Uniqueness ofthe Fockquantization offields withunitary dynamics innonstationary spacetimes Jero´nimo Cortez ∗ DepartamentodeF´ısica,FacultaddeCiencias,UniversidadNacionalAuto´nomadeMe´xico,Me´xicoD.F.04510,Mexico. Guillermo A. Mena Maruga´n and Javier Olmedo † ‡ Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid, Spain. Jose´ M. Velhinho § Departamento de F´ısica, Universidade da Beira Interior, R. Marqueˆs D’A´vila e Bolama, 6201-001 Covilha˜, Portugal. TheFockquantizationoffieldspropagatingincosmologicalspacetimesisnotuniquelydeterminedbecause ofseveralreasons.Apartfromtheambiguityinthechoiceofthequantumrepresentationofthecanonicalcom- 1 mutationrelations,therealsoexistscertainfreedominthechoiceoffield:onecanscaleitarbitrarilyabsorbing 1 backgroundfunctions,whicharespatiallyhomogeneousbutdependontime. Eachnontrivialscalingturnsout 0 intoadifferentdynamicsand,ingeneral,intoaninequivalentquantumfieldtheory.Inthisworkweanalyzethis 2 freedomatthequantumlevelforascalarfieldinanonstationary, homogeneousspacetimewhosespatialsec- n tionshaveS3topology. Ascalingoftheconfigurationvariableisintroducedaspartofalinear,timedependent a canonicaltransformationinphasespace. Inthiscontext,weproveinfulldetailauniquenessresultaboutthe J Fockquantizationrequiringthatthedynamicsbeunitaryandthespatialsymmetriesofthefieldequationshave 2 a natural unitary implementation. The main conclusion is that, with those requirements, only one particular 1 canonicaltransformationisallowed,andthusonlyonechoiceoffield-momentumpair(uptoirrelevantconstant scalings). Thiscomplementsanotherpreviousuniquenessresultforscalarfieldswithatimevaryingmasson ] S3,whichselectsaspecificequivalenceclassofFockrepresentationsofthecanonicalcommutationrelations c undertheconditionsofaunitaryevolutionandtheinvarianceofthevacuumunderthebackgroundsymmetries. q Intotal,thecombinationofthesetwodifferentstatementsofuniquenesspicksupauniqueFockquantization - r forthesystem.Wealsoextendourproofofuniquenesstoothercompacttopologiesandspacetimedimensions. g [ PACSnumbers:03.70.+k,04.62.+v,98.80.Qc,04.60.-m 1 v I. INTRODUCTION no general procedure to select a preferred quantum descrip- 7 9 tion. In this situation, physicalresultsdepend on the repre- 3 TheuniquecharacterofNatureisalludedinphysicsbythe sentation adopted, a fact that brings into question their sig- 2 nificance. It is then necessary to look for additional criteria uniquenessofthetheoriesemployedtodescribeit. Inparticu- . to warrant uniqueness and regain robustness in the quantum 1 lar,byimposingappropriatephysicalcriteria,thequantization 0 ofaclassicalsystemshouldyieldauniquequantumdescrip- predictions. 1 tion –up to unitary equivalence. Since the quantization pro- Theusualproceduretoselectapreferredrepresentationin 1 cess involveschoices that may lead to inequivalenttheories, fieldtheoryforagivensetofCCR’sistoexploittheclassical : v thespecificationofauniquedescriptionisanontrivialtask. symmetries. For instance, the invariance under the Poincare´ i X Even in systems in which one already starts with a spe- groupisthecriterionimposedtoarriveatauniquerepresen- cificchoiceofbasiccanonicalvariablesandanassociatedset tationinordinaryquantumfieldtheory. Thus,ifthefieldthe- r a of canonical commutation relations (CCR’s), there exists an orycorrespondstoascalarfield,Poincare´invariance,adapted intrinsic ambiguity in the quantization process because the to the dynamics of the considered theory, selects a complex CCR’scanberepresentedinnonequivalentways. Inthecase structure [2], which is the mathematical object that encodes oflinearsystemswithafinitenumberofdegreesoffreedom, theambiguityinthequantizationanddeterminesthevacuum theseambiguitiesareessentiallysuppressedbytheimposition state of the Fock representation. For stationary spacetimes, ofcertainunitarityandcontinuityconditionsontherepresen- the time translation symmetry is exploited to formulate the tationofthealgebraofobservables(asstatedintheStone-von so-calledenergycriterionandthenselectapreferredcomplex Newmann theorem [1]), so that uniqueness follows without structure[3].Butwhenthesymmetriesareseverelyrestricted, misadventures. Nonetheless,thesituationchangesdrastically asitisthecaseforgenericcurvedspacetimesorformanifestly in the arena of field theory. These systems accept infinite nonstationarysystems,extrarequirementsmustbeimposedto nonequivalent representations of the CCR’s [2] and there is complete the quantizationprocess. For example, in the case ofdeSitterspacein1+1dimensions,itispossibletopickup auniquedeSitterinvariantFockvacuumforafreescalarfield by looking for an invariant Gaussian solution to a properly Electronicaddress:[email protected] regulatedSchro¨dingerequation[4]. ∗ Electronicaddress:[email protected] † Inthecontextofquantumcosmology,theextracriterionof ‡Electronicaddress:[email protected] Electronicaddress:[email protected] a unitary implementationof the dynamicshas been success- § 2 fullyemployedtospecifyaunique,preferredFockquantiza- thereforesimplifyinginpartthecorrespondingdynamics,al- tion forthe Gowdyspacetimes. These are spacetimeswhich though there remain (or appear) time dependent potentials possess two spacelike Killing isometries andspatial sections whichmanifestthatthescenarioisanonstationaryone. of compact topology [5]. In the case of a three-torus topol- Thequestionimmediatelyarisesofwhetheritisagainpos- ogy and a content of linearly polarized gravitational waves, sibletoinvokenaturalcriteriatoremove(atleastincertainsit- thelocalgravitationaldegreesoffreedomcanbedescribedby uations)theambiguitythatthisfreedominthechoiceoffield a scalarfield witha specifictime dependentmassandwhich introducesatthequantumlevel.Adetailedanalysisaboutthis propagatesinanauxiliary,static backgroundwiththespatial issue wasfirstcarriedoutforthe quantizationofthelinearly topologyofthecircle[6].Forthischoiceofbasicfieldforthe polarizedGowdymodelwiththree-torustopologyinRef. [9]. model, one is able to find a uniqueFock quantizationwhich Thatworkstudiedafamilyoflinear,timedependentcanoni- incorporatesthebackgroundsymmetriesassymmetriesofthe caltransformationsthatinvolvea scaling ofthe field. Itwas vacuumandimplementsthefielddynamicsasafamilyofuni- proventhatthereactuallyexistsnofreedomleftinperforming taryquantumtransformations[6–9]. a transformation of this kind, once the criteria of invariance More recently, in a broadercontext, a unitary equivalence under the remaining spatial symmetries and the unitary im- class of Fock representations has been specified for scalar plementation of the dynamics are imposed. More precisely, fields withgenerictime varyingmass, defined on spheres in Ref. [9] shows that the considered transformations lead to threeorlessdimensions[10,11]. Again,theprocedurecon- newdynamicssuchthatonecannotattaina unitaryquantum sists in