ebook img

Uniform shear flow far from equilibrium PDF

140 Pages·1996·2.7 MB·English
by  LeeMirim
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Uniform shear flow far from equilibrium

UNIFORMSHEARFLOWFARFROMEQUILIBRIUM By MIRIMLEE ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1996 ACKNOWLEDGMENTS IwouldliketothankProfessorJamesW.Duftyforhisguidance,encour- agementandpatienceforlastfiveyears.Ifeelmyselfveryfortunatenotonlyto havebenefitedfromhisacademicguidancebutalsotohaveenjoyedhisinvaluable friendship. IalsothankProfessorsKlauder,Muttalib,Obukhov,Reitze,Simmons,Brey, SantosandLutskofortheiracademicadvice. Inaddition,mygratitudegoestomyfellowgraduatestudentswhohavebeen goodfriendsthroughouttheseyears,inrandomordersDave,Beth,Thor,Chema, Steve,Mike,Namkyoung,Matthias,Gwyneth,WeonwooKim,andDon. AsformyfamilymembersinKorea,Icouldnotthankthemenough.Their loveandsupportmadeitpossibleformetoaccomplishwhatIhave. Special thanksgotomyparentsforalwaysbelievinginme. Finally,Iextendmydeepgratitudetomybestfriendandmyhusband,Jaewan Kim,forhisencouragementandsupport. TABLEOFCONTENTS ACKNOWLEDGMENTS ii LISTOFFIGURES v LISTOFSYMBOLS vi ABSTRACT xi CHAPTERS 1 1 INTRODUCTION 1 2 NONEQUILIBRIUMSTATISTICALMECHANICS 10 2.1 FormalSolutiontotheLiouvilleEquation 10 2.2 DensityFluctuations 15 3 KINETICMODELSFORCORRELATIONS 21 3.1 KineticEquationsforCorrelations 22 3.2 KineticModelsforCorrelations 28 3.3 SteadyStateCorrelations 33 3.4 Examples 36 3.4.1 EquilibriumStates 37 3.4.2 StationaryStatesNearEquilibrium 40 4 TRANSPORTEQUATIONSFORUNIFORMSHEARFLOW 45 4.1 StationaryStateSolution 45 4.2 NormalSolution 53 4.3 HydrodynamicEquations 58 5 TWOTIMECORRELATIONEQUATION 62 5.1 LinearizedHydrodynamicEquations 63 5.2 HydrodynamicModes 67 6 EQUALTIMECORRELATIONFUNCTION 83 7 CONCLUSIONS 87 APPENDICES 91 A DENSITYFLUCTUATIONS 91 B DERIVATIONOFKINETICEQUATIONS 96 C DERIVATIONOFKINETICMODEL 101 D EQUILIBRIUMEXCITATION 103 E FIRSTORDERAPPROXIMATION 106 F TRANSPORTCOEFFICIENTS 109 G THEHYDRODYNAMICMODES 118 H CORRELATIONFUNCTIONS 121 BIBLIOGRAPHY 122 BIOGRAPHICALSKETCH 125 IV LISTOFFIGURES 3.1 Realandimaginarypartsoftheextendedhydrodynamicmodes fromtheBGKmodel(inunitsofv).±indicatessoundmodes,H theheatmodeandStheshearmodes 39 4.1 Shearviscosityrj(a)(solidline)andviscometricfunction*(a)(dashed curve)areshownasfunctionofa.r\isinunitofpjv,*isinunit ofPs/v2andaisinunitofv 52 4.2 Thediagonalpartsofthegeneralizedthermalconductivity,\jj(a) alirneesihsofwornjas=axf,unacntdiotnhoefdaa.sTh-hdeotsolliindeliisnefoisrfjor=jz=.y\,jjthiesdinasuhneidt ofksPa/Tni/andaisinunitofv 60 5.1 Criticallinesforstabilityareshown.TheBGK-kineticmodelgives tfisohrefodsrioflnfi*edrel=innte0d.ae2nnsdainttdiheesd.aotsDhhaeersdhtechdur-redevoeltiinselsifnoaerriens*ffro=ormn0*.N4a.=viAe0l,rl-dSaotrtoetkeeidsncouurnrdivetesr ofthemeanfreepathandmeanfreetime 71 5.2 Tk*im=e0e.v1olutionof(a.)Sux(t')and(b)Suy(t')fora*=0.5and 77 v LISTOFSYMBOLS ashearrate A(t) physicalobservableattimet Aag matrix bij scatteringoperator Bag matrix B(t) physicalobservableattimet csoundvelocity Ccorrelationfunctionattwophasepointsandtimes C FourierrepresentationofC Cv specificheat Cag hydrodynamiccorrelationfunction Cag matrix Dap matrix Dt thermaldiffusivity /'s' s-particlereduceddistributionfunction /'s' s-particlemicroscopicphasedensity vi /solutiontotheBoltzmannequation / Fourierrepresentationof/ f,stationarysolutiontotheBoltzmannequation fi localequilibriumdistributionfunction /e Maxwell-Boltzmanndistributionfunction Fag matrix ga eigenfunctionsofinhomogeneouslinearizedBoltzmannoperator 9; velocityfunctionsinAppendixE Gsingletimepaircorrelationfunction Gap hydrodynamicpaircorrelationfunction Gn densityfluctuation H%] matrix ha complexconjugatesofga ha integralfunctioninAppendixE / linearizedBoltzmanncollisionoperator Ia matrix JBoltzmanncollisionoperator k wavevector KGreen'sfunction Kap matrix fcg Boltzmannconstant Imfp meanfreepath LLiouvilleoperator Lvelocityoperatorfromchapter4 Cinhomogeneouslinearoperator C FourierrepresentationofC m massoftheparticle ndensity Nap matrix ppressure p equilibriumpressure P projectionoperator qheatflux Q constant Rresolventfunction Si eigenvaluesofthematrixF Sdynamicstructurefactor ttime tij monentumflux,pressuretensor Tij volumeintegralofiy Ttemperature T(l,2) binaryscatteringoperator uflowvelocity vvelocityvariable v' velocityvariablerelativetotheuniformshearflowvelocity v thermalvelocity Vpeculiarvelocity V(r) potentialenergy w inhomogeneousterminthetemperatureequation xdimensionlessvariable Xaicoefficientsofthehydrodynamicgradients Yaj coefficientsofthehydrodynamicgradients 2/o hydrodynamicvariables z rootsofadeterminantequation Zcomplexprobabilityintegral adimensionlessparameter inversetemperaturemultipliedtokg1 Tsounddampingconstant 7sourcetothepaircorrelationfunctionG fH transportcoefficients eenergydensityinChapter2 £ universalparameter Q'' eigenvectorsofthematrixF rf^ biorthogonalsetofC*'' r\shearviscosity t\bshearviscosityfromtheBoltzmannequationforhardspheres 8dimensionlessparameter k, thermalconductivity kb thermalconductivityfromtheBoltzmannequationforhardspheres A linearoperator Aproportionalconstantintheexternalforce \a eigenvaluesof£ Xjjdiagonalpartsofgeneralizedthermalconductivity p.bulkviscosity vcollisionfrequency t?ajtransportcoefficients pmassdensity p(t) N—bodydistributionfunction Pi localequilibriumdistributionfunction adiameterofthehardsphere <j>a linearcombinationofthesummationalinvariants Xequilibriumpaircorrelationfunction ipa summationalinvariants *i viscometricfunctions

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.