhonologyandOptimalityTheory................................ 19 2.2.1 OTstructure ........................................... 19 2.2.2 OTasaweighted-constraintmethod ....................... 20 2.2.3 OTinpractice .......................................... 21 2.2.4 LearningConstraints .................................... 22 2.3 TheIBPOTModel............................................. 24 2.3.1 Structure .............................................. 24 2.3.2 Inference .............................................. 25 2.4 Experiment................................................... 27 2.4.1 Wolofvowelharmony ................................... 27 2.4.2 ExperimentDesign...................................... 29 2.4.3 Results................................................ 30 2.5 DiscussionandFutureWork .................................... 33 2.5.1 Relationtophonotacticlearning........................... 33 2.5.2 Extendingthelearningmodel ............................. 34 iv 2.6 Conclusion ................................................... 35 2.7 Acknowledgments............................................. 35 Chapter3 Data-drivenacquisitionofphonologicalconstraintswithunderlying phonologicalstructure....................................... 37 3.1 Introduction .................................................. 38 3.2 PhonologicalAcquisition ....................................... 39 3.2.1 Constraint-BasedPhonology.............................. 39 3.2.2 Constraintstructuresandtheiracquisition................... 40 3.2.3 Previousemergentistmodels.............................. 43 3.3 Modeldesign ................................................. 45 3.3.1 Generalstructure ....................................... 45 3.3.2 Constraintgrammarandviolationprofiles .................. 47 3.3.3 InferenceonM andw ................................... 48 3.3.4 Inferenceovertheconstraintdefinitions .................... 51 3.4 Experiment................................................... 54 3.4.1 Englishregularpluralmorphophonology ................... 54 3.4.2 Theconstraintgrammar.................................. 55 3.4.3 Modelparameters....................................... 58 3.5 Results ...................................................... 59 3.5.1 Observedforms ........................................ 60 3.5.2 Predictivebehavior...................................... 61 3.5.3 ViolationProfilesandConstraintDefinitions ................ 63 3.5.4 ExperimentSummary ................................... 67 3.6 DiscussionandFutureDirections ................................ 67 3.6.1 Expansionoftheemergentistview......................... 67 3.6.2 Thenatureoftheunderlyingrepresentation ................. 68 3.6.3 Extendingthemodel .................................... 69 3.7 Conclusion ................................................... 71 Chapter4 CombiningmultipleinformationtypesinBayesianwordsegmentation 73 4.1 Introduction .................................................. 73 4.2 Previouswork ................................................ 74 4.2.1 Goldwateretal(2006)................................... 74 4.2.2 Acognitively-plausiblevariant............................ 76 4.2.3 Othermultiple-cuemodels ............................... 77 4.3 Modeldesign ................................................. 77 4.3.1 Onsyllabificationandstress .............................. 78 4.4 Data......................................................... 80 4.5 Experiments .................................................. 81 4.5.1 Parametersetting ....................................... 81 4.5.2 Stressimprovesperformance ............................. 81 4.5.3 Areisolatedwordsnecessary? ............................ 84 v 4.5.4 Boundedrationalityinhumansegmentation ................. 85 4.6 Futurework .................................................. 89 4.7 Conclusion ................................................... 91 4.8 Acknowledgments............................................. 91 Chapter5 Accountingforburstinessintopicmodels ...................... 92 5.1 Introduction .................................................. 92 5.2 OverviewofModels ........................................... 94 5.2.1 LatentDirichletallocation(LDA) ......................... 