requiring a unitary dynamicsand the vacuuminvari- evolutioninaFockrepresentationwhilekeepingthesymme- anceunderthesymmetriesofthefieldequation. Theparticu- try invariance of the vacuum.1 The requirements of unitary larlyrelevantcaseofthethree-sphere,withthedimensionality evolutionand invariancethereforesuffice to select a specific observedinouruniverse,wasconsideredinRef. [11]. scalingofthefieldandaprivilegedfamilyofequivalentFock Apart from the inherent ambiguity in choosing the repre- quantizationsforit. Inotherwords,theuniquenessisguaran- sentation of the CCR’s, the quantization of fields in curved teed bothfor the choice offundamentalfield (with its corre- space-timesisaffectedbyanotherkindofambiguity.Itisdue spondingdynamics)andforthequantumrepresentationofthe tothefreedominchoosingaspecificfieldparametrizationto correspondingCCR’s. describethe physicalsystem, namely, the freedomin declar- One may wonder whether the uniquenessin the choice of ing a particular choice of field (together with its associated field description can also be guaranteed in other, more gen- dynamics)asthefundamentalone. Letusconcentrateourat- eralsystemsthantheGowdymodel,andinparticularfornon- tentiononthecaseofhomogeneousbutnonstationaryspace- stationarysettingswheretherealreadyexistresultsaboutthe times, like those encountered as backgroundsin cosmology. uniqueness of the representation of the CCR’s. The case of Inthesecircumstances,itismostnaturaltoconsiderfieldre- fields in 1+3 dimensional spacetimes with compact spatial definitionswhichabsorbbackgroundfunctions. Thisleadsto topologyisspeciallyimportant,owingtoitsapplicationse.g. ascalingofthefieldbyatimedependentfunction,suchthat to cosmology. A summaryofthe discussionforscalar fields thelinearityofthefieldequationsandofthestructuresofthe propagatinginanonstationaryspacetimewithsectionsofS3 system are preserved. If this time dependence is nontrivial, topologywasalreadypresentedbyusinRef. [12],anticipat- thetwofields(i.e.,thescaledandtheunscaledones)aregov- ingthattheanswertothequestionofuniquenessisintheaffir- ernedbydifferentdynamics. Sinceachangeinthedynamics mative. Theaimofthepresentworkistoprovidefulldetails typically calls for inequivalentrepresentations, the construc- ofthedemonstrationofthisresult. tion of a quantumtheoryclearlydependson the selection of We will consider a scaling of the field by a generic func- aspecificfielddescriptionforthesystemamongallthosere- tionoftime. Thisscalingcanalwaysbecompletedintoatime latedbythesescalingtransformations. dependentcanonicaltransformation. We demandsuchtrans- As commentedabove, these considerationsare crucial for formationtobecompatiblewithalllinearstructuresonphase quantum matter fields propagating in inflationary or cosmo- spaceandwiththesymmetriesofthefieldequations.Anyad- logical backgrounds, which are spatially homogeneous but missible canonicaltransformationisthen linearand, further- not stationary. The discussion is also relevant for the quan- more,can bedividedintotwo parts. Thefirst oneisa linear tizationoflocalgravitationaldegreesoffreedom,incontrast canonical transformation that is explicitly time independent with the previous context of quantum matter fields in clas- buttakesintoaccounttheinitialconditions,renderingsimple sical spacetimes that are solutions to the gravitational field ones for the remaining part, which incorporates then all the equations. This latter class of systems includes, e.g., the timedependence. We willdemonstratethatthereexistsonly already mentioned Gowdy models and the case of gravita- onepossiblechoiceofphasespacevariablessuchthatthere- tional perturbations around cosmological backgrounds. For sulting field theory admits a Fock quantization with unitary thesegravitationalsystems,thereexistsagreatfreedominthe dynamicsandanaturalimplementationofthesymmetriesof choiceofparametrizationofthe metriccomponentsin terms offields. Inallthesesituations, thechoiceofasuitablefield parametrization involves a time dependentscaling related to backgroundfunctionsandwhosespecificformdependsonthe 1Infact,inthisparticularlinearsystemonecanstillintroducearedefinition particularsystemunderstudy.Thischoiceoftenleadstofields ofthemomentumwhichimpliesnoscalingofthefield,butthisturnsoutto whicheffectivelypropagateinanauxiliarystaticbackground, beirrelevantinasmuchasnonewnonequivalentFockquantizationarises. 3 the field equations. The unique choice which remains avail- severelyrestrictedbyourcriteriathatitturnsouttobefixed. ableispreciselytheonewhichcorrespondstoatransformed Inaddition,wewillarguethattheanalysiscanbegeneralized scalarfieldthatpropagatesinastaticspacetimewithS3 spa- tolowerdimensions,replacingthethree-spherewithS2orS1 tial topology,though in the presence of a time varyingmass (forthis last case, see Ref. [9]), as well as to other compact term. Recall that, for this latter field, the uniqueness of the topologies. representationoftheCCR’swasproveninRef. [11]. The content of the paper is organizedas follows. In Sec. IIwesummarizetheresultsthatarealreadyknownaboutthe Aswehavealreadymentioned,thelistofscenarioswhere Fockquantizationofascalarfieldwithatimevaryingmassin thisresultfindsdirectapplicationsincludesthecaseofinfla- astaticspacetimewhosespatialsectionshavethetopologyof tionarymodelswhereascalarfieldwithconstantmassprop- S3. InSec. IIIweintroducethelinear,timedependentcanon- agates in a Friedmann-Robertson-Walker (FRW) spacetime icaltransformationwhichaccountsforthescalingofthefield with compact spatial topology. In this case, one can check and discuss its consequences at the quantum level. Sec. IV thatalinear,timedependentcanonicaltransformationallows contains the detailed proof that only one of these canonical oneto rewritethe field equationas thatofa field in a space- transformationsleadstoafielddynamicswhichiscompatible time with identical spatial topology but static, whereas the withourcriteriaofaquantumunitaryevolutionandthesym- massbecomestimevarying.Anothertypeofsituationswhere metry invariance of the vacuum. We discuss the results and ourresulthasimplicationsisgivenbythequantizationof(in- conclude in Sec. V. Finally, an appendix which deals with homogeneous) perturbations around nonstationary homoge- sometechnicalpartsofourdemonstrationisadded. neoussolutionsoftheEinsteinequations,typicallycosmolog- ical backgrounds[13–17]. Examplesare the gauge-invariant energy density perturbationamplitude in an FRW spacetime II. PRELIMINARIES:THESYSTEMANDTHEFOCK withS3 spatialtopologyfilledwith aperfectfluid(whenthe QUANTIZATIONOFREFERENCE perturbations of the energy-momentum tensor are adiabatic [14, 16]) or the matter perturbations around the same FRW Letusstartbyreviewingsomeofthekeyaspectsandresults spacetimeforamassivescalarfield[18].Withasuitablescal- about the Fock quantization of a real scalar