Universidade de Aveiro Departamento de Electr(cid:19)onica e Telecomunica(cid:24)c~oes 1999 Universidade de Aveiro Departamento de Electr(cid:19)onica e Telecomunica(cid:24)c~oes 1999 Carlos Alberto da A model for the simulation of Doppler ultrasound Costa Bastos signals from pulsatile blood (cid:13)ow Um modelo para a simula(cid:24)c~ao de sinais Doppler ultra-s(cid:19)onicos provenientes de (cid:13)uxo sangu(cid:19)(cid:16)neo puls(cid:19)atil Thesis submitted to the Universidade de Aveiro for the degree of Doctor of PhilosophyinElectricalEngineeringunderthesupervisionofMr. PeterFish, Reader in the School of Electronic Engineering and Computer Systems of the University of Wales{Bangor, United Kingdom, and Dr. Francisco Vaz, Professor of the Departamento de Electro(cid:19)nica e Telecomunicac(cid:24)~oes of the Universidade de Aveiro Disserta(cid:24)c~ao apresentada (cid:18)a Universidade de Aveiro para cumprimento dos requesitos necess(cid:19)arios (cid:18)a obtenc(cid:24)~ao do grau de Doutor em Engenharia Elec- trot(cid:19)ecnica, realizadasobaorienta(cid:24)c~ao cient(cid:19)(cid:16)(cid:12)ca deMr. PeterFish,Professor daSchool ofElectronic Engineering andComputerSystemsdaUniversityof Wales{Bangor, Reino Unido, e do Dr. Francisco Vaz, Professor Catedr(cid:19)atico do Departamento de Electr(cid:19)onica e Telecomunicac(cid:24)~oes da Universidade de Aveiro o jur(cid:19)(cid:16) / examiners committee Prof. Doutor Casimiro Adri~ao Pio presidente / president professor catedr(cid:19)atico de Universidade de Aveiro por delega(cid:24)c~ao do Reitor da Universidade de Aveiro Prof. Doutor Francisco Ant(cid:19)onio Cardoso Vaz professor catedr(cid:19)atico da Universidade de Aveiro (orientador) Prof. Doutor Jos(cid:19)e Alberto dos Santos Rafael professor associado da Universidade de Aveiro Prof. Doutor Ant(cid:19)onio Miguel Pontes Pimenta Monteiro professor auxiliar da Faculdade de Engenharia da Universidade do Porto Prof. Doutor Augusto Marques Ferreira da Silva professor auxiliar da Universidade de Aveiro Prof. Doutor Jos(cid:19)e Carlos da Silva Cardoso professor auxiliar da Universidade de Tr(cid:19)as-os-Montes e Alto Douro Mr. Peter John Fish Reader na School of Electronic Engineering and Computer Systems da Uni- versity of Wales-Bangor, Reino Unido (co-orientador) agradecimentos / I would like to express my most sincere thanks to Mr. Peter Fish and acknowledgements Prof. Dr. Francisco Vaz for their supervision, critical suggestions, support, assistance,patienceandadvicethroughoutthecourseofthiswork. Without their help and support this work would probably never exist. I thank all my colleagues but specially Tom(cid:19)as Oliveira e Silva, Osvaldo Pacheco and Lu(cid:19)(cid:16)s Almeida at Aveiro, and Robin Steel and Jos(cid:19)e Carlos Cardoso at Bangor, for their friendship, support and encouragement. The help of Tom(cid:19)as with the Latex word processor and daily incentive during the last stages of writing up are gratefully acknowledged. Also Robin’s help in (cid:12)nding a solution for the integral in Appendix A has to be mentioned. IthanktheUniversidadedeAveiro,theDepartamentodeElectro(cid:19)nicaeTele- comunica(cid:24)c~oes, the School of Electronic Engineering andComputer Systems of the University of Wales{Bangor, and INESC Aveiro, for providing the means and the environment that made this work possible. I extend my thanks to the sta(cid:11) members of these institutions that contributed in any way to my work. The (cid:12)nancial support of Funda(cid:24)c~ao para a Ci^encia e Tecnologia (formerly JNICT) through a CIENCIA grant extended to aPRAXISgrantisgratefully acknowledged. ThePRAXISgrantbene(cid:12)tedfromthesupportoftheScience nd and Technology Subprogram of the 2 Community Support Framework o (Sub-Programa Ci^encia e Tecnologia do 2 Quadro Comunit(cid:19)ario de Apoio). Thanks are also due to Fundo Social Europeu for supporting Universidade de Aveiro with a PRODEP grant that provided the (cid:12)nancial means for part of my work. I would like to thank my parents, my sister and my grandparents for their love, support and encouragement during the course of this work. Veryspecialthanksandloveto