ebook img

Unit Equations in Diophantine Number Theory PDF

375 Pages·2015·2.46 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Unit Equations in Diophantine Number Theory

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 146 EditorialBoard B. BOLLOBA´S, W. FULTON, A. KATOK, F. KIRWAN, P. SARNAK, B. SIMON, B. TOTARO UNITEQUATIONS IN DIOPHANTINENUMBERTHEORY Diophantinenumbertheoryisanactiveareathathasseentremendousgrowthoverthe pastcentury,andinthistheoryunitequationsplayacentralrole.Thiscomprehensive treatmentisthefirstvolumedevotedtotheseequations.Theauthorsgathertogetherall themostimportantresultsandlookatmanydifferentaspects,includingeffectiveresults onunitequationsovernumberfields,estimatesonthenumberofsolutions,analoguesfor functionfields,andeffectiveresultsforunitequationsoverfinitelygenerateddomains. Theyalsopresentavarietyofapplications.Introductorychaptersprovidethenecessary backgroundinalgebraicnumbertheoryandfunctionfieldtheory,aswellasanaccount oftherequiredtoolsfromDiophantineapproximationandtranscendencetheory.This makesthebooksuitableforyoungresearchersaswellasforexpertswhoarelooking foranup-to-dateoverviewofthefield. Jan-Hendrik Evertse works at the Mathematical Institute of Leiden University. His researchconcentratesonDiophantineapproximationandapplicationstoDiophantine problems.Inthisareahehasobtainedsomeinfluentialresults,inparticularonestimates forthenumbersofsolutionsofDiophantineequationsandinequalities.Hehaswritten morethan75researchpapersandco-authoredonebookwithBasEdixhovenentitled DiophantineApproximationandAbelianVarieties. Ka´lma´nGyo˝ryisProfessorEmeritusattheUniversityofDebrecen,amemberofthe HungarianAcademyofSciencesandawell-knownresearcherinDiophantinenumber theory.Overhiscareerhehasobtainedseveralsignificantandpioneeringresults,among othersonunitequations,decomposableformequations,andtheirvariousapplications. Hisresultshavebeenpublishedinonebookand160researchpapers.Gyo˝ryisalsothe founderandleaderofthenumbertheoryresearchgroupinDebrecen,whichconsistsof hisformerstudentsandtheirstudents. CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS EditorialBoard: B.Bolloba´s,W.Fulton,A.Katok,F.Kirwan,P.Sarnak,B.Simon,B.Totaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversityPress. Foracompleteserieslistingvisitwww.cambridge.org/mathematics. Alreadypublished 109 H.GeigesAnintroductiontocontacttopology 110 J.FarautAnalysisonLiegroups:Anintroduction 111 E.ParkComplextopologicalK-theory 112 D.W.StroockPartialdifferentialequationsforprobabilists 113 A.Kirillov,Jr AnintroductiontoLiegroupsandLiealgebras 114 F.Gesztesyetal.Solitonequationsandtheiralgebro-geometricsolutions,II 115 E.deFaria&W.deMeloMathematicaltoolsforone-dimensionaldynamics 116 D.ApplebaumLe´vyprocessesandstochasticcalculus(2ndEdition) 117 T.SzamuelyGaloisgroupsandfundamentalgroups 118 G.W.Anderson,A.Guionnet&O.ZeitouniAnintroductiontorandommatrices 119 C.Perez-Garcia&W.H.SchikhofLocallyconvexspacesovernon-Archimedeanvaluedfields 120 P.K.Friz&N.B.VictoirMultidimensionalstochasticprocessesasroughpaths 121 T.Ceccherini-Silberstein,F.Scarabotti&F.TolliRepresentationtheoryofthesymmetricgroups 122 S.Kalikow&R.McCutcheonAnoutlineofergodictheory 123 G.F.Lawler&V.LimicRandomwalk:Amodernintroduction 124 K.Lux&H.PahlingsRepresentationsofgroups 125 K.S.Kedlayap-adicdifferentialequations 126 R.Beals&R.WongSpecialfunctions 127 E.deFaria&W.deMeloMathematicalaspectsofquantumfieldtheory 128 A.TerrasZetafunctionsofgraphs 129 D.Goldfeld&J.HundleyAutomorphicrepresentationsandL-functionsforthegenerallineargroup,I 130 D.Goldfeld&J.HundleyAutomorphicrepresentationsandL-functionsforthegenerallineargroup,II 131 D.A.CravenThetheoryoffusionsystems 132 J.Va¨a¨na¨nenModelsandgames 133 G.Malle&D.TestermanLinearalgebraicgroupsandfinitegroupsofLietype 134 P.LiGeometricanalysis 