field φ subject ing (and in an appropriate gauge in the case of the massive to a time dependentpotential V(φ) = s(t)φ2/2, where s(t) is field),thecorrespondingequationsofmotioncanberelatedto in principle any regular function of time (conditions on this thoseofascalarfieldinastaticspacetimewithatimedepen- functionwillbeintroducedlateron).Thefieldpropagatesina dent mass term (see Ref. [9] for additionaldetails). At this staticbackgroundin1+3dimensionswhoseCauchysurfaces point, it may be worth commenting that, although flat FRW arethree-spheres,equippedwiththestandardroundmetric universesreceiveaspecialattentionincosmologynowadays, some recent works find reasons to prefer closed FRW mod- h dxadxb =dχ2+sin2(χ) dθ2+sin2(θ)dσ2 . (1) els with S3 topology, for example from the pointof view of ab h i perturbation theory in relation with the choice of appropri- Here, χ and θ have a range of π, and σ S1. The time co- ategaugeswhichembodyMach’sprinciple[19], orinanat- ordinate t runs over an interval I of the r∈eal line, so that the tempttoaccountforalowmicrowavebackgroundquadrupole spacetimehasthetopologyofI S3. Itsmetricis [20,21].Ontheotherhand,wewillarguelateronthatourre- × sultscanbegeneralizedtothecaseofflatbutcompactFRW ds2 = dt2+habdxadxb. (2) − universes. In the canonical approach, the dynamics of the system are In summary, the question that we are going to investigate governedbytheequations is whetherthe criteria of unitarydynamicsandinvarianceof 1 thevacuumunderthesymmetriesofthefieldequationselecta P˙ = √h ∆φ s(t)φ , φ˙ = P , (3) φ φ uniqueFockquantizationamongallthosearisingfromdiffer- − √h (cid:2) (cid:3) enttimedependentscalingsofthefield. We willconcentrate whereP isthecanonicalmomentumofφ,h=sin2(θ)sin4(χ) φ ourdiscussiononthecasethataparticularscalingrendersthe is the determinant of the metric (1), ∆ denotes the Laplace- dynamics into that of a scalar field with time varying mass Beltrami operator on S3, and the dot stands for the time propagating in a static spacetime, with inertial spatial sec- derivative. tionsthathavethetopologyofathree-sphere. Wewillstudy Thecanonicalphasespaceofthetheoryisasymplecticlin- at the quantum level the consequencesof local, time depen- earspaceΓcoordinatizedbythefieldvariables(φ,P )(evalu- φ dentcanonicaltransformationswhichinvolveascalingofthe atedonaparticularCauchysection,e.g. thesectiont = t for 0 field. These transformationsmust preservethe invarianceof agivenvalueoftimet )andendowedwithasymplecticstruc- 0 thefieldequationunderthegroupofsymmetriesandthelin- tureΩsuchthatthesevariablesformacanonicalpair,namely earityofthespaceofsolutions. Transformationsofthiskind theircorrespondingPoissonbracketis: consistofascalingoftheconfigurationvariablebyafunction oftime, theinversescalingofthe canonicalmomentum,and φ(x),Pφ(y) =δ(3)(x y), (4) { } − possiblya contributionto themomentumthatislinearinthe where the Dirac delta is defined on S3. The Eqs. of motion configuration variable, the proportionality factor being time (3)amounttothelinearwaveequation dependent. Our main goal in this work is to provide a full proof demonstrating that the canonical transformation is so φ¨ ∆φ+s(t)φ=0. (5) − 4 SincetheLaplace-BeltramioperatoronS3 isinvariantunder character, because this is maintained if one removes a finite therotationgroupSO(4),theaboveequationisclearlyinvari- number of modes.2 We will introduce the annihilation and ant under this group as well. On the other hand, notice by creationlikevariables comparisonwith the Klein-Gordonequation that a nonnega- tivefunctions(t)canbeinterpretedasaneffectivenonnegative an = 1 ωn i qn . (8) timedependentmassm(t)= s1/2(t). a∗n ! √2ωn ωn −i! pn ! Owing to the field character of the theory, the system ac- Noticethatthesearepreciselythevariableswhichonewould ceptsinfinitenonequivalentrepresentationsoftheCCR’s. Re- naturallyadoptinthecaseofafreemasslessscalarfield.They stricting one’s attention to representations of the Fock type, formacompletesetinthephasespaceoftheinhomogeneous this freedomis encodedin the complexstructure, which isa sector. Givenasetofinitialdata a (t ),a (t ) atinitialtime linear symplectic map j : Γ Γ, compatiblewith the sym- { n 0 ∗n 0 } → t ,itispossibletowritetheclassicalevolutiontoanarbitrary plectic structure [in the sense that the bilinear map Ω(j, ) 0 is positive-definite], and such that j2 = 1 (see e.g. Re·fs·. timet Iintheform ∈ − [2,22,23]). Differentchoicesofcomplexstructureselectdis- a (t) α (t,t ) β (t,t ) a (t ) tinct,ingeneralnotunitarilyrelated,spacesofquantumstates n = n 0 n 0 n 0 . (9) forthetheory;thus,physicalpredictionsdependonthechoice a∗n(t) ! β∗n(t,t0) α∗n(t,t0)! a∗n(t0) ! of j. Let us call (t,t ) the linear evolution operator defined in n 0 Actually,aswehavementioned,ithasbeenprovenrecently U thisway.Sincethetimefunctionsα (t,t )andβ (t,t )provide n 0 n 0 that,inthe(φ,P )description,thereexistsone(andonlyone) φ asymplectomorphismonΓ,onehas subfamilyofequivalentcomplexstructuressatisfyingthecri- teriaofSO(4)invarianceandaunitaryimplementationofthe α (t,t )2 β (t,t )2 =1, (10) n 0 n 0 dynamics. Letus sketch the main steps of the proofand ex- | | −| | plain the correspondingquantization [11]. Given the invari- independently of the particular values of n, t , and t. Such 0 anceofthefieldequationunderSO(4),itisconvenienttoex- Bogoliubovcoefficientsα (t,t )andβ (t,t )ofthisevolution n 0 n 0 pand the field in terms of (hyper-)sphericalharmonics Qnlm, map can be determined in the way explained in Ref. [11]. where the integern satisfies n 0, and the integersℓ andm For our present analysis, we only need to employ that their ≥ areconstrainedby0 ℓ nand m l[13,24,25]. Inthis asymptoticbehaviorwhenn isgivenby basis,theLaplace-Be≤ltram≤ioperato|r|∆≤isdiagonalwitheigen- →∞ valuesequalto n(n+2).Althoughthe(hyper-)sphericalhar- 1 1 monicsarecom−plexfunctions,itis straightforwardto obtain αn(t,t0)=e−i(n+1)τ+O n!, βn(t,t0)=O n2!, (11) a real basis from the real and imaginary parts of Q , with nlm whichonecandirectlyexpandtherealfieldφ(seeRef. [11] where τ = t t0 and the symbol O denotes the asymptotic − for details). The degrees of freedom are represented by the order. The derivationof this asymptotic behaviormakesuse coefficientsq in this expansion, which can be understood ofthemildassumptionthatthefunction s(t) inEq. (5) must nℓm asadiscretesetofmodes. Thesearefunctionsoftimewhich be differentiable, with a derivativethat is integrablein every satisfythelinearequation closedsubintervalofI. Tosimplifythenotation,wewillomit inthefollowingthereferencetotheinitialtimet inthecoef- 0 q¨ + ω2+s(t) q =0, (6) ficientsoftheevolutionoperatorandintheinitialdata,called nℓm n nℓm h i now{an,a∗n}. withω2 =n(n+2).Hence,themodesq aredecoupledfrom The SO(4) symmetry of the field equations is imposed at n nℓm eachother. Besides,togetherwiththeircanonicallyconjugate