mywifeOlgaandmydaughterIn^es for their unconditional love and patience throughout the course of this work and the long absences at Bangor. Olga’s sacri(cid:12)ce of her own professional career to join me in Bangor for a complete year is also gratefully acknowledged. Resumo O detector ultra-s(cid:19)onico de (cid:13)uxo sangu(cid:19)(cid:16)neo usa o efeito Doppler para estimar de forman~aoinvasivaavelocidadedosanguenacircula(cid:24)c~ao. Temsidobastanteusado nas (cid:19)ultimas quatro d(cid:19)ecadas para detectar a presen(cid:24)ca de estenoses. Odesenvolvimentodenovast(cid:19)ecnicasdeprocessamentodosinal Dopplernecessita de sinais de teste cujas caracter(cid:19)(cid:16)sticas sejam conhecidas ou possam ser medidas com precis~ao. Isto (cid:19)e dif(cid:19)(cid:16)cil de obter com sinais Doppler medidos in vivo devido (cid:18)a elevada varia(cid:24)c~ao do (cid:13)uxo sangu(cid:19)(cid:16)neo de pessoa para pessoa e tamb(cid:19)em com o estado (cid:12)siol(cid:19)ogico da pessoa no momento da medida, por exemplo a tens~ao arte- rial in(cid:13)uencia signi(cid:12)cativamente o (cid:13)uxo sangu(cid:19)(cid:16)neo. Um modelo para gerar sinais Dopplersimuladoscujascaracter(cid:19)(cid:16)sticassejamcontrol(cid:19)aveise/oumensur(cid:19)aveis(cid:19)euma ferramenta bastante (cid:19)util,pois permite que as novas t(cid:19)ecnicasde processamento do sinalDopplersejamtestadasemcondic(cid:24)~oescontroladas. Permite,tamb(cid:19)em,estudar oefeitodev(cid:19)ariosfactoresqueafectamoespectrodosinalDoppler. Habitualmente oefeito individualdosv(cid:19)ariosfactoresn~aopodeseridenti(cid:12)cadoquandos~ao usados sinais medidos in vivo. Nestetrabalho foi desenvolvidoum modeloparagerar sinais Doppler ultra-so(cid:19)nicos simulados. O modelo cont(cid:19)em dois sub-modelos, um para o (cid:13)uxo sangu(cid:19)(cid:16)neo nos membros inferiores de um ser humano e outro para gerar os sinais simulados a partir do campo de velocidades do sangue e das caracter(cid:19)(cid:16)sticas do instrumento. O (cid:13)uxo sangu(cid:19)(cid:16)neo nos membros inferiores foi simulado com um an(cid:19)alogo el(cid:19)ectrico para a rede vascular dos membros inferiores. Cada art(cid:19)eria foi simulada por uma linha de transmiss~ao com perdas e as redes vasculares perif(cid:19)ericas por um circuito Windkessel com tr^es elementos. O circuito el(cid:19)ectrico foi implementado com o simulador de circuitos SPICE. Para simular a interac(cid:24)c~ao entre os gl(cid:19)obulos vermelhos e o campo de ultra-sons o vaso sangu(cid:19)(cid:16)neo foi dividido em pequenos volumes elementares. As contribuic(cid:24)~oes dosvolumeselementaresforamtodassomadasparagerarosinalDopplersimulado. O modelo fez algumas aproxima(cid:24)c~oescomo sejam, por exemplo, considerar o (cid:13)uxo sangu(cid:19)(cid:16)neo laminar e sem rota(cid:24)c~ao. As caracter(cid:19)(cid:16)sticas dos sinais gerados pelo modelo s~ao bastante parecidas com as esperadasparaosinalDopplerreal. Omodelodesenvolvidofoiusadoparaestudar a in(cid:13)u^encia que a acelera(cid:24)c~ao sangu(cid:19)(cid:16)nea, o tamanho do volume de amostragem e a dura(cid:24)c~ao da janela de amostragem t^em na largura de banda e(cid:12)caz do espectro do sinal Doppler. Foi deduzida uma f(cid:19)ormula que estima a largura de banda e(cid:12)caz a partir das contribui(cid:24)c~oes individuais do alargamento espectral devido (cid:18)a n~ao esta- cionaridade, do alargamentoespectral intr(cid:19)(cid:16)nseco, do alargamentoespectral devido (cid:18)a dura(cid:24)c~ao da janela de amostragem e ainda da gama das velocidades que passam pelo volume de amostragem. Foram, ainda,deduzidasexpress~oesemformafechadaparaoespectrodepot^encia do sinal Doppler devido unicamente (cid:18)a gama de velocidades que atravessam um volume de amostragem com forma Gaussiana colocado num per(cid:12)l de velocidades com forma expon^encial. Foram, tamb(cid:19)em, obtidas express~oes para a largura de banda e(cid:12)caz no caso especial do volume de amostragem Gaussiano ter simetria esf(cid:19)erica e estar colocado no centro do vaso sangu(cid:19)(cid:16)neo. Abstract The Doppler ultrasonic blood (cid:13)ow detector