ebook img

Unimolecular Submersible Nanomachines. Synthesis, Actuation, and Monitoring PDF

266 Pages·2016·15.67 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Unimolecular Submersible Nanomachines. Synthesis, Actuation, and Monitoring

ABSTRACT Synthesis, Monitoring, and Molechanical Action of Light-Driven Motorized Nanomachines by Víctor García-López This dissertation describes the design and synthesis of a series of unimolecular nanomachines bearing a fast light-driven rotary motor (3 MHz at 25 °C) as a power unit and fluorophores for their monitoring. A well-tailored structural design that unifies the mechanism of propulsion and the requisite monitoring component, made possible the investigation of the diffusion of these nanomachines in solution and on surfaces, and their molechanical action in biological systems. To investigate the diffusion of nanomachines in solution, a series of Unimolecular Submersible Nanomachines (USN) bearing the light-driven rotary motor and cy5 fluorophores were synthesized. Through careful design of control molecules with no motor and with a slow motor (2 rph at 60 °C), we found using single molecule fluorescence correlation spectroscopy (FCS) that only the molecules with fast rotating speed (MHz range) show an enhancement in average diffusion by 26% when the motor is fully activated by UV light. A non-unidirectional rotating motor also results in a smaller, 10% increase in diffusion. Although USNs can increase their average diffusion in solution, little is known about their trajectories, mainly because the cy5 fluorophores are prone to ii photobleaching. Thus, new photostable USNs were synthesized as a first step towards the analysis of their trajectories in solution. The new USNs have the fast light-driven motor for propulsion and photostable cy5-COT fluorophores for their tracking. It was found that these cy5-COT fluorophores provide an almost twofold increase in photostability compared to the previous USN versions. By analyzing the rotation of a control molecule, it was demonstrated that the cy5-COT fluorophores do not affect the rotation of the motor. This improvement in photostability will further the study of the behavior of light-driven molecular machines in solution. To investigate the diffusion of motorized nanomachines at room temperature on non-conductive surfaces, a series of motorized nanocars were synthesized. The design includes a fast rotary light-driven motor, four adamantane wheels, and BODIPY fluorophores for their tracking by Single-Molecule Fluorescence Spectroscopy (SMFM). Through a series of iterations, the nanocars were optimized such that the motor keeps its fast rotation frequency in the presence of BODIPY. The high quantum yields and the photostability of the BODIPY make these nanocars suitable for SMFM tracking. A new molecular mechanical method, or “molechanical” effect, to open cellular membranes was developed. The molechanical action of several nanomachines was investigated. We demonstrated that molechanical action can induce the diffusion of analytes out of synthetic vesicles, the introduction of analytes into cells, rapid necrosis and enhanced diffusion of traceable molecular machines within cells. iii Acknowledgments I would like to sincerely thank all the people who in certain way have contributed to the work presented in this dissertation. Thank you Prof. James Tour for giving me the opportunity to work in your research group. Thank you for all the training, guidance, corrections, and for showing me how to do research with passion. I will never go home to sleep without first identifying the product from the day’s reaction. Thank you Prof. Angel Martí for being the first one who believed in me, for your patience, advice, instruction in fluorescence spectroscopy, and for showing me how important the small details are in research. Thank you Prof. Rafael Verduzco, Prof. Stephan Link, and Prof. Christy Landes for your service in my Ph.D. thesis defense and qualifying exam. Thank you for your advice and critical evaluations and suggestions on my research work. Thank you to all my collaborators for their amazing work and discussions, in particular, Prof. Gufeng Wang, Prof. Yuval Ebenstein, Prof. Anatoly Kolomeisky, Dr. Robert Pal, Dr. Jonathan Jeffet, and Fang Chen. Thank you Dr. Lawrence Alemany for your tremendous help and training regarding NMR experiments. Thank you Dr. Dustin James for correcting all my drafts and for all the patience and assistance solving administrative and technical issues. iv Thank you Dean Seiichi Matsuda for believing in me and recruiting me. I am very grateful for the opportunity and for the education I received at Rice. Thank you to the Department of Chemistry and to Dr. Michelle Gilbertson for giving the opportunity to work as a teacher assistant during my last year at Rice. Thank you to all the Tour group members I work with. In particular, Dr. Pinn- Tsong Chiang, Dr. Jazmin Godoy, Dr. Shunsuke Kuwahara, Dr. Edmund Chu, and Lizanne Nilewiski. Thank you to my colleagues in Marti’s lab for your support, critical advice, and for all those good times outside the lab. Thank you to all the undergraduate students who worked under my supervision. In particular, thank you Jiuzhi “Gillian” Sun for all your help and hard work. I enjoyed working with you very much. Thank you to all my dear Mexican friends in Houston for all the support, encouragement, and all those amazing memories during this journey. Thank you to Kristina for all your kindness and support. Thank you to my parents and to my brother for all the love, support, and encouragement. It seems like yesterday that I was 17 and discovered Organic Chemistry in our living room. This journey would not have been possible without you. v Contents Acknowledgments ..................................................................................................... iv Contents ................................................................................................................... vi List of Figures ............................................................................................................ ix List of Schemes .......................................................................................................... xi List of Tables .............................................................................................................xii List of Equations ....................................................................................................... xiii Nomenclature .......................................................................................................... xiv Chapter 1. Unimolecular Submersible Nanomachines. Synthesis, Actuation, and Monitoring ................................................................................................................. 1 Introduction .............................................................................................................. 1 Synthesis of USNs ..................................................................................................... 5 Monitoring of Half-Rotation and Difussion of USNs ................................................ 9 Conclusion .............................................................................................................. 21 Contribution ........................................................................................................... 22 Experimental Section ............................................................................................. 22 1.6.1. Uv/vis Measurements ...................................................................................... 22 1.6.2. Monitoring of Half-Rotation of the Motor ...................................................... 22 1.6.3. Sample Preparation for Microscopic Measurements ...................................... 23 1.6.4. Confocal Single Molecule Fluorescence Correlation Spectroscopy with UV Activation ................................................................................................................... 23 1.6.5. Data Analysis .................................................................................................... 24 1.6.6. Synthetic Methods ........................................................................................... 25 1.6.6.1. Synthesis of USN-1 .................................................................................... 26 1.6.6.2. Synthesis of CM-2 ..................................................................................... 34 1.6.6.3. Synthesis of USN-3 .................................................................................... 38 1.6.6.4. Synthesis of USN-4 .................................................................................... 45 References .............................................................................................................. 53 Supporting Information .......................................................................................... 58 vi Chapter 2. Unimolecular Submersible Nanomachines with Enhanced Photostability for Single-Molecule Tracking ........................................................................................ 117 Introduction .......................................................................................................... 117 Synthesis of Photostable USNs ............................................................................. 120 Optical Properties of USNs ................................................................................... 123 Conclusion ............................................................................................................ 128 Contribution ......................................................................................................... 128 Experimental Section ........................................................................................... 129 2.6.1. Synthetic Methods ......................................................................................... 129 2.6.2. Monitoring of Half Rotation of the Motor ..................................................... 136 2.6.3. Measurement of Optical Properties .............................................................. 136 2.6.4. Emission Time Extension Analysis ................................................................. 137 References ............................................................................................................ 138 Supporting Information ........................................................................................ 140 Chapter 3. Synthesis of Light-Driven Motorized Nanocars ....................................... 154 Introduction .......................................................................................................... 154 Synthesis of Light-Driven Motorized Nanocars .................................................... 159 Optical Properties of 6, 7, 8 and 9 ........................................................................ 166 Structural Design Optimization ............................................................................ 167 Conclusion ............................................................................................................ 171 Contribution ......................................................................................................... 172 Experimental Section ........................................................................................... 172 3.7.1. Synthetic Methods ......................................................................................... 172 3.7.2. General Procedure for Photoisomerization Study of 9, 21 and 23 ............... 182 3.7.3. General Procedure for the Measurements of the Optical Properties........... 182 References ............................................................................................................ 183 Supporting Information ........................................................................................ 185 Chapter 4. Molecular Machines for Molechanical Action on Cell Membranes .......... 214 Introduction .......................................................................................................... 214 Synthesis of Motorized Nanomachines................................................................ 218 Molechnical Opening of Lipid Vesicles ................................................................. 218 vii Molechanical Opening of Cells and Accelerated Necrosis ................................... 221 Selectively Targeted Necrosis ............................................................................... 226 Diffusion and Intracellular Uptake of Molecular Machines Within Cells ............. 227 Conclusion ............................................................................................................ 230 Contribution ......................................................................................................... 230 Experimental Section ........................................................................................... 231 4.9.1. Preparation of Synthetic Lipid Bilayers. ......................................................... 231 4.9.2. Synthetic Methods ......................................................................................... 232 4.9.3. Measurement of Optical Properties .............................................................. 237 References .......................................................................................................... 237 Supporting Information ...................................................................................... 240 viii List of Figures Figure 1.1 - Unimolecular submersible nanomachines (USNs) and a control molecule................................................................................................................................. 5 Figure 1.2 - Absoprtion spectra of USN-1, CM-2, USN-3, and USN-4 in ACN. ...... 10 Figure 1.3 - Partial 1H NMR spectra of half-rotation of the slow motor in 32 and USN-3. ................................................................................................................................... 11 Figure 1.4 - Comparison of diffusion coefficients of USNs in ACN in the presence and absence of UV light activation. ........................................................... 15 Figure 1.5 - UV light - enhanced diffusion coefficient of USN-1 in a more viscous solvent .................................................................................................................................. 21 Figure 2.1 - Previously reported USN-17 and new more photostable USN-2 and USN-3. ................................................................................................................................ 120 Figure 2.2 - Partial 1H NMR spectra of half-rotation of the motor in USN-3. .. 123 Figure 2.3 - (a) UV/vis absorption spectra and (b) fluorescence spectra of 1.0 µM solutions of USN-1, USN-2, and USN-3 in CHCl3. .............................................. 124 Figure 2.4 – Photobleaching of USNs. . ...................................................................... 125 Figure 2.5 - Pie plot comparison of fluorescence total (on). .............................. 127 Figure 2.6 - Histogram comparison of total (on). .................................................. 127 Figure 3.1 - Non-fluorescent light-driven motorized nanocars with p- carborane wheels. .......................................................................................................... 156 Figure 3.2 - Motorless fluorescent nanocars.. ........................................................ 158 Figure 3.3 - Structures of BODIPY-based molecules. ............................................ 159 Figure 3.4 - Partial 1H NMR spectra of half-rotation of the slow motor in 21 and 9 .................................................................................................................................. 165 Figure 3.5 - (a) UV/vis absorption spectra and (b) fluorescence spectra of nanocars 6 and 7 in CHCl3 ............................................................................................ 166 ix Figure 3.6 - Proposed mechanism for decreasing of motor isomerization. ... 167 Figure 3.7 - New nanocar design. ............................................................................... 168 Figure 3.8 - Partial 1H NMR (CD3CN) spectra of half-rotation of 23. . ............... 170 Figure 3.9 - (a) UV/vis absorption spectra and (b) fluorescence spectra of nanocars 22 and 23 in CHCl3. ...................................................................................... 171 Figure 4.1 - Molecular machines for disruption of lipid bilayers and accelerated necrosis. ..................................................................................................... 216 Figure 4.2 - Molecular machines bearing peptides for selective targeted necrosis. ............................................................................................................................ 217 Figure 4.3 - Light-controlled releasing of RB molecules from bilipid vesicles ............................................................................................................................................. 220 Figure 4.4 - Recorded merged transmission and UV induced mitochondrial auto-fluorescence images of PC3 human prostate cancer cells depicting time dependent UV-activated molechanical-induced cell morphological changes. ............................................................................................................................................. 225 Figure 4.5 - LSCM images of target compounds and co stains in NIH3T3 mouse skin fibroblast cells........................................................................................................ 229 x

Description:
BODIPY fluorophores for their tracking by Single-Molecule Fluorescence. Spectroscopy (SMFM). Through a series of iterations, the nanocars were
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.