the quantum level by demanding that the complex structure momentap =q˙ ,theyformacompletesetofvariablesin be invariant under this group. We call invariantthis class nℓm nℓm phasespace.Foreachfixedvalueofn,thereexistg =(n+1)2 of complex structures. By Schur’s lemma [26], any invari- n modeswiththesamedynamics,becausetheequationofmo- antcomplexstructurehastobeblockdiagonalwithrespectto tionisindependentofthelabelsℓandm.Obviously,thequan- thedecompositionofthephasespaceasthedirectsumofthe tity gn is justthedimensionofthecorrespondingeigenspace subspacesQn⊕Pn. Inotherwords,thecomplexstructurecan oftheLaplace-Beltramioperator. Thecanonicalphasespace bedecomposedasadirectsum j= n jn,where jn isanin- Γcanbesplitthenasadirectsum variantcomplexstructuredefinedonLthen-thsubspaceofthe inhomogeneoussector of Γ. Moreover, a further application Γ= , (7) of Schur’s lemma shows that each of the complexstructures n n Q ⊕P Mn jn isagainblockdiagonalandindependentofthelabelsland m, so that it can be characterized by a complex structure in where and aretherespectiveconfigurationandmomen- n n twodimensions,describinge.g.theactionontheannihilation Q P tumsubspacesforthemodeswithfixedn. Fromnowon,we willomitthelabelsℓ andm,unlesstheyarenecessaryinthe analysis. Furthermore, in the following we restrict our study to the inhomogeneoussector, namely, to modes with n , 0. This 2Therequirements onthequantization ofthezeromode, q0,mayleadto extraconditionsonthefunctions(t). SeeRef. [11]andSec. Vforfurther doesnotaffectthepropertiesofthesystemrelatedtoitsfield commentsonthisissue. 5 andcreationlikevariables(a ,a )foranyfixedmodelabelsl Here, the symbol denotes imaginary part. If one assumes n ∗n ℑ andm(seeRef. [11]formoredetails). that the evolution is unitary in the Fock quantization deter- Ontheotherhand,letuscall j0thecomplexstructurewhich minedby j,sothatthesequences √gnβnj(t) areSQS t I, inourbasisofvariables{an,a∗n}takesthediagonalform: one can prove that the sequence{{√gnλn} }must be S∀QS∈as well [11]. But this summability is precisely the sufficient i 0 j = . (12) andnecessaryconditionfortheunitaryimplementationofthe 0n 0 i! − symplectictransformation intheFockrepresentationdeter- K A general complex structure j is related with j0 via a sym- minedby j0,whatamountstotheequivalenceofthetwocom- plectictransformation j = j0 −1. Takingintoaccountthe plexstructures jand j0. Therefore,theSO(4)invarianceand formoftheinvariantcompleKxstrKuctures,thesymplectictrans- the requirementof unitary dynamics select a unique equiva- formation mustbealsoblockdiagonalandindependentof lenceclassofcomplexstructures,removingtheambiguityin thedegeneKracylabelslandm. Wecall the2 2blockcor- thechoiceofrepresentationoftheCCR’s. n K × respondingtothen-thmode,forwhichweadoptthenotation: = κn λn . (13) III. THEAMBIGUITYINTHECHOICEOFFIELDAND Kn λ∗n κn∗ ! THEUNITARITYCRITERION The symbol denotes again complex conjugation. Here, κ 2 λ 2 =∗1 because isa symplectomorphism. Itfol- Although we have succeeded in selecting a preferredrep- |lonw|s−in|pna|rticularthat κ Kn1 n N+. Notethatthereexist resentationoftheCCR’s forthe(φ,Pφ)variables,wecanal- infiniteinvariantcompl|enx|s≥truc∀ture∈s.Actually,theyarenotall ways changefrom the (φ,Pφ) descriptionof the phase space toanewcanonicaldescriptionbymeansofacanonicaltrans- unitarilyequivalent,sothattheimpositionofSO(4)symmetry formation. Since many canonical transformations fail to be doesnoteliminatetheambiguityintheFockquantizationon represented by unitary operators quantum mechanically, the itsown. classical equivalenceof these descriptionsmay be broken in In order to select a class of equivalent invariant complex the quantum arena, originating another type of ambiguity in structuresweneedtoappealtoadditionalconditions. Auni- the quantization. In our case, we are only interested in con- taryimplementationoftheclassicaldynamicsatthequantum sideringlinear,localcanonicaltransformations,whichrespect level turns out to determine a preferred class, and hence a thelinearityofthefieldequationsand,consequently,thelin- unique Fock quantization up to equivalence. We recall that ear nature of the structures of the system. As we have ex- a symplectic transformationT is implementableas a unitary plained in the Introduction, the class of canonical transfor- transformation in the quantum theory for a given complex mations that we want to analyze results in a time dependent structure j if and onlyif j TjT 1 is a Hilbert-Schmidtop- − − scalingofthefield. Itisthistimedependencewhatmakesthe erator(ontheone-particleHilbertspacedefinedby j,seee.g. transformationnontrivial;otherwise,anyadmissiblerepresen- Refs. [3,23]). Inthecaseofthetimeevolutionoperator,and tation of the original field would provide an admissible one choosing the complexstructure j , this conditionis satisfied 0 forthetransformedfieldbylinearity. Butwhenthecanonical ifandonlyif transformationistimedependent,thefielddynamicschanges, β (t)2 = g β (t)2 < t I, (14) affectingthepropertiesofthequantumtheory. n n n Xnℓm| | Xn | | ∞ ∀ ∈ Atimedependentscalingoftheconfigurationfieldvariable canberegardedasacontacttransformation,whichcaneasily i.e., if and only if the sequences √gnβn(t) are square be completedinto a canonicalone. Then, the canonicalmo- { } summable(SQS)forallpossiblevaluesoftime. Then,since mentummust experiencethe inversescaling and, optionally, √gn = n+1, the asymptotic behavior(11) of the beta coef- maybemodifiedwiththeadditionofatermdependingonthe ficientsguaranteesthedesiredsummability,ensuringthatthe configurationfieldvariable,whichwerestricttobelinear(and dynamics is implemented unitarily in the Fock quantization local),accordingtoourpreviouscomments.Thecoefficientin picked up by j0, namely the complexstructure associated to thislineartermmayvaryintime,liketherestofcoefficients the natural choice of annihilation and creationlike variables inthelinearcanonicaltransformationunderconsideration.In forthefreemasslesscase. thisway,oneobtainsatransformationoftheform Let us suppose now that we choose a different invariant complexstructure j,whichcanbeobtainedfrom j0bymeans ϕ= F(t)φ, P = Pφ +G(t)√hφ. (16) of a symplectic transformation , as we have commented. ϕ F(t) K Theunitaryimplementationoftheevolutionoperatorwithre- We recall that the momentum variable is a scalar density of specttothenewcomplexstructure jisequivalenttotheuni- unitweight. Thisexplainsthesquarerootofthedeterminant taryimplementationofatransformedevolutionoperatorwith ofthe spatialmetric appearingin Eq. (16). In orderthatthe respect to the complex structure j [11]. This transformed 0 transformation does not spoil the differential formulation of evolution operator is obtained from the original one by the actionof . Itsdiagonalblocksare (t) 1,withcorre- the field theory, nor produces singularities, F and G are re- spondingKbetacoefficientsgivenby KnUn Kn− stricted to be two real and differentiable functions of time, withF(t)differentfromzeroeverywhere.Noticealsothatthe βj(t):=(κ )2β (t) λ2β (t)+2iκ λ [α (t)]. (15) homogeneityofFandGpreservestheSO(4)invarianceofthe n n∗ n − n ∗n n∗ nℑ n 6 field dynamics. Inthe following,we will consideronlytime demonstratethatanysuchtransformation,excepttheidentity, dependentcanonicaltransformationsoftheform(16). leadstoaclassicalevolutionwhichadmitsnounitaryimple- Aswehavepointedout,differentchoicesofthebasicfield- mentationwithrespecttoanyoftheFockrepresentationsde- likevariablestypicallyleadtodistinctdynamics.Forinstance, finedbyanSO(4)invariantcomplexstructure. Thus,ourcri- acanonicaltransformationwithF(t)=1/a(t),whereaisaso- teria fix completely the choice of field description [up to a lutionofthesecondorderdifferentialequation trivialtimeindependenttransformationofthetype(18)]. Letusdiscussnowtheformofthenewdynamicsobtained a¨ m2a2+s(t)=0, (17) with the transformation (19), and present the mathematical a − conditionnecessary for a unitary implementationof this dy- leadsfromthe fieldequation(5)to the dynamicsofa Klein- namical evolution. We recall that the linear transformation Gordon field with mass m propagating in the FRW back- (19)preservestheSO(4)invarianceofthefieldequationsand groundds˜2 = a2(t)ds2 [see Eq. (2)]. Thisindicatesthatone thatwe demandthatthe (real)functions f(t) andg(t) bedif- can extractinformationaboutthe dynamicsof differentfield ferentiable. Moreover, [like the functions F(t)] the function theories by performinga time dependentcanonical transfor- f(t) is required to differ from zero everywhere. The sign of mation of the above type. Let us emphasize, however, that the function f(t) is therefore constant and, since its initial withthisprocedureoneisnottransformingagivenfieldthe- valuehasbeenfixedequaltotheunit,inwhatfollowswetake oryinto anotherone, butratherconsideringdistinctfield de- f(t)>0 t I. ∀ ∈ scriptionsof a givenphysicalsystem, assuming that noneof Aswehavealreadycommented,sincethecanonicaltrans- these descriptions is imposed from the start. In this kind of formation(19)dependsontime,theclassicalevolutionopera- systems,onehastoaddresstheambiguityassociatedwiththe torthatdescribesthedynamicsofthepair(ϕ,P )differsfrom ϕ choiceoffieldparametrization(i.e.,withtheselectionoffun- thatcorrespondingtotheoriginalpair(φ,P ). Inordertode- φ damentalfield, togetherwith its associated dynamics). Then scribethenewdynamics,we willfollowthesameprocedure itisnecessarytoinvokeadditional,physicallyacceptablecri- adoptedintheprevioussection. Namely,wefirstexpandthe teriatopickupapreferredquantization;otherwise,thesignif- fieldϕanditsmomentumP in(hyper-)sphericalharmonics, ϕ icance of the predictionsof the quantumtheory would be in extractinginthiswaytheirspatialdependence,andthenintro- question.Thecriteriathatwearegoingtoadoptareindeedthe duceannihilationandcreationlikevariables,definedinterms samethatallowustoselectauniqueequivalenceclassofFock of the coefficientsof the expansionlike in Eq. (8). One can representationsinthe(φ,P )representation,thatis,theSO(4) check [using the transformation (19) and the corresponding φ invarianceandtheunitaryimplementationoftheevolution. initialconditions]that,withthosevariables,theblocksofthe Fortherestofouranalysis,itisconvenienttosplitthetime originalevolutionmatrix (t)arereplacedbynew2 2ma- n dependent canonical transformation (16) into two parts, one trices ˜ (t)= (t) (t)U,where3 × n n n U T U that takes care of the initial conditionson the functions F(t) bWanyedFfiG0x(aton)n,dcaeGnad0n,tdrheefsoporetachltelivraentlhyia,nttihtciaearlirnrieeitfsieaarlellvnacthleueteitsmimFee(tt00d,)eaapnneddnddGeenn(toc0te)e.. Tn(t) := ff−+((tt))−+ii22ggωω((ttnn)) ff−+((tt))+−ii22ggωω((ttnn)) (20) Then,anytransformationoftheform(16)canbeobtainedas and 2f (t) := f(t) 1/f(t). Finally, a straightforward com- thecompositionofthecanonicaltransformation putatio±nallowsust±oobtaintheBogoliubovcoefficientsα˜ (t) n and β˜ (t) of the evolution matrices ˜ (t), which are of the ϕ˜ = F ϕ, P = Pϕ +G √hϕ, (18) form n Un 0 ϕ˜ 0 F 0 g(t) wmhatiicohndoofetshneottypvaer(y16in),time,withalinearcanonicaltransfor- α˜n(t) := f+(t)αn(t)+ f−(t)β∗n(t)+i2ωn[αn(t)+β∗n(t)], g(t) β˜ (t) := f (t)β (t)+ f (t)α (t)+i [α (t)+β (t)].(21) ϕ= f(t)φ, P = Pφ +g(t)√hφ, (19) n + n − ∗n 2ωn ∗n n ϕ f(t) OnecannowsimplyfollowtheprocedureexplainedinSec. butsuchthatthefunctions f(t)andg(t)nowhavefixedinitial IIandwritedowntheconditionforaunitaryimplementation values, namely f(t0) = 1 and g(t0) = 0. The transformation ofthedynamicsofthetransformedcanonicalpair(ϕ,Pϕ)with (18) is just a time independentlinear one, with no impactin respecttoarepresentationoftheCCR’sdefinedbyanSO(4) ourdiscussion,giventhelinearityoftheFockrepresentations invariantcomplexstructure. We againcall thesymplectic of the CCR’s. In fact, if a quantization with SO(4) invari- transformationthatdeterminestheinvariantcKomplexstructure anceandunitarydynamicsisachievedforthecanonicalpair junderconsiderationintermsofthecomplexstructureofref- (ϕ,Pϕ),oneimmediatelyobtainsaquantizationwiththesame erence j0. Wealsoadoptthenotation(13)foritscoefficients, propertiesforthetransformedpair(ϕ˜,Pϕ˜). Norealambiguity which do not depend on time. The new dynamics admits a comes from this kind of transformations, since the quantum representation for the original and the transformed fields is actuallythesame(seeRef. [9]formoredetails). Thus,weshallrestrictouranalysistothefamilyofcanoni- 3Whilethedependenceof n(t)ont0isnotshownexplicitlytosimplifythe caltransformations(19)withfixedinitialconditions.Wewill notation,thematrix n(t)Uactuallydoesnotdependontheinitialtime. T 7 unitaryimplementationwithrespecttotherepresentationde- Byourassumptions,thisexpressiontendstozeroonagiven tetrmiIn,ewdhbeyrejifandonlyifthesequences{√gnβ˜nJ(t)}areSQS saunbdseq[uze]nctoezMer.oTohnenth,iws esugbesteqthuaetn|czen,|wmhuasttitmenpdliteostthheatutnhiet n ∀ ∈ limitℑof [z ] 2isequaltoone. β˜nj(t):=(κn∗)2β˜n(t)−λ2nβ˜∗n(t)+2iκn∗λnℑ[α˜n(t)]. (22) Suppo(cid:0)ℜse thne(cid:1)n that there really exists a particular subse- quence M N+ such that the terms (26) tend to zero on it ⊂ forallpossiblevaluesoftime. Sincethefactor IV. UNIQUENESSINTHECHOICEOFFIELD DESCRIPTION f (t)cos[(n+1)τ], (28) − We will now present the detailed proof that the unitarity whichmultiplies [z2]inEq. (25),isboundedforeverypar- ℑ n condition introducedin the previoussection implies that the ticularvalueoft,itfollowsthat transformation (19) must in fact be the identity transforma- tion. 1+ℜ z2n f−(t)−2ℜ[zn] f+(t) sin[(n+1)τ] (29) Letusassumethattheunitarityconditionissatisfied. Then, (cid:16)n h io (cid:17) tthhee csoeqnusiednecreesd{in√tgernvβ˜anjl(tI).} IanrepSarQtiScufloarr,athllisvareluqeusireosftthimatethine mhyupsotthhaevsiesa1v−anℜishzi2nngtelinmdsittoonzeMro∀otn∈MI.asBweseildl,eos,nesifnucrethbeyr terms √gnβ˜nj(t) of these sequences tend to zero in the limit obtainsthat h i n . Sincebothg and κ aregreaterthan1, itmustbe als→o t∞rue that β˜nj(t)/(κn∗n)2 ten|dns|to zero. Taking into account f−(t)−ℜ[zn] f+(t) sin[(n+1)τ] (30) theasymptoticlimitsoftheBogoliubovcoefficientsαn(t)and musttendtoze(cid:0)roonMateachpo(cid:1)ssiblevalueofthetimet. β (t), giveninEq. (11), andintroducingforconveniencethe n Wenowmakeuseoftheresultprovenabovethat [z ] 2 notationzn =λn/κn∗,wearriveattheconclusionthat necessarilytendstotheunitonM. Then,thereexistsℜatlenast (cid:0) (cid:1) onesubsequenceM Msuchthat [z ]tendsto1orto 1 ei(n+1)τ−z2ne−i(n+1)τ f−(t)−2iznsin[(n+1)τ]f+(t) (23) onM′. Inanyofthe′s⊂ecases, givenℜthatnM′ isasubsequen−ce h i ofM,andhenceexpression(30)musttendtozeroonM,we must have a vanishing limit when n for all values of ′ t I. Recallthatτ=t t0. → ∞ conclude(usingthedefinitionof f±)thateither ∈ − By considering separately the real and imaginary parts of sin[(n+1)τ] theaboveexpression,wegetthatthetwosequencesgivenre- sin[(n+1)τ]f(t) or (31) f(t) spectivelyby (orboth)haveavanishinglimitonthesubsequenceM N+ ′ 2ℑ[zn] f+(t)−ℑ z2n f−(t) sin[(n+1)τ] ∀t∈I. But,sincethefunction f(t)iscontinuousandvan⊂ishes (cid:16) h i (cid:17) nowhere,thisimpliesthatsin[(n+1)τ]musttendto zeroon + 1 z2 f (t)cos[(n+1)τ] (24) (cid:16) −ℜh ni(cid:17) − Mwh′efroer¯IailsltphoesdsiobmleavinaloubetsaionfetdimfreominIIa,fotrereaqushiviaftlebnytltyhe∀iτni∈tia¯Il, and timet . 0 1+ z2 f (t) 2 [z ] f (t) sin[(n+1)τ] Let us finally prove that this limiting behavior is not al- ℜ n − − ℜ n + lowed. Take a positive number L such that [0,L] ¯I. We (cid:16)n z2 fh (ti)ocos[(n+1)τ] (cid:17) (25) have, in particular, that sin2[(n + 1)τ] tends to zer⊂o on M −ℑh ni − τ [0,L]. However, a simple applicationof the Lebesgue′ havetotendtozerowhenn t I. Here,thesymbol d∀om∈inatedconvergenceshowsthatthisstatementisfalse.The →∞∀ ∈ ℜ denotesrealpart. details are presented in the Appendix. Essentially, one can Wecannowapplyargumentssimilartothosepresentedin see that the integral of sin2[(n+1)τ] over the interval [0,L] Ref. [9]andshowthat,ifitistruethatthesequencesgivenin isboundedfrombelowbyastrictlypositivenumberforlarge Eq. (25)tendtozeroforallvaluesoftime,thenitisimpossi- n,somethingwhichisincompatiblewithavanishinglimitfor blethatthetwosequencesformedby this function in the entire interval. Therefore, one can ex- cludethepossibilitythatthetwosequencesoftime indepen- 1 z2 and z2 (26) denttermsappearinginEq.(26)canbothconvergetozeroon −ℜh ni ℑh ni asubsequenceM′ N+. ⊂ havesimultaneouslyavanishinglimitonany(infinite)subse- We willnowuse this factto demonstratethatthefunction quenceofthepositiveintegersM N+(i.e.,forn M N+). f(t)isnecessarilyaconstantfunction. Letusstudyagainthe ⊂ ∈ ⊂ Letusseethisinmoredetail. realsequencesgivenbyEqs. (24)and(25)which,aswehave We first note that [z ] 2 tends to the unit whenever the seen, must necessarily tend to zero in the limit n for n two terms in Eq. (26)ℜtend to zero. This can be checkedby allpossiblevaluesoftimet Iifthedynamicsofth→e(ϕ∞,P ) (cid:0) (cid:1) ϕ ∈ summingthesquareofthetwoterms(26),whichgives canonicalpairadmitsaunitaryimplementation. Weconcentrateourattentiononaspecificsubsetofvalues (1 z 2)2+4 [z ] 2. (27) oftheshiftedtimeτ,namely,allvaluesoftheformτ=2πq/p n n −| | ℑ (cid:0) (cid:1) 8 where q and p can be any positive integers, except for the Theconditionofunitaritydemandsthat √gnβ˜nj(t)tendtozero conditionthattheresultingvalueofτbelongstotheintervalof inthelimitn atallvaluesoftime,andthereforethesame definitionofthisvariable,¯I. Foreachvalueof p,weconsider musthappent→ot∞hesequenceswithterms √gnβ˜nj(t)/κn∗2. Using thesubsequenceofpositiveintegers thisconditionand takinginto accountthe knownasymptotic behavior(11)ofα (t)andβ (t),aswellthatλ tendstozero M := n=kp 1>0, k N+ . (32) n n n p { − ∈ } and √gn/ωntendstotheunitforlargen,asimplecalculation leadstotheresultthatthesequencesgivenby Given p, the terms (24) and (25) tend to zero on the subse- qquveanrcieesM. Tphwenh,ewnenr→eac∞htfhoercaollntchluesvioanlutehsaotfbτotrheachedwhen g(t)−4znωnsin[(n+1)τ]e−i(n+1)τ (37) musthaveavanishinglimit t I. Wethenconsiderthereal 1 z2 f t + 2πq (33) andimaginarypartsofthese∀seq∈uences,namely (cid:16) −ℜh kp−1i(cid:17) − 0 p ! g(t) 4z ω sin[(n+1)τ]cos[(n+1)τ δ ] (38) n n n − | | − and and 2πq ℑhz2kp−1i f− t0+ p ! (34) 4|zn|ωnsin[(n+1)τ]sin[(n+1)τ−δn], (39) wherewehavewrittenthecomplexnumbersz intermsofits musttendtozeroask goestoinfinity. Thelimitmustvanish n phaseandcomplexnorm: foreverypossibleintegervalueof pandq. Notehoweverthat the time independentfactors on the left of these expressions zn = zneiδn. (40) are preciselythose givenin Eq. (26), whichwe haveproven | | that cannot tend simultaneously to zero on any subsequence Althoughwealreadyknowthat z tendstozero,thelimitof n ofthepositiveintegers,e.g.thoseprovidedbyM foreachof theproduct z ω isstillundeterm| in|ed,becauseω growslike p | n| n n thevaluesof p. Therefore,theonlypossibilityleftisthatthe natinfinity. function f (t +2πq/p)is equalto zeroatallthe considered Letussupposefirstthatthesequence z ω tendstozero. 0 n n valuesof p−andq. Usingthefactthat f(t) > 0 t I,thelast In this case, recalling that the sequence{|s g|ive}n in Eq. (38) resultamountstotheequality ∀ ∈ should tend to zero t I, it follows immediately that g(t) must be the zero fun∀ctio∈n on I, as we wanted to prove. Fi- 2πq f t + =1 p,q. (35) nally,letusdemonstratethatthealternatepossibility,i.e. the 0 p ! ∀ hypothesisthat z ω doesnottendtozero,leadstoa con- n n {| | } tradiction.Wemakeuseofthefactthatthesequencesformed Realizingthatthesubsetoftimevalues t +2πq/p isdense in I ⊂ R andthat the function f(t) is co{n0tinuous,w}e are led zbeyroth,ethteerremms(u3s9t)exteinstdstaoszuebrsoeq∀ut.enIfce{|zMn|ωonf}thdeoepsonsiottivteenidnteto- totheconclusionthat f(t)mustequaltheunitfunctiononits gerssuchthatthe(positive)sequence z ω isboundedfrom entiredomain. belowonM. Thus,onthatsubsequen{c|en,| n} It remainsto be proventhat the functiong(t) in the trans- formation (19) necessarily vanishes, under the condition of sin[(n+1)τ]sin[(n+1)τ δ ] (41) n unitary dynamics. Note first that the identity f(t) = 1 that − wehavejustdemonstratedimpliesthatz tendstozerowhen mustnecessarilyhaveazerolimit τ I. But,asshownalso n ∀ ∈ n . In fact, after introducing this identity in Eq. (23), intheAppendix,thislaststatementcanneverbetrue. Again on→ese∞esthatthesequences z sin[(n+1)τ] musttendtozero thecrucialargumentinvolvestheapplicationoftheLebesgue n τ ¯I. Therefore, in orde{r to avoid again}the false conclu- dominatedconvergence. ∀sion∈thatsin2[(n+1)τ]tendstozeroonsomesubsequenceof As a result, the only function g(t) that is allowed by the thepositiveintegersforallvaluesofτina compactinterval, condition of unitarity is the zero function. In total, we have it is necessary that the complex sequence z has a vanishing demonstrated that the only canonical transformation of the n limit. Takingintoaccountthat κ 2 = λ 2+1,itisstraight- type(19)whichispermittedonceoneacceptstheunitaritycri- n n forwardtocheckthatthesequen|ce| form| ed| bythecoefficients terionisthetrivialone,i.e.theidentitytransformation.Inthis λ must tend to zero, and that 1/κ 2 (and κ 2) approaches way,thechoiceofafieldparametrizationforthesystemturns n n n theunitinthelimitoflargen,wh|ati|mplies|in|particularthat outtobecompletelyfixed(uptoirrelevantconstantscalings) thesequencegivenbyκ isbounded. bytherequirementsofinvarianceunderthe symmetrygroup n Tocompletetheproofthatg(t)vanishes,weconsideragain ofthefieldequations,SO(4),andtheunitaryimplementation thesequences √gnβ˜nj(t) ,particularizednowtotheonlyvalue ofthedynamics. Theambiguityintheselectionofafieldde- { } scriptionistotallyremoved. allowed for the function f(t), namely the identity, so that f (t)=1and f (t)=0. Employingthedefinitionofthecoef- + ficientβj(t),giv−eninEq. (15),onecancheckthattheleading n V. CONCLUSIONSANDDISCUSSION termsinβ˜j(t)are n g(t) Inthiswork,wehavebegunouranalysisbyreviewingthe β˜j(t)(cid:27)βj(t)+i (κ )2α (t)+λ2α (t) . (36) n n 2ω n∗ ∗n n n Fockquantizationofascalarfieldwithatimevaryingmassin n h i 9 astaticbackground,inwhichtheinertialspatialsectionshave fraredproblemappearsandchangesthescenariodrastically.4 S3 topology. For this particular scenario, we have seen that On the other hand, the ultraviolet divergences are absent in the criteria of: i) invariance of the vacuum under the SO(4) thesystempreciselybecauseweareusinganappropriaterep- symmetry of the field equations; and ii) unitary implemen- resentationoftheCCR’s. Thisrepresentationturnsouttobe tation of the field dynamics, are sufficient to select a unique theonenaturallyassociatedwithafreemasslessscalarfield. FockrepresentationoftheCCR’s. Thereasonisthat,intheasymptoticlimitoflargewavenum- bers,whicharetherelevantmodesfortheultravioletregime, Anadditionalquestionconcernsthepossibilityofchanging thebehaviorofthesystem(whenthefieldisproperlyscaled) thefielddescription,ifoneallowsforascalingofthefieldby approachessufficiently fast the behavior of a massless field. timedependentfunctions.Thisisasituationfrequentlyfound Only Fockquantizations(with the desiredinvariance)which incosmology,whereitiscommontointroducescalingsofthe areequivalenttotheonethatwehavechosenkeepthisgood fields in order to absorb part of the time dependence of the ultravioletproperty.Inthisway,oneobtainsasinglefamilyof cosmological background. The prototypical example is that unitarilyequivalentFockquantizationswhichincorporatethe offieldsinanFRWspacetimewithcompacttopology(S3for symmetries of the field equation and respect the unitarity in our discussion), or the closely related scenario of field per- theevolution. Concerningthe choiceof fielddescription,let turbationsaroundanFRWbackgroundofthatkind. Thereis usalsonotethatnonstationaryspacetimesgiverisetodamp- thereforeanextraambiguityaffectingthequantizationofsuch ingterms(firstordertimederivativesofthescalarfield)inthe systems, namely the choice of the field description, which equationsofmotion.Inrelationwithourpreviouscomments, necessarilyaffectsthedynamics. suchcontributionsspoiltheunitaryimplementationofthedy- namicsatthequantumlevel.Fortunately,asuitablescalingof thefieldrelegatesalltheinformationaboutthenonstationarity In the above mentioned systems, it is generally the case ofthesystemtothe(effective)massterm. that a time dependent scaling of the field renders the field equationsinto a formdescribingthe effective propagationin Letusseethislastpointinsomemoredetail. Aswehave explained,inordertoquantizeascalarfieldinanonstationary astatic backgroundwitha timevaryingmass, i.e. themodel settingalongthelinespresentedinthispaper,onegenerically that we considered initially. We have demonstratedhere the performsacanonicaltransformationwhichinvolvesatimede- resultthatweanticipatedinRef. [12],namely,thatourcrite- pendentscalingofthefield,sothatthetransformedfieldeffec- ria of symmetry invarianceand unitary evolution allow only tivelypropagatesinastaticbackground.Letuscallϕands˜(t), forone admissiblefield descriptionamongallthose thatcan respectively,thefieldanditstimedependentmasspreviousto be reached by means of time dependent canonical transfor- thediscussedtransformation. Ascommentedabove,thecor- mations that include a time dependent scaling of the field. respondingfield equationcontainsa dampingterm, which is The analyzed canonical transformations are linear, in order linear in ϕ˙. We call r(t) the function multiplying ϕ˙ in this to maintainthe linearityof all the structureson phasespace, dampingcontribution. We now want to give the explicitex- andpreservethesymmetryofthefieldequations. pressions of the time dependent scaling factor, F(t) [see Eq (16)], and ofthe mass function s(t) forthe field φ = ϕ/F(t). Toarriveatthisuniquenessresult,verymildrequirements Astraightforwardcalculationshowsthat havebeenimposedonthemassfunctions(t)appearinginthe field equation (5). Specifically, the only condition that has t r(τ) [r2(t)+2r˙(t)] been assumed is that the mass function has a first derivative F(t)= F0exp dτ , s(t)= s˜(t) . "−Z 2 # − 4 which is integrable in all closed subintervals of the domain t0 (42) of definition. In addition, if one wants that the zero mode Wealsonotethattheconditionimposedons(t)forthevalidity ofthescalarfield(thehomogeneoussector)canbequantized ofouruniquenessresultismet,forinstance,ifs˜(t)satisfiesthe consistently in the standard Schro¨dinger representation with sameconditionandr(t)hasasecondderivativewhichisinte- the Lebesgue measure (on R), an extra condition has to be grableinallcompactsubintervalsofthetimedomainI.Onthe added: the mass s(t) has to be nonnegative for all possible otherhand,thepositivityofthemassfunction(forastandard valuesoftime. quantizationofthehomogeneoussector)amountsjustto Letuscommentonsomekeypointsunderlyingourunique- [r2(t)+2r˙(t)] s˜(t) t I. (43) nessresult. Afundamentalquestionistounderstandwhyone ≥ 4 ∀ ∈ canreachunitarityinthequantumevolutionandhowthisuni- Letusnowaddresspossiblegeneralizationsofourresults, tarity selects a unique field description as well as a unique startingwiththecaseofscalarfieldsindifferentcompactspa- equivalenceclassof complexstructuresforit, amongthe set tial manifolds. The analysis carried out here, together with ofallsymmetryinvariantcomplexstructures. Inthisrespect, wefirstnoticethatinfrareddivergencesarenotanissuetobe- ginwith,owingtothefactthatthespatialsectionshavecom- pacttopology(leadinginparticulartoadiscretespectrumfor 4Forinstance,thewellknowninequivalenceofthequantumrepresentations theLaplace-Beltramioperator). Likeformanyotherconsid- correspondingtofreescalarfieldsofdifferentmassesinMinkowskispace- erationsincosmology,thecompactnessofthespatialsections timeispreciselyduetothelongrangebehaviorofthequantumfields.See isessential. Whenthespatialtopologyisnotcompact,thein- Ref.