estimates non-invasively the velocity of blood in the circulatory system. It has been extensively used in the last four decades for the detection of stenoses in the circulation. Thedevelopment ofnewsignal processing techniques for theDopplersignal requires test signals with known or measurable characteristics. This is very di(cid:14)cult to achieve with Doppler signals obtained in vivo because of the variability of blood (cid:13)ow between persons and with physiological state, for example blood pressure. A model for generating simulated Doppler signals whose characteristics are controllable and/or measurable is a useful tool because it permits the test of new processing techniques under controlled conditions. It permits also the study of the e(cid:11)ect of various factors on the Doppler spectrum. Usually these e(cid:11)ects cannot be isolated with in vivo measurements. DuringthisworkamodelforthegenerationofsimulatedDopplerultrasound signals was developed. It comprised two sub-models one for blood (cid:13)ow in the human lower limb and the other for generating simulated signals from the blood velocity (cid:12)eld and the instrument’s characteristics. Blood (cid:13)ow in the lower limb was modelled by an electric analogue for the lower limb vascular tree. Each artery was modelled by a lossy transmission line and the peripheral vascular beds by three{element Windkessel mod- els. The electric analogue circuit was implemented with the SPICE circuit simulator. To simulate the inter-action of the blood cells with the ultrasonic (cid:12)eld the vessel was divided into small elemental volumes whose contributions were added together to generate the simulated Doppler signal. The model as- sumed irrotational laminar (cid:13)ow and some other simplifying approximations. The characteristics of the signals generated by the model were similar to those expected for the Doppler signal. The model was used to study the in- (cid:13)uenceofbloodacceleration,samplevolumesizeanddatasegmentduration on the root mean square (rms) width of the Doppler spectrum. A simple formula was derived for estimating the Doppler rms spectral width from the individual contribution of non-stationarity broadening, intrinsic broadening, window broadening and the range of blood velocities passing through the sample volume. InadditionclosedformexpressionswerederivedfortheDopplerpowerspec- trum due solely to the range of blood velocities passing through a Gaussian sample volumes placed in irrotational laminar (cid:13)ow with a velocity pro(cid:12)le obeying a simple power law. Closed form expressions were also obtained for the root mean square spectral width in the special case of a spherically symmetric Gaussian sample volume placed in the centre of the vessel. (cid:18) A Olga, (cid:18)a In^es, (cid:18)a Ana Raquel e aos meus pais Contents List of Figures v List of Tables ix List of Symbols xi List of Acronyms xix List of Publications xxi 1 Introduction 1 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Background 7 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Blood (cid:13)ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 The circulatory system . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Types of blood (cid:13)ow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 The e(cid:11)ects of geometric changes . . . . . . . . . . . . . . . . . . . . . 15 2.2.4 Models of arterial blood (cid:13)ow . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Doppler ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.1 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.2 The Doppler e(cid:11)ect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3.3 Doppler ultrasound instruments. . . . . . . . . . . . . . . . . . . . . . 25 2.3.4 The Doppler spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.5 Models for the Doppler signal backscattered from moving blood. . . . 38 2.4 Doppler signal spectral estimation . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4.1 Spectral estimation basics . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.4.2 The periodogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.4.3 Parametric methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 i. ii Contents 2.4.4 Time-frequency transforms . . . . . . . . . . . . . . . . . . . . . . . . 50 2.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3 Model of blood (cid:13)ow in the human lower limb 55 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2 Lower limb arterial bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.2.1 Some characteristics of the pressure and (cid:13)ow pulses in the lower limb 57 3.3 Introduction to the SPICE circuit simulator . . . . . . . . . . . . . . . . . . . 59 3.4 SPICE model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.4.1 The input waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.4.2 Arteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.4.3 Peripheral arterial beds . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.4.4 Adjustment of model parameters . . . . . . . . . . . . . . . . . . . . . 67 3.5 Assessment of model results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.5.1 The complete model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.5.2 Input impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.5.3 Pressure and (cid:13)ow waveforms . . . . . . . . . . . . . . . . . . . . . . . 70 3.5.4 Pulsatility Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.6 Stenoses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4 Doppler ultrasound signal model 77 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2 Model description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2.1 Signal from a single scatterer . . . . . . . . . . . . . . . . . . . . . . . 79 4.2.2 Signal from an elemental volume . . . . . . . . . . . . . . . . . . . . . 80 4.3 Ensemble averaged Doppler spectrum . . . . . . . . . . . . . . . . . . . . . . 82 4.4 Time-varying blood velocity pro(cid:12)les . . . . . . . . . . . . . . . . . . . . . . . 84 4.5 Implementation issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.6 Simulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.6.1 Assessment of model results . . . . . . . . . . . . . . . . . . . . . . . . 89 4.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5 Doppler power spectrum from a Gaussian sample volume 97 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.2 Derivation of the Doppler spectrum. . . . . . . . . . . . . . . . . . . . . . . . 98 5.2.1 Wide uniform beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.2.2 Gaussian sample volume . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.2.3 Symmetric sample volume . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.2.4 Sample volume centred in the vessel . . . . . . . . . . . . . . . . . . . 103 5.2.5 Symmetric sample volume centred in the vessel . . . . . . . . . . . . . 103 Contents iii 5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4.1 Non-symmetric sample volumes . . . . . . . . . . . . . . . . . . . . . . 107 5.4.2 Sample volumes with some symmetry . . . . . . . . . . . . . . . . . . 110 5.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6 Spectral broadening in the Doppler signal|a model based study 113 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.2 Separation of factors a(cid:11)ecting the Doppler spectrum . . . . . . . . . . . . . . 114 6.2.1 E(cid:11)ect of window and acceleration. . . . . . . . . . . . . . . . . . . . . 115 6.2.2 E(cid:11)ect of velocity pro(cid:12)le and sample volume size. . . . . . . . . . . . . 119 6.2.3 Intrinsic spectral broadening. . . . . . . . . . . . . . . . . . . . . . . . 120 6.2.4 Variation of acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 121 6.2.5 Approximate spectral width. . . . . . . . . . . . . . . . . . . . . . . . 121 6.3 Simulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.4.1 Single streamline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.4.2 Velocity pro(cid:12)le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7 Conclusion 133 7.1 General conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.2 Recommendations for future work . . . . . . . . . . . . . . . . . . . . . . . . 135 A Evaluation of function M(a;b;(cid:12)) from chapter 5 137 References 139