Unitarity-Cuts, Stokes’ Theorem and Berry’s Phase 0 1 0 Pierpaolo Mastrolia∗† 2 CentroStudieRicerche“E.Fermi”,PiazzadelViminale1,I-00184,Roma,Italy n DipartimentodiFisica,UniversitàdiSalerno,ViaPontedonMelillo,I-84084Fisciano,Italy a J TheoryDepartment,CERN,CH-1211Geneva23,Switzerland 8 E-mail: [email protected] 1 ] h Two-particle unitarity-cuts of scattering amplitudes can be efficiently computed by applying p Stokes’ Theorem, in the fashion of the Generalised Cauchy Theorem. Consequently, the Op- - p tical Theorem can be related to the Berry Phase, showing how the imaginary part of arbitrary e one-loopFeynmanamplitudescanbeinterpretedasthefluxofacomplex2-form. h [ 1 v 6 5 1 3 . 1 0 0 1 : v i X r a RADCOR2009-9thInternationalSymposiumonRadiativeCorrections(ApplicationsofQuantumField TheorytoPhenomenology), October25-302009 Ascona,Switzerland ∗Speaker. †InmemoryofmyfriendThomas(Binoth),whoreactedwithhischaracteristicenthusiasmwhenIfirstshewhim theresultsnowcollectedinthismanuscripts. IacknowledgeTaniaRobensforclarifyingdiscussions. Myparticipation totheconferencewassupportedbyHepTools. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ Unitarity-Cuts,Stokes’TheoremandBerry’sPhase PierpaoloMastrolia 1. Introduction Unitarityandgeometricphasesaretwoubiquitouspropertiesofphysicalsystems. TheBerry phase is the phase acquired by a system when it is subjected to a cyclic evolution, resulting only fromthegeometricalpropertiesofthepathtraversedintheparameterspacebecauseofanholonomy [1, 2]. Unitarity represents the probability conservation in particle scattering processes described by the unitary scattering operator, S. The relation, S=1+i T, between the S-operator and the transition operator, T, leads to the Optical Theorem, −i(T −T†)=T†T . The matrix elements of this equation between initial and final states are expressed, in perturbation theory, in terms of Feynman diagrams. The evaluation of the right hand side requires the insertion of a complete set of intermediate states. Therefore, since −i(T −T†) = 2 ImT, the Optical Theorem yields the computation of the imaginary part of Feynman integrals from a sum of contributions from all possibleintermediatestates. The Cutkosky-Veltman rules, implementing the unitarity conditions, allow the calculation of thediscontinuityacrossabranchcutofanarbitraryFeynmanamplitude, whichcorrespondstoits imaginarypart[3]. Accordingly,theimaginarypartofagivenFeynmanintegralcanbecomputed byevaluatingthephase-spaceintegralobtainedbycuttingtwointernalparticles,whichamountsto applyingtheon-shellconditionsandreplacingtheirpropagatorsbythecorrespondingδ-function, (p2−m2+i0)−1→(2πi)δ(+)(p2−m2).Inlaterstudiestheproblemoffindingthediscontinuityof a Feynman integral associated to a singularity was addressed in the language of homology theory anddifferentialforms[4]. More recently multi-particle cuts have been combined with the use of complex momenta for on-shellinternalparticlesintoveryefficienttechniques,by-nowknownasunitarity-basedmethods, tocomputescatteringamplitudesforarbitraryprocesses. Thesemethodsexploittwogeneralprop- ertiesofscatteringamplitudeslikeanalyticity,grantingthatamplitudesaredeterminedbytheirown singularity-structure, and unitarity, granting that the residues at the singular points factorize into productsofsimpleramplitudes. Unitarityandanalyticitybecometoolsforthequantitativedetermi- natonofone-loopamplitudes[5]whenmergedwiththeexistenceofanunderlyingrepresentation of amplitudes as a combination of basic scalar one-loop functions [6]. These functions, known as MasterIntegrals(MI’s),aren-pointone-loopintegrals,I (1≤n≤4),withtrivialnumerator,equal n to1,characterisedbyexternalmomentaandinternalmassespresentinthedenominator. Ingeneral, thefulfillmentofmultiple-cutconditionsrequiresloopmomentawithcomplexcomponents. Since the loop momentum has four components, the effect of the cut-conditions is to fix some of them accordingtothenumberofthecuts. Anyquadruple-cut[11]fixestheloop-momentumcompletly, yielding the algebraic determination of the coefficients of I ,(n ≥ 4); the coefficient of 3-point n functions, I , are extracted from triple-cut [12, 13, 14, 15, 16, 17]; the evaluation of double-cut 3 [18, 19, 20, 14, 21, 16, 22, 23, 17] is necessary for extracting the coefficient of 2-point functions, I ;andfinally,inprocessesinvolvingmassiveparticles,thecoefficientsof1-pointfunctions,I ,are 2 1 detectedbysingle-cut[16,24,25]. Incaseswherefewerthanfourdenominatorsarecut, theloop momentumisnotfrozen: thefree-componentsareleftoverasphase-spaceintegrationvariables. In[26,27],Iintroducedanovelefficientmethodfortheanalyticevaluationofthecoefficients ofone-loop2-pointfunctionsviadouble-cuts. Spun-offfromthespinor-integrationtechnique[18, 19, 20], that method is an application of Stokes’ Theorem. Due to a special decomposition of the 2 Unitarity-Cuts,Stokes’TheoremandBerry’sPhase PierpaoloMastrolia loop-momentum,thedouble-cutphase-spaceintegraliswrittenasparametricintegrationofrational function in two complex-conjugated variables. By applying Stokes’ Theorem, the integration is carried on in two simple steps: an indefinite integration in one variable, followed by Cauchy’s ResidueTheoremintheconjugatedone. The coefficients of the 2-point scalar functions, being proportional to the rational term of the double-cut, can be directly extracted from the indefinite integration by Hermite Polynomial Reduction. 2. Double-Cut Thetwo-particleLorentzinvariantphase-space(LIPS)intheK2-channelisdefinedas, (cid:90) (cid:90) d4Φ= d4(cid:96) δ(+)((cid:96)2−m2)δ(+)(((cid:96) −K)2−m2), (2.1) 1 1 1 1 2 where Kµ is the total momentum across the cut. We introduce a suitable parametrization for (cid:96)µ 1 [26, 20], in terms of four massless momenta, which is a solution of the two on-shell conditions, (cid:96)2=m2 and((cid:96) −K)2=m2, 1 1 1 2 1−2ρ(cid:16) (cid:17) (cid:96)µ = pµ+zz¯qµ+zεµ+z¯εµ +ρKµ , (2.2) 1 1+zz¯ + − where p andq aretwomasslessmomentawiththerequirements, µ µ p +q =K , p2=q2=0, 2 p·q=2 p·K =2q·K ≡K2 ; (2.3) µ µ µ thevectorsεµ andεµ areorthogonaltoboth pµ andqµ,withthefollowingproperties1, + − ε2 =ε2 =0=ε ·p=ε ·q, 2ε ·ε =−K2 . (2.4) + − ± ± + − √ The pseudo-threshold ρ = (K2+m2−m2− λ)/(2K2) , with λ = (K2)2+(m2)2+(m2)2− 1 2 1 2 2K2m2−2K2m2−2m2m2 , depends only on the kinematics. The complex conjugated variables 1 2 1 2 z and z¯ parametrize the degrees of freedom left over by the cut-conditions. Because of (2.2), the LIPSin(2.1)reducestotheremarkableexpression, (cid:90) (cid:90)(cid:90) dz∧dz¯ d4Φ=(1−2ρ) . (2.5) (1+zz¯)2 Thedouble-cutofagenericn-pointamplitudeintheK2-channelisdefinedas (cid:90) ∆≡ d4ΦAtree((cid:96) )Atree((cid:96) ), (2.6) L 1 R 1 whereAtreearethetree-levelamplitudessittingatthetwosidesofthecut,seeFig.1. Byusing(2.5) L,R fortheLIPS,and(2.2)fortheloop-momentum(cid:96)µ,onehas, 1 (cid:90)(cid:90) Atree(z,z¯)Atree(z,z¯) ∆=(1−2ρ) dz∧dz¯ L R , (2.7) (1+zz¯)2 1In terms of spinor variables that are associated to massless momenta, we can define pµ =(1/2)(cid:104)p|γµ|p] and qµ =(1/2)(cid:104)q|γµ|q],henceεµ =(1/2)(cid:104)q|γµ|p]andεµ =(1/2)(cid:104)p|γµ|q]. + − 3 Unitarity-Cuts,Stokes’TheoremandBerry’sPhase PierpaoloMastrolia Figure1: Double-cutofone-loopamplitudeintheK2-channel. wherethetree-amplitudesAtreeandAtreearerationalinzandz¯. Sinceρ isindependentofzandz¯,its L R presenceintheintegrandisunderstood. ByapplyingaspecialversionofthesocalledGeneralised Cauchy Formula also known as the Cauchy-Pompeiu Formula [28], one can write the two-fold integration in z- and z¯-variables appearing in Eq.(2.7) simply as a convolution of an unbounded z¯-integralandacontourz-integral2 [26], (cid:73) (cid:90) Atree(z,z¯)Atree(z,z¯) ∆=(1−2ρ) dz dz¯ L R , (2.8) (1+zz¯)2 where the product AtreeAtree is a rational function of z and z¯, and the integration contour has to L R bechosenasenclosingallthecomplexz-poles. TheequivalenceofEq.(2.7)andEq.(2.8)isdueto Stokes’Theorem[26]. Accordingly,thedouble-cut∆in(2.7)isthefluxofa2-form,corresponding toanintegraloverthecomplextangentbundleoftheRiemannsphere3,wherethecurvature2-form isdefinedasΩ=1/(1+|z|2)2 dz∧dz¯. 2.1 Coefficientofthe2-pointfunction The formula in Eq.(2.8) can be intrgrated straightforwardly in two steps. To begin with the integration,wefindaprimitivewithrespecttoz¯,sayF,bykeepingzasindependentvariable, (cid:90) Atree(z,z¯)Atree(z,z¯) F(z,z¯)= dz¯ L R , (2.9) (1+zz¯)2 sothat∆becomes, (cid:73) ∆=(1−2ρ) dzF(z,z¯). (2.10) SinceF istheprimitiveofarationalfunction,itsgeneralformcanonlycontaintwotypesofterms: arationaltermandalogarithimcone, F(z,z¯)=Frat(z,z¯)+Flog(z,z¯). (2.11) Thecoefficientofa2-pointfunctionintheK2-channelwillappearin∆rat,namelytheresultofthe Residue Theorem in z applied only to Frat. The choice of p and q specified in Eqs.(2.3) grants thatthereexistsapoleatz=0associatedtothe2-pointfunctionintheK2-channel,I (K2);while 2 2Therolesofzandz¯canbeequivalentlyexchanged. 3In[26]ithasbeenshownthatthedouble-cutofthescalar2-pointfunction,∆I =(cid:82)d4Φamountstotheintegral 2 (cid:82)(cid:82)Ω=−2πi.ThisresultcorrespondstotheintegrationofthefirstChernclass,(i/π)(cid:82)(cid:82)Ω=2. 4 Unitarity-Cuts,Stokes’TheoremandBerry’sPhase PierpaoloMastrolia thereductionofhigher-pointfunctionsthathaveI (K2)assubdiagramcangeneratepolesatfinite 2 z-values. TheResidueTheoremhastobeappliedbyreadingalltheresiduesinz,andsubstituting thecorresponding complex-conjugatevalues wherez¯appears. Since itcanbe shown[26]that the double-cut of the 2-point scalar function in the K2-channel amounts to ∆I =−2πi (1−2ρ), the 2 coefficientofthe2-pointfunctioncanbefinallyextractedfromtheratio, ∆rat (cid:16) (cid:17) c = =− Res Frat(z,z¯)+Res Frat(z,z¯) , (2.12) 2 z=0 z(cid:54)=0 ∆I 2 whichwilldependonρ. Recently, the method just described has been succesfully applied to the completion of the analyticcalculationoftheone-loopvirtualcorrectionstoH+2jetsviagluonfusion[29,30].4 3. OpticalTheoremandBerry’sPhase In [27] the following observation was made. In the double-cut integral (2.7), we did not make any assumptions on the tree-level amplitudes sewn along the cut, thus providing a general framework to the integration method developed in [26]. If we now choose Atree =A∗,tree, that is L m→2 theconjugatescatteringamplitudeofaprocessm→2,andAtree=Atree ,thatistheamplitudeofa R n→2 processn→2,then∆reads, (cid:90) (cid:104) (cid:105) (cid:110) (cid:111) ∆= d4ΦA∗,tree Atree =−i Aone−loop−A∗,one−loop =2Im Aone−loop , (3.1) m→2 n→2 n→m m→n n→m whichisthedefinitionofthetwo-particlediscontinuityoftheone-loopamplitudeAone−loop across n→m the branch cut in the K2-channel, corresponding to the field-theoretic version of the Optical The- orem for one-loop Feynman amplitudes. On the other side, because of Stokes’ Theorem in (2.7, 2.8),onehas, (cid:90)(cid:90) A∗,tree Atree (cid:73) (cid:90) A∗,tree Atree ∆=(1−2ρ) dz∧dz¯ m→2 n→2 =(1−2ρ) dz dz¯ m→2 n→2 , (3.2) (1+zz¯)2 (1+zz¯)2 whichprovidesageometricalinterpretationoftheimaginarypartofone-loopscatteringamplitudes, as a flux of a complex 2-form through a surface bounded by the contour of the z-integral (the contourshouldencloseallthepolesinzexposedintheintegrandaftertheintegrationinz¯[26]). Given the equivalence of (3.1) and (3.2), a correspondence between the imaginary part of scatteringamplitudesandtheanholonomyofBerry’sphasedoesemerge,sincethelatterisindeed definedasthefluxofa2-forminpresenceofcurvedspace[1,2]. Inthiscontext,onecouldestablish aparalleldescriptionbetweentheAharonov-Böhm(AB)effect[31]andthedouble-cutofone-loop Feynmanintegrals. Accordingly,letusfollowtheevolutioninFig.1fromthelefttotheright. The twoparticlesproducedintheA -scattering,goingaroundtheloopandinitiatingtheA -process,at L R theA -interactionpointwouldexperienceaphase-shiftduetothenon-trivialgeometryineffective R momentumspaceinducedbytheon-shellconditions. AsintheAB-effect,theanholonomyphase- shift is a consequence of Stokes’ Theorem, and here it corresponds to the imaginary part of the one-loopFeynmanamplitude. 4SeealsoS.Badger,andC.Williamsintheseproceedings. 5 Unitarity-Cuts,Stokes’TheoremandBerry’sPhase PierpaoloMastrolia References [1] M.V.Berry,Proc.Roy.Soc.Lond.A392(1984)45. [2] A.D.ShapereandF.Wilczek(ed.),Adv.Ser.Math.Phys.5(1989)1. [3] L.D.Landau,Nucl.Phys.13,181(1959).R.E.Cutkosky,J.Math.Phys.1,429(1960).R.J.Eden, P.V.Landshoff,D.I.Olive,J.C.Polkinghorne,TheAnalyticSMatrix,CambridgeUniversityPress, 1966.M.J.G.Veltman,Physica29(1963)186.E.Remiddi,Helv.Phys.Acta54(1982)364. [4] R.C.Hwa,andV.L.Teplitz,MathematicalPhysicsMonographs,W.A.BenjaminInc.,1966. [5] Z.Bern,L.J.Dixon,D.C.DunbarandD.A.Kosower,Nucl.Phys.B425(1994)217;Nucl.Phys.B 435(1995)59. [6] G.PassarinoandM.J.G.Veltman,Nucl.Phys.B160(1979)151. [7] G.Ossola,C.G.PapadopoulosandR.Pittau,Nucl.Phys.B763,147(2007);JHEP0707,085(2007). [8] R.K.Ellis,W.T.GieleandZ.Kunszt,JHEP0803(2008)003. [9] W.T.Giele,Z.KunsztandK.Melnikov,JHEP0804(2008)049. [10] C.F.Bergeretal.,Phys.Rev.D78(2008)036003. [11] R.Britto,F.CachazoandB.Feng,Nucl.Phys.B725,275(2005). [12] P.Mastrolia,Phys.Lett.B644,272(2007). [13] T.Binoth,G.Heinrich,T.GehrmannandP.Mastrolia,Phys.Lett.B649,422(2007). [14] D.Forde,Phys.Rev.D75,125019(2007). [15] N.E.J.Bjerrum-Bohr,D.C.DunbarandW.B.Perkins,JHEP0804,038(2008). [16] W.B.Kilgore,arXiv:0711.5015[hep-ph]. [17] S.D.Badger,JHEP0901(2009)049. [18] R.Britto,E.Buchbinder,F.CachazoandB.Feng,Phys.Rev.D72,065012(2005). [19] R.Britto,B.FengandP.Mastrolia,Phys.Rev.D73,105004(2006). [20] C.Anastasiou,R.Britto,B.Feng,Z.KunsztandP.Mastrolia,Phys.Lett.B645,213(2007);JHEP 0703,111(2007). [21] R.BrittoandB.Feng,Phys.Rev.D75,105006(2007);JHEP0802,095(2008). [22] R.Britto,B.FengandP.Mastrolia,Phys.Rev.D78(2008)025031. [23] R.Britto,B.FengandG.Yang,JHEP0809(2008)089. [24] E.W.N.GloverandC.Williams,JHEP0812(2008)067. [25] R.BrittoandB.Feng,Phys.Lett.B681,376(2009). [26] P.Mastrolia,Phys.Lett.B678(2009)246. [27] P.Mastrolia,toappearinLett.Math.Phys.,arXiv:0906.3789. [28] M.J.Ablowitz,andA.S.Fokas,ComplexVariables,CambridgeTextsinAppliedMathematics,2003, 2ndEdition. [29] S.Badger,E.W.NigelGlover,P.MastroliaandC.Williams,toappearinJHEP,arXiv:0909.4475. [30] S.Badger,J.M.Campbell,R.K.EllisandC.Williams,JHEP0912(2009)035. [31] Y.AharonovandD.Bohm,Phys.Rev.115(1959)485. 6