[27]foranaccount. 10 thedimensionalargumentsexplainedinRef. [11]inrelation focusedonscalarfields,theredoesnotseemtoexistanytech- to the uniqueness of the representation of the CCR’s for the nical or conceptual obstacle to extend the analysis to other fielddescriptionselectedbyourcriteria,stronglyindicatethat kindoffields,applyingtothemourcriteriainordertopickup the resultsthatwe haveachievedforthe three-spherecan be auniqueFockquantization. Forinstance,aninterestingcase extendedtoothercompactspatialmanifoldsprovidedthatthe isprovidedbythetracelessanddivergencelesstensorpertur- spatial dimension d is equal or smaller than three. Suppose bationsofthemetricaroundanFRWspacetimewithcompact that,inthesecases,therepresentationofthesymmetrygroup spatial topology. These tensor perturbations describe gravi- ofthefieldequationisirreducibleineachoftheeigenspaces tationalwaves. Theprimordialgravitationalwavesgenerated oftheLaplace-Beltramioperator[likeithappensforSO(4)in in the early universe can also contribute to the power spec- the case of the three-sphere]. This propertyis actuallysuffi- trumofthe CMB, intheformoftensormodes. Infact, with cient(thoughnotnecessary)tocharacterizetheinvariantcom- aconvenientscalingandinconformaltime,thesetensorper- plex structures in a block diagonal form similar to that dis- turbations satisfy again equations of motion like those for a cussed in this work. One can then follow the same kind of freefieldwithatimedependentquadraticpotentialinastatic steps that have allowed us to complete the proof of unique- spacetime when the perturbations of the energy-momentum ness,reachinganalogousconclusions. tensor are isotropic (see Ref. [14]). Let us mention also Inallthecaseswithd 3,ourargumentsthereforesupport the case of fermionic fields. The study of the perturbations theexpectationthat,whe≤noneadoptsthescalarfielddescrip- aroundaclosedFRWspacetimeproducedbyfermionsofcon- tionwithpropagationinastaticbackground,thefreemassless stantmasswascarriedoutinRef. [28],whereaquantization representationprovidestheunique(equivalenceclassof)Fock wasachievedafterexpandingtheperturbationsinspinorhar- quantizationthatsatisfiesourcriteriaofsymmetryinvariance monicsonthethree-sphere. Preliminarycalculationsindicate andunitarydynamics[11]. Besides,ourcriteriaareexpected that the kind of techniques employed here can be extended tofixagainthefunction f(t)inthecanonicaltransformations to dealas well with the uniquenessof the Fock quantization of the type (19). This ensures that there is no ambiguity in forfermions. Itisworthemphasizingthatthecriteriaforthis the scaling of the field, either. The only freedom remaining uniquenessarethenaturalimplementationofthesymmetries in the canonicaltransformationis givenbythe functiong(t). of the field equationsand the unitarity of the evolution. For Itisnotdifficulttorealize,repeatingtheargumentsdiscussed cases other than the scalar field (and gravitational waves, as here,thatwhetherornotthefunctiong(t)isfixedtovanishde- noticedabove), these criteria may notnecessarily imply that pendson the square summabilityof the sequence √gn/ωn . theselectedfielddescriptioncorrespondstoafieldpropagat- IfthesequenceisnotSQS,asithappensfortheca{sesofth}e inginastationarybackground. two-sphere and the three-sphere, the function g(t) must van- TheFockquantizationoffieldsinthecontextofmodernap- ish. However, if the sequence is SQS, there exists an arbi- proachestoquantumcosmologyisanotherinterestingframe- trarinessandourcriteriadonotdeterminethedefinitionofthe workwhereourresultscanhaveapplications.Oneofthemost momentum P completely. For instance, this is the case of ϕ promisingapproachesiswhatnowadaysiscalledLoopQuan- the circle S1 [9]. It is worth pointing out that, nevertheless, tum Cosmology [29–31]. LQC employs the techniques of this freedom has nothing to do with the scaling of the field, LoopQuantumGravity (LQG)[32–34] in thestudyof mod- leaving intact the time evolution. If a choice of momentum els of interest in cosmology, obtained from General Relativ- and of invariant complex structure permits a unitary imple- ity by the imposition of certain symmetries. In the specific mentationofthedynamics,thesamecomplexstructureleads caseofanFRWspacetimecoupledtoascalarfield(seeRefs. to a unitary evolutionfor any other admissible choice of the [35–37]),wherehomogeneityandisotropyareimposed,LQC momentumcanonicallyconjugatetothefield. Inotherwords, predictsthattheclassicalBigBangsingularityisreplacedby this freedomto change the momentumby addinga time de- a Big Bounce, which connects the observed branch of the pendentcontributionlinearintheconfigurationfieldvariable, universe with a previous branch in the evolution. For semi- whenavailable,doesnotallowonetoreachanewrepresenta- classical states with certain properties [38], the evolution is tionsatisfyingourcriteria. peakedarounda trajectorywhich showsa behaviordifferent As we have explained in the Introduction, a framework from the classical one in Einstein’s theory. Then, one could whereourresultsfindanaturalapplicationisinthequantiza- usesuchatrajectorytodefineaneffective,quantumcorrected tionof(inhomogeneous)perturbationsarounda closedFRW background. If inhomogeneousmatter fields are introduced, spacetime. In this context, the simplest system is a scalar their scaling by background functions would then provide a field coupled to a homogeneousand isotropic universe with different time dependent scaling with respect to the conven- compactspatialsections. Thissystemisspeciallyrelevantin tional case in General Relativity. At the quantum level, the cosmology. On the one hand, the considered perturbations combination of the use of loop techniques for the homoge- providetheseedsforstructureformation. Ontheotherhand, neous background with a standard Fock quantization of the those perturbationsexplain the anisotropies imprinted in the inhomogeneousfields,whichpropagateinit,isknowninthe powerspectrumofthecosmicmicrowavebackground(CMB). literature as hybridquantization[39–42]. This quantization Ourcriteriatoeliminatethequantizationambiguitiescannow procedureassumes thatthe mostrelevantquantumgeometry beappliedintheirquantumtreatmentandthesubsequentanal- effects (characteristic of LQG) are those that affect the ho- ysisofthepowerspectrum. mogeneous degrees of freedom of the gravitational field. A Althoughthediscussionthatwehavecarriedouthasbeen familyofsystemsinwhichtheapplicationofsuchaquantiza-