94 5.2.2 Dirichletcompoundmultinomial(DCM) ................... 96 5.2.3 DCMLDA ............................................. 98 5.3 MethodsofInference .......................................... 99 5.4 ExperimentalDesign........................................... 103 5.5 EmpiricalLikelihood .......................................... 104 5.6 Results ...................................................... 107 5.7 Discussion ................................................... 110 5.8 Acknowledgments............................................. 110 Chapter6 Conclusion ................................................ 112 References ........................................................... 114 vi LISTOFFIGURES Figure2.1. TableauxofWolofinputforms. ............................. 21 Figure2.2. Wolof violation profiles for phonologically standard constraint definitions. .............................................. 31 Figure3.1. Exampletree-structureswithintheRROTconstraintCFG. ...... 58 Figure4.1. Percentageofrunssegmentedwiththestressbiasasbiasvaries... 87 Figure5.1. LDAandDCMLDAgraphicalmodels........................ 96 Figure5.2. Mean per-document log-likelihood on the S&P 500 dataset for DCMLDAandfittedLDAmodels. .......................... 108 Figure5.3. Meanper-documentlog-likelihoodontheNIPSdatasetforDCMLDA andLDAmodels.......................................... 109 vii LISTOFTABLES Table2.1. IBPOTlog-probabilities. ................................... 30 Table3.1. Ruleswithinthephonologicalcontext-freegrammarforRROT. ... 56 Table3.2. Phonemesandtheirfeaturevalues. ........................... 57 Table3.3. RROTlog-probabilities. .................................... 60 Table3.4. RROTpredictiveprobabilities................................ 62 Table3.5. LikelyRROTconstraintdefinitions. .......................... 64 Table4.1. Multiple-cueEnglishcorpusstresspatternsbytypesandtokens. .. 80 Table4.2. Precision,recall,andF-scoreovercorporawithandwithoutstress informationavailable. ...................................... 82 Table4.3. Examplesofsegmentinganartificiallanguageaccordingtotransi- tionprobabilities(top)orstressbias(bottom)................... 86 Table5.1. Sampletopics foundbya20-topic DCMLDAmodeltrainedon the S&P500dataset. .......................................... 106 Table5.2. Sampletopicsfoundby a20-topicLDAmodeltrainedonthe S&P 500dataset. .............................................. 106 viii ACKNOWLEDGEMENTS There’s a part at the end of Norton Juster’s classic “The Phantom Tollbooth” wherethe herohasreturnedfrom adifficultquestand askshispatronsabout asecretthat theycouldnottellhimbeforehefinishedthequest. Hispatrons,representingtherealms oflanguageandmathematics,replyoff-handedlythatthetaskwasimpossible–“butif we’dtoldyouthen,youmightnothavegone–and,asyou’vediscovered,somanythings arepossiblejustaslongasyoudon’tknowthey’reimpossible.” That line stuck with me long before I actually understood it. I think I do now, thanksmostprominentlytothreepeople. Thefirsttwoaremyparents,Karen&Mike, who alwaystreated it asthe most naturalthing inthe world thatsomeone from afamily withaspottyacademicrecordshouldwanttogetadoctorate,anddidanythingtheycould to help get me there (or wherever else I would have hoped to end up). Their endless supportofandbeliefinmeledtothisdissertation. Theother personwho’shammered homeJuster’spoint hasbeen myadvisor and committeechair,RogerLevy,whoalwaysmanagestomakeitseemthattheworkyou’re tryingtodoiswellwithinyourgrasp,evenifitisn’t,andconvincesyoutogoalittlebit further, even if that’s impossible. I couldn’t have ended up in a better place or with a betteradvisor. Iowedeepthankstotherestofmycommitteeaswell: EricBakovic´,DaveBarner, CharlesElkan, andAndyKehler– aswellasRachel Mayberry, whowasonmy original committee before the topic shifted – who never failed to provide ideas, inspirations, and helpful inquisitions along a very winding research path. They were contagiously enthusiasticindiscussionsevenwhen Iwaswornout,andtheirabilitytoremindme of thephilosophicalforestwhenI’dgetstuckontreeswasessential. Themembers,pastandpresent,oftheComputationalPsycholinguisticsLabare alsoabigpartofthisdissertation,throughmany,manydiscussionsoflanguageandmath ix
Description: