UNIVERSAL SERIES BY TRIGONOMETRIC SYSTEM IN WEIGHTED L1 SPACES µ S. A. EPISKOPOSIAN Abstract. In this paper we consider the question of existence 5 of trigonometric series universal in weighted L1[0,2π] spaces with µ 1 0 respect to rearrangementsand in usual sense. 2 n a J 1. Introduction 5 ] A F Let X be a Banach space. . h at Definition 1.1. A series m ∞ [ (1.1) f , f X k k ∈ 1 k=1 X v is said to be universal in X with respect to rearrangements, if for any 7 2 f X the members of (1.1) can be rearranged so that the obtained 8 ∈ ∞ 0 series f converges to f by norm of X. 0 σ(k) . 1 Xk=1 0 Definition 1.2. The series (1.1) is said to be universal (in X) in the 5 1 usual sense, if for any f X there exists a growing sequence of natural : v ∈ i numbers nk such that the sequence of partial sums with numbers nk of X the series (1.1) converges to f by norm of X. r a Definition 1.3. The series (1.1) is said to be universal (in X) con- cerning partial series, if for any f X it is possible to choose a partial ∞ ∈ series f from (1.1), which converges to the f by norm of X. nk k=1 X 1991 Mathematics Subject Classification. AMS Classification 2000 Primary 42A20 . Keywords and phrases. Universalseries,trigonometricsystem,weightedspaces. The author was supported in part by Grant- 01-000 from the Government of Armenia . 1 2 S. A.EPISKOPOSIAN Note, that many papers are devoted (see [1]- [9]) to the question on existenceofvariousetypesofuniversalseriesinthesenseofconvergence almost everywhere and on a measure. The first usual universal in the sense of convergence almost every- where trigonometric series were constructed by D.E.Menshov [1] and V.Ya.Kozlov [2]. The series of the form ∞ 1 (1.2) + a coskx+b sinkx k k 2 k=1 X was constructed just by them such that for any measurable on [0,2π] function f(x) there exists the growing sequence of natural numbers n such that the series (1.2) having the sequence of partial sums with k numbers n converges to f(x) almost everywhere on [0,2π]. (Note k here, that in this result, when f(x) L1 , it is impossible to replace ∈ [0,2π] convergence almost everywhere by convergence in the metric L1 ). [0,2π] This result was distributed by A.A.Talalian on arbitrary orthonor- mal complete systems (see [3]). He also established (see [4]), that if φ (x) ∞ - the normalized basis of space Lp ,p > 1, then there { n }n=1 [0,1] exists a series of the form ∞ (1.3) a φ (x), a 0. k k k → k=1 X which has property: for any measurable function f(x) the members of series (1.3) can be rearranged so that the again received series converge on a measure on [0,1] to f(x). W. Orlicz [5] observed the fact that there exist functional series that are universal with respect to rearrangements in the sense of a.e. con- vergence in the class of a.e. finite measurable functions. It is also useful to note that even Riemann proved that every con- vergent numerical series which is not absolutely convergent is universal with respect to rearrangements in the class of all real numbers. Let µ(x) be a measurable on [0,2π] function with 0 < µ(x) 1,x ≤ ∈ [0,2π] and let L1[0,2π] be a space of mesurable functions f(x), x µ ∈ [0,2π] with 2π f(x) µ(x)dx < . | | ∞ Z0 UNIVERSAL SERIES BY TRIGONOMETRIC SYSTEM IN WEIGHTED L1 SPACES3 µ M.G.Grigorian constructed a series of the form (see [6]), ∞ ∞ C eikx with C q < , q > 2 k k | | ∞ ∀ k=−∞ k=−∞ X X whichisuniversalinL1[0,2π]concerningpartialseriesforsomeweighted µ function µ(x), 0 < µ(x) 1,x [0,2π]. ≤ ∈ In [9] it is proved that for any given sequence of natural numbers λ ∞ with λ ∞ there exists a series by trigonometric system of { m}m=1 m ր the form ∞ (1.4) C eikx, C = C , k −k k k=1 X with m C eikx λ , x [0,2π], , m = 1,2,..., k m (cid:12) (cid:12) ≤ ∈ (cid:12)Xk=1 (cid:12) so that for e(cid:12)ach ε > 0(cid:12)a weighted function µ(x), (cid:12) (cid:12) (cid:12) (cid:12) 0 < µ(x) 1, x [0,2π] : µ(x) = 1 < ε ≤ |{ ∈ 6 }| can be constructed, so that the series (1.4) is universal in the weighted space L1[0,2π] with respect simultaneously to rearrangements as well µ as to subseries. In this paper we prove the following results. Theorem 1.4. There exists a series of the form ∞ ∞ (1.5) C eikx with C q < , q > 2 k k | | ∞ ∀ k=−∞ k=−∞ X X such that for any number ε > 0 a weighted function µ(x), 0 < µ(x) 1, ≤ with (1.6) x [0,2π] : µ(x) = 1 < ε |{ ∈ 6 }| can be constructed, so that the series (1.5) is universal in L1[0,2π] with µ respect to rearrangements . Theorem 1.5. There exists a series of the form (1.5) such that for any number ǫ > 0 a weighted function µ(x) with (1.6) can be constructed, so that the series (1.5) is universal in L1[0,2π] in the usual sense . µ 4 S. A.EPISKOPOSIAN 2. BASIC LEMMA Lemma 2.1. For any given numbers 0 < ε < 1, N > 2 and a step 2 0 function q (2.1) f(x) = γ χ (x), s · ∆s s=1 X where ∆ is an interval of the form ∆(i) = i−1, i , 1 i 2m and s m 2m 2m ≤ ≤ 2π (cid:2) −1 (cid:3) (2.2) γ ∆ < ǫ3 8 f2(x)dx , s = 1,2,...,q. s s | |· | | · · (cid:18) Z0 (cid:19) p there exists a measurable set E [0,2π] and a polynomial P(x) of the ⊂ form P(x) = C eikx k N0≤X|k|<N which satisfy the conditions: E > 2π ε, | | − P(x) f(x) dx < ε, | − | ZE C 2+ε < ε, C = C k −k k | | N0≤X|k|<N max C eikx dx < ε+ f x) dx, N0≤m<NZe(cid:12)(cid:12)(cid:12)N0≤X|k|≤m k (cid:12)(cid:12)(cid:12) Ze| ( | for every measurable s(cid:12)ubset e of E. (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Proof Let 0 < ǫ < 1 be an arbitrary number. 2 Set ε π 3ε π (2.3) g(x) = 1, if x [0,2π] · , · ; ∈ \ 2 2 (cid:20) (cid:21) 2 ε π 3ε π g(x) = 1 , if x · , · ; − ε ∈ 2 2 (cid:20) (cid:21) We choose natural numbers ν and N so large that the following in- 1 1 equalities be satisfied: 1 2π ε (2.4) g (t)e−iktdt < , k < N , 1 0 2π 16 √N | | (cid:12)Z0 (cid:12) · 0 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) UNIVERSAL SERIES BY TRIGONOMETRIC SYSTEM IN WEIGHTED L1 SPACES5 µ where (2.5) g (x) = γ g(ν x) χ (x). 1 1 · 1 · · ∆1 (By χ (x) we denote the characteristic function of the set E.) We put E (2.6) E = x ∆ : g (x) = γ , 1 s s s { ∈ } By (2.3), (2.5) and (2.6) we have (2.7) E > 2π (1 ǫ) ∆ ; g (x) = 0, x / ∆ , 1 1 1 1 | | · − ·| | ∈ 2π 2 (2.8) g2(x)dx < γ 2 ∆ . 1 ǫ ·| 1| ·| 1| Z0 Since the trigonometric system eikx ∞ is complete in L2[0,2π], we { }k=−∞ can choose a natural number N > N so large that 1 0 2π ε (2.9) C(1)eikx g (x) dx , (cid:12) k − 1 (cid:12) ≤ 8 Z0 (cid:12)(cid:12)0≤X|k|<N1 (cid:12)(cid:12) (cid:12) (cid:12) where (cid:12) (cid:12) (cid:12) (cid:12) 1 2π (2.10) C(1) = g (t)e−iktdt. k 2π 1 Z0 Hence by (2.4),(2.5) and (2.9) we obtain (2.11) 1 2 2π ε ε C(1)eikx g (x) dx + C(1) 2 < ; (cid:12) k − 1 (cid:12) ≤ 8 | k | 4 Z0 (cid:12)(cid:12)N0≤X|k|<N1 (cid:12)(cid:12) 0≤X|k|<N0 (cid:12) (cid:12) Now as(cid:12)sume that the numbers ν(cid:12) < ν < ...ν , N < N < ... < 1 2 s−1 1 2 (cid:12) (cid:12) N , functions g (x),g (x),...,g (x) andthesets E ,E ,....,E are s−1 1 2 s−1 1 2 s−1 defined. We take sufficiently large natural numbers ν > ν and s s−1 N > N to satisfy s s−1 1 2π ε (2.12) g (t)e−iktdt < , 1 s q, k < N , s s−1 2π 16 √N ≤ ≤ | | (cid:12)Z0 (cid:12) · s−1 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 2π ε (2.13) C(s)eikx g (x) dx , (cid:12) k − s (cid:12) ≤ 4s+1 Z0 (cid:12)(cid:12)0≤X|k|<Ns (cid:12)(cid:12) (cid:12) (cid:12) where (cid:12) (cid:12) (cid:12) (cid:12) 1 2π (2.14) g (x) = γ g(ν x) χ (x), C(s) = g (t)e−iktdt. s s · s · · ∆s k 2π s Z0 6 S. A.EPISKOPOSIAN Set (2.15) E = x ∆ : g (x) = γ , s s s s { ∈ } Using the above arguments (see (2.16)-(2.18)), we conclude that the function g (x) and the set E satisfy the conditions: s s (2.16) E > 2π (1 ǫ) ∆ ; g (x) = 0, x / ∆ , s s s s | | · − ·| | ∈ 2π 2 (2.17) g2(x)dx < γ 2 ∆ . s ǫ ·| s| ·| s| Z0 2π ε (2.18) C(s)eikx g (x) dx < . (cid:12) k − 1 (cid:12) 2s+1 Z0 (cid:12)(cid:12)Ns−1X≤|k|<Ns (cid:12)(cid:12) (cid:12) (cid:12) Thus, byinduction(cid:12)wecandefinenaturalnumb(cid:12)ersν < ν < ...ν , N < (cid:12) (cid:12) 1 2 q 1 N < ... < N , functions g (x),g (x),...,g (x) and sets E ,E ,....,E 2 q 1 2 q 1 2 q such that conditions (2.14)- (2.16) are satisfied for all s, 1 s q. ≤ ≤ We define a set E and a polynomial P(x) as follows: q (2.19) E = E , s s=1 [ (2.20) q P(x) = C eikx = C(s)eikx , C = C , k k −k k N0≤X|k|<N Xs=1 Ns−1X≤|k|<Ns where (s) (2.21) C = C for N k < N , s = 1,2,...,q, N = N 1. k k s−1 ≤ | | s q− By Bessel’s inequality and (2.3), (2.14) for all s [1,q] we get ∈ 1 2 1 2π 2 (2.22) C(s) 2 g2(x)dx | k | ≤ s ≤ Ns−1X≤|k|<Ns (cid:20)Zo (cid:21) 2 γ ∆ , s = 1,2,...,q. s s ≤ √ε ·| |· | | p From (2.3), (2.12) and (2.13) it follows that (2.23) E > 2π ε. | | − UNIVERSAL SERIES BY TRIGONOMETRIC SYSTEM IN WEIGHTED L1 SPACES7 µ Taking relations (2.1), (2.3), (2.10), (2.12), (2.18) - (2.21) we obtain (2.24) q P(x) f(x) dx C(s)eikx g (x) dx < ε | − | ≤ (cid:12) k − s (cid:12) ZE Xs=1 ZE(cid:12)(cid:12)Ns−1X≤|k|<Ns (cid:12)(cid:12) (cid:12) (cid:12) By (2.1), (2.2), (2.20) -(2.21)for(cid:12)any k [N ,N] we have (cid:12) 0 (cid:12) ∈ (cid:12) N (2.25) C 2+ǫ max C ǫ C 2 k k k | | ≤ N0≤k≤N| | · | | ≤ N0≤X|k|<N kX=N0 q 8 max γ ∆ C(s) 2 ≤ 1≤s≤q"rǫ ·| s|· | s|#· | k | ≤ p Xs=1 Ns−1X≤|k|<Ns q 8 8 max γ ∆ γ 2 ∆ s s s s ≤ 1≤s≤q"rǫ ·| |· | |#· ǫ · | | ·| | ≤ s=1 p X 8 8 1 max γ ∆ f2(x)dx < ǫ; s s ≤ 1≤s≤q"rǫ ·| |· | |#· ǫ ·(cid:20)Z0 (cid:21) p That is, the statements 1) - 3) of Lemma are satisfied. Now we will check the fulfillment of statement 4) of Lemma. Let N m < N, 0 ≤ then for some s , 1 s q, (N m < N ) we will have (see 0 ≤ 0 ≤ s0 ≤ s0+1 (2.20) and (2.21)) (2.26) s0 C eikx = C(s)eikx + C(s0+1)eikx. k k k N0≤X|k|≤m Xs=1 Ns−1X≤|k|<Ns Ns0−X1≤|k|≤m Hence and from (2.1), (2.2), (2.3), (2.18), (2.19) and (2.22) for any measurable set e E we obtain ⊂ C eikx dx k (cid:12) (cid:12) ≤ Ze(cid:12)(cid:12)Ns−1X≤|k|≤m (cid:12)(cid:12) (cid:12) (cid:12) s0 (cid:12) (cid:12) (cid:12) (cid:12) C(s)eikx g (x) dx + ≤ (cid:12) k − s (cid:12) Xs=1 Ze(cid:12)(cid:12)Ns−1X≤|k|<Ns (cid:12)(cid:12) (cid:12) (cid:12) s0 (cid:12) (cid:12) + g (x)(cid:12)dx+ C(s0+1(cid:12))eikx dx < | s | (cid:12) k (cid:12) Xs=1 Ze Ze(cid:12)(cid:12)Ns0−X1≤|k|≤m (cid:12)(cid:12) s0 ε (cid:12)(cid:12) 2 (cid:12)(cid:12) < + f(x) dx(cid:12) + γ ∆(cid:12) < 2s+1 | | √ε ·| s0+1|· | s0+1| s=1 Ze X p 8 S. A.EPISKOPOSIAN < f(x) dx+ε. | | Ze 3. PROOF OF THEOREMS Proof of Theorem 1.4 Let (3.1) f (x),f (x),...,f (x), x [0,2π] 1 2 n ∈ be a sequence of all step functions, values and constancy interval end- points of which are rational numbers. Applying Lemma consecutively, we can find a sequence E ∞ of sets and a sequence of polynomials { s}s=1 (3.2) P (x) = C(s)eikx s k Ns−1X≤|k|<Ns 1 = N < N < ... < N < ...., s = 1,2,...., 0 1 s which satisfy the conditions: (3.3) E > 1 2−2(s+1), E [0,2π], s s | | − ⊂ (3.4) P (x) f (x) dx < 2−2(s+1), s s | − | ZEs 2+2−2s (3.5) C(s) < 2−2s, C(s) = C(s) k −k k Ns−1X≤|k|<Ns(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (3.6) max C eikx dx < 2−2(s+1) + f (x) dx, k s Ns−1≤p<NsZe(cid:12)(cid:12)(cid:12)Ns−X1≤|k|≤p (cid:12)(cid:12)(cid:12) Ze| | (cid:12) (cid:12) for every measurab(cid:12)le subset e of Es(cid:12). (cid:12) (cid:12) Denote ∞ ∞ (3.7) C eikx = C(s)eikx , k k kX=−∞ Xs=1 Ns−1X≤|k|<Ns (s) where C = C for N k < N , s = 1,2,.... k k s−1 ≤ | | s Let ε be an arbitrary positive number. Setting ∞ Ω = E , n = 1,2,....; n s s=n \ UNIVERSAL SERIES BY TRIGONOMETRIC SYSTEM IN WEIGHTED L1 SPACES9 µ ∞ (3.8) E = Ω = E , n = [log ε]+1; n0 s 0 1/2 s=n0 \ ∞ ∞ B = Ω = Ω Ω Ω . n n0 n \ n−1 ! n=n0 n=n0+1 [ [ [ It is clear (see (3.3)) that B = 2π and E > 2π ε. | | | | − We define a function µ(x) in the following way: (3.9) µ(x) = 1 for x E ([0,2π] B); ∈ ∪ \ µ(x) = µ for x Ω Ω , n n +1, n n n−1 0 ∈ \ ≥ where n −1 (3.10) µ = 24n h ; n s · " # s=1 Y h = f (x) + max C(s)eikx +1, s || s ||C Ns−1≤p<Nsk k kC Ns−X1≤|k|≤p where g(x) = max g(x) , C || || x∈[0,2π]| | g(x) is a continuous function on [0,2π]. From (3.5),(3.7)-(3.10) we obtain (A) – 0 < µ(x) 1,µ(x) is a measurable function and ≤ x [0,2π] : µ(x) = 1 < ε. |{ ∈ 6 }| ∞ (B) – C q < , q > 2. k | | ∞ ∀ k=1 X Hence, obviously we have (3.11) lim C = 0. k k→∞ It follows from (3.8)-(3.10) that for all s n and p [N ,N ) 0 s−1 s ≥ ∈ (3.12) C(s)eikx µ(x)dx = (cid:12) k (cid:12) Z[0,2π]\Ωs(cid:12)(cid:12)Ns−X1≤|k|≤p (cid:12)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) ∞ (cid:12) (cid:12) = C(s)eikx µ dx (cid:12) k (cid:12) n ≤ nX=s+1 ZΩn\Ωn−1 (cid:12)(cid:12)Ns−X1≤|k|≤p (cid:12)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 10 S. A.EPISKOPOSIAN ∞ 2π 2−4n C(s)eikx h−1dx < 2−4s. ≤ (cid:12) k (cid:12) s nX=s+1 Z0 (cid:12)(cid:12)Ns−X1≤|k|≤p (cid:12)(cid:12) By (3.4), (3.8)-(3.10)for all(cid:12)s n we have (cid:12) (cid:12) 0 (cid:12) (cid:12) ≥ (cid:12) 2π (3.13) P (x) f (x) µ(x)dx = P (x) f (x) µ(x)dx+ s s s s | − | | − | Z0 ZΩs + P (x) f (x) µ(x)dx = 2−2(s+1)+ s s | − | Z[0,2π]\Ωs ∞ + P (x) f (x) µ dx 2−2(s+1)+ s s n | − | ≤ n=s+1(cid:20)ZΩn\Ωn−1 (cid:21) X ∞ 2π + 2−4s f (x) + C(s)eikx h−1dx < | s | (cid:12) k (cid:12) s nX=s+1 Z0 (cid:12)(cid:12)Ns−1X≤|k|<Ns (cid:12)(cid:12) (cid:12) (cid:12) < 2−2(s+1) +(cid:12) 2−4s < 2−2s. (cid:12) (cid:12) (cid:12) Taking relations (3.6), (3.8)- (3.10) and (3.12) into account we obtain that for all p [N ,N ) and s n +1 s−1 s 0 ∈ ≥ 2π (3.14) C(s)eikx µ(x)dx = (cid:12) k (cid:12) Z0 (cid:12)(cid:12)Ns−X1≤|k|≤p (cid:12)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) = C(s)eikx µ(x)dx+ (cid:12) k (cid:12) ZΩs(cid:12)(cid:12)Ns−X1≤|k|≤p (cid:12)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) + (cid:12) C(s)ei(cid:12)kx µ(x)dx < (cid:12) k (cid:12) Z[0,2π]\Ωs(cid:12)(cid:12)Ns−X1≤|k|≤p (cid:12)(cid:12) (cid:12) (cid:12) s (cid:12) (cid:12) < (cid:12) C(s)eikx(cid:12) dx µ +2−4s < (cid:12) k (cid:12) · n n=Xn0+1 ZΩn\Ωn−1 (cid:12)(cid:12)Ns−X1≤|k|≤p (cid:12)(cid:12) s (cid:12) (cid:12) (cid:12) (cid:12) < 2−2(s+1)(cid:12)+ f (x)(cid:12)dx µ +2−4s = s n | | n=n0+1(cid:18) ZΩn\Ωn−1 (cid:19) X s = 2−2(s+1) µ + f (x) µ(x)dx+2−4s < n s · | | n=Xn0+1 ZΩs 2π < f (x) µ(x)dx+2−4s. s | | Z0 Let f(x) L1[0,2π] , i. e. 2π f(x) µ(x)dx < . ∈ µ 0 | | ∞ R