ebook img

Uniform Algebras Over Complete Valued Fields PDF

0.98 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Uniform Algebras Over Complete Valued Fields

Uniform Algebras Over Complete 2 1 0 Valued Fields 2 n a J 8 Jonathan W. Mason, MMath. 2 ] A F . Thesis submitted to The University of Nottingham h t a for the degree of Doctor of Philosophy m [ 1 v March 2012 6 9 9 5 . 1 0 2 1 : v i X r a ForOlesya FollowtheRomanypatteran Westtothesinkingsun, Tillthejunk-sailsliftthroughthehouselessdrift. Andtheeastandwestareone.1 1FromRudyardKipling’spoemTheGipsyTrail. i Abstract UNIFORM algebras have been extensively investigated because of their importance in thetheoryofuniformapproximationandasexamplesofcomplexBanachalgebras. An interestingquestioniswhetheranalogousalgebrasexistwhenacompletevaluedfield other than the complex numbers is used as the underlying field of the algebra. In the Archimedean setting, this generalisation is given by the theory of real function alge- brasintroducedbyS.H.KulkarniandB.V.Limayeinthe1980s. Thisthesisestablishes abroadertheoryaccommodatinganycompletevaluedfieldastheunderlyingfieldby involvingGaloisautomorphismsandusingnon-Archimedeananalysis. Theapproach takenkeepsclosetotheoriginaldefinitionsfromtheArchimedeansetting. Basicfunctionalgebrasaredefinedandgeneraliserealfunctionalgebrastoallcomplete valuedfieldswhilstretainingtheobligatorypropertiesofuniformalgebras. Several examples are provided. A basic function algebra is constructed in the non- Archimedean setting on a p-adic ball such that the only globally analytic elements of thealgebraareconstants. Eachbasicfunctionalgebraisshowntohavealatticeofbasicextensionsrelatedtothe field structure. In the non-Archimedean setting it is shown that certain basic function algebrashaveresiduealgebrasthatarealsobasicfunctionalgebras. A representation theorem is established. Commutative unital Banach F-algebras with square preserving norm and finite basic dimension are shown to be isometrically F- isomorphic to some subalgebra of a Basic function algebra. The condition of finite basicdimensionisalwayssatisfiedintheArchimedeansettingbytheGel’fand-Mazur Theorem. Thespectrumofanelementisconsidered. The theory of non-commutative real function algebras was established by K. Jarosz in 2008. The possibility of their generalisation to the non-Archimedean setting is estab- lishedinthisthesisandalsoappearedinapaperbyJ.W.Masonin2011. In the context of complex uniform algebras, a new proof is given using transfinite induction of the Feinstein-Heath Swiss cheese “Classicalisation” theorem. This new proofalsoappearedinapaperbyJ.W.Masonin2010. ii Acknowledgements I would particular like to thank my supervisor J. F. Feinstein for his guidance and en- thusiasm over the last four years. Through his expert knowledge of Banach algebra theoryhehashelpedmetoidentifyseveralproductivelinesofresearchwhilstalways allowingmethefreedomrequiredtomaketheworkmyown. In addition to my supervisor, I. B. Fesenko also positively influenced the direction of myresearch. DuringmydoctoraltrainingIundertookapostgraduatetrainingmodule on the theory of local fields given by I. B. Fesenko. With extra reading, this enabled metoworkbothintheArchimedeanandnon-Archimedeansettingsasimplicitlysug- gestedbymythesistitle. ItwasapleasuretoknowmyfriendsinthealgebraandanalysisgroupatNottingham andIthankthemfortheirinterestinmyworkandhospitality. I am grateful to the School of Mathematical sciences at the University of Nottingham forprovidingfundsinsupportofmyconferenceparticipationandvisits. SimilarlyIappreciatethesupportgiventomebytheEPSRCthroughaDoctoralTrain- ingGrant. ThisPhDthesiswasexaminedbyA.G.O’FarrellandJ.ZachariaswhoIthankfortheir timeandinterestinmywork. iii Contents 1 Introduction 1 1.1 BackgroundandOverview . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Completevaluedfields 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Seriesexpansionsofelementsofvaluedfields . . . . . . . . . . . 7 2.1.2 Examplesofcompletevaluedfields . . . . . . . . . . . . . . . . . 9 2.1.3 Topologicalpropertiesofcompletevaluedfields . . . . . . . . . . 12 2.2 Extendingcompletevaluedfields . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Galoistheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 Functionsandalgebras 22 3.1 Functionalanalysisovercompletevaluedfields . . . . . . . . . . . . . . 22 3.1.1 Analyticfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 BanachF-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.1 Spectrumofanelement . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Uniformalgebras 