135 F.MaggiSetsoffiniteperimeterandgeometricvariationalproblems 136 M.Brodmann&R.Y.SharpLocalcohomology(2ndEdition) 137 C.Muscalu&W.SchlagClassicalandmultilinearharmonicanalysis,I 138 C.Muscalu&W.SchlagClassicalandmultilinearharmonicanalysis,II 139 B.HelfferSpectraltheoryanditsapplications 140 R.Pemantle&M.C.WilsonAnalyticcombinatoricsinseveralvariables 141 B.Branner&N.FagellaQuasiconformalsurgeryinholomorphicdynamics 142 R.M.DudleyUniformcentrallimittheorems(2ndEdition) 143 T.LeinsterBasiccategorytheory 144 I.Arzhantsev,U.Derenthal,J.Hausen&A.LafaceCoxrings 145 M.VianaLecturesonLyapunovexponents 146 J.-H.Evertse&K.Gyo˝ryUnitequationsinDiophantinenumbertheory 147 A.PrasadRepresentationtheory 148 S.R.Garcia,J.Mashreghi&W.T.RossIntroductiontomodelspacesandtheiroperators Unit Equations in Diophantine Number Theory JAN-HENDRIK EVERTSE UniversiteitLeiden KA´ LMA´ N GYO˝ RY DebreceniEgyetem,Hungary UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107097605 ©Jan-HendrikEvertseandKa´lma´nGyo˝ry2015 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2015 PrintedintheUnitedKingdombyClays,StIvesplc AcataloguerecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-107-09760-5Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Preface pageix Summary xi PART I PRELIMINARIES 1 Basicalgebraicnumbertheory 3 1.1 Characteristicpolynomial,trace,norm,discriminant 3 1.2 Idealtheoryforalgebraicnumberfields 5 1.3 Extensionofideals;normofideals 7 1.4 Discriminant,classnumber,unitgroupandregulator 9 1.5 Explicitestimates 11 1.6 Absolutevalues:generalities 12 1.7 Absolutevaluesandplacesonnumberfields 15 1.8 S-integers,S-unitsandS-norm 17 1.9 Heights 19 1.9.1 Heightsofalgebraicnumbers 19 1.9.2 v-adicnormsandheightsofvectors andpolynomials 21 1.10 Effectivecomputationsinnumberfields 23 1.11 p-adicnumbers 26 2 Algebraicfunctionfields 30 2.1 Valuations 30 2.2 Heights 33 2.3 Derivativesandgenus 35 2.4 Effectivecomputations 37 3 ToolsfromDiophantineapproximationand transcendencetheory 42 v vi Contents 3.1 TheSubspaceTheoremandsomevariations 42 3.2 Effectiveestimatesforlinearformsinlogarithms 51 PART II UNIT EQUATIONS AND APPLICATIONS 4 Effectiveresultsforunitequationsintwounknownsover numberfields 61 4.1 Effectiveboundsfortheheightsofthesolutions 62 4.1.1 Equationsinunitsofanumberfield 62 4.1.2 Equationswithunknownsfromafinitely generatedmultiplicativegroup 64 4.2 Approximationbyelementsofafinitelygenerated multiplicativegroup 67 4.3 Tools 68 4.3.1 Somegeometryofnumbers 68 4.3.2 EstimatesforunitsandS-units 72 4.4 Proofs 79 4.4.1 ProofsofTheorems4.1.1and4.1.2 79 4.4.2 ProofsofTheorems4.2.1and4.2.2 81 4.4.3 ProofsofTheorem4.1.3anditscorollaries 84 4.5 Alternativemethods,comparisonofthebounds 87 4.5.1 TheresultsofBombieri,BombieriandCohen, andBugeaud 87 4.5.2 TheresultsofMurty,PastenandvonKa¨nel 88 4.6 Theabc-conjecture 89 4.7 Notes 93 4.7.1 Historicalremarksandsomerelatedresults 93 4.7.2 Somenotesonapplications 94 5 Algorithmicresolutionofunitequationsintwounknowns 96 5.1 ApplicationofBaker’stypeestimates 97 5.1.1 Infiniteplaces 100 5.1.2 Finiteplaces 102 5.2 Reductionofthebounds 103 5.2.1 Infiniteplaces 103 5.2.2 Finiteplaces 105 5.3 Enumerationofthe“small”solutions 111 5.4 Examples 119 5.5 Exceptionalunits 121 5.6 Supplement:LLLlatticebasisreduction 123 5.7 Notes 126 Contents vii 6 Unitequationsinseveralunknowns 128 6.1 Results 130 6.1.1 Asemi-effectiveresult 130 6.1.2 Upperboundsforthenumberofsolutions 131 6.1.3 Lowerbounds 134 6.2 ProofsofTheorem6.1.1andCorollary6.1.2 136 6.3 AsketchoftheproofofTheorem6.1.3 140 6.3.1 Areduction 140 6.3.2 Notation 142 6.3.3 Coveringresults 142 6.3.4 Thelargesolutions 144 6.3.5 Thesmallsolutions,andconclusionoftheproof 147 6.4 ProofofTheorem6.1.4 148 6.5 ProofofTheorem6.1.6 158 6.6 ProofsofTheorems6.1.7and6.1.8 161 6.7 Notes 165 7 Analoguesoverfunctionfields 173 7.1 Mason’sinequality 174 7.2 Proofs 176 7.3 Effectiveresultsinthemoreunknownscase 178 7.4 Resultsonthenumberofsolutions 182 7.5 ProofofTheorem7.4.1 183 7.5.1 Extensiontothek-closureof(cid:2) 183 7.5.2 Somealgebraicgeometry 185 7.5.3 ProofofTheorem7.5.1 188 7.6 Resultsinpositivecharacteristic 192 8 Effectiveresultsforunitequationsintwounknownsover finitelygenerateddomains 197 8.1 Statementsoftheresults 198 8.2 Effectivelinearalgebraoverpolynomialrings 201 8.3 Areduction 204 8.4 BoundingthedegreeinProposition8.3.7 212 8.5 Specializations 215 8.6 BoundingtheheightinProposition8.3.7 222 8.7 ProofofTheorem8.1.3 225 8.8 Notes 230 9 Decomposableformequations 231 9.1 Afinitenesscriterionfordecomposableformequations 233 viii Contents 9.2 Reductionofunitequationstodecomposable formequations 236 9.3 Reductionofdecomposableformequationsto unitequations 237 9.3.1 Proofoftheequivalence(ii)⇐⇒(iii) inTheorem9.1.1 238 9.3.2 Proofoftheimplication(i)⇒(iii)in Theorem9.1.1 238 9.3.3 Proofoftheimplication(iii)⇒(i)in Theorem9.1.1 240 9.4 Finitenessofthenumberoffamiliesofsolutions 244 9.5 Upperboundsforthenumberofsolutions 249 9.5.1 GaloissymmetricS-unitvectors 251 9.5.2 Consequencesfordecomposableformequations andS-unitequations 253 9.6 Effectiveresults 257 9.6.1 Thueequations 258 9.6.2 Decomposableformequationsinanarbitrary numberofunknowns 263 9.7 Notes 272 10 Furtherapplications 284 10.1 Primefactorsofsumsofintegers 284 10.2 Additiveunitrepresentationsinfinitelygenerated integraldomains 287 10.3 Orbitsofpolynomialandrationalmaps 291 10.4 Polynomialsdividingmanyk-nomials 298 10.5 Irreduciblepolynomialsandarithmeticgraphs 301 10.6 Discriminantequationsandpowerintegralbasesin numberfields 305 10.7 Binaryformsofgivendiscriminant 310 10.8 Resultantequationsformonicpolynomials 315 10.9 Resultantinequalitiesandequationsforbinaryforms 317 10.10 Lang’sConjecturefortori 321 10.11 Linearrecurrencesequencesand exponential-polynomialequations 326 10.12 Algebraicindependenceresults 330 References 337 Glossaryoffrequentlyusednotation 358 Index 361 Preface Diophantinenumbertheory(thestudyofDiophantineequations,Diophantine inequalitiesandtheirapplications)isaveryactiveareainnumbertheorywitha longhistory.Thisbookisaboutunitequations,aclassofDiophantineequations of central importance in Diophantine number theory, and their applications. Unitequationsareequationsoftheform a x +···+a x =1 1 1 n n to be solved in elements x ,...,x from a finitely generated multiplicative 1 n group (cid:2), contained in a field K, where a ,...,a are non-zero elements of 1 n K. Such equations were studied originally in the cases where the number of unknowns n=2, K is a number field and (cid:2) is the group of units of the ring of integers of K, or more generally, where (cid:2) is the group of S-units in K. Unit equations have a great variety of applications, among others to other classes of Diophantine equations, to algebraic number theory and to Diophantinegeometry. Certainresultsconcerningunitequationsandtheirapplicationscoveredin ourbookwerealreadypresented,mostlyinspecialorweakerform,inthebooks ofLang(1962,1978,1983),Gyo˝ry(1980b),Sprindzˇuk(1982,1993),Evertse (1983),Mason(1984),ShoreyandTijdeman(1986),deWeger(1989),Schmidt (1991),Smart(1998),BombieriandGubler(2006),BakerandWu¨stholz(2007) and Zannier (2009), and in the survey papers of Evertse, Gyo˝ry, Stewart and Tijdeman (1988b), Gyo˝ry (1992a, 1996, 2002a, 2010) and Be´rczes, Evertse andGyo˝ry(2007b). In1988,wewrote,togetherwithStewartandTijdeman,thesurveyEvertse, Gyo˝ry,StewartandTijdeman(1988b)onunitequationsandtheirapplications giving the state of the art of the subject at that time. Since then, the theory of unit equations has been greatly expanded. In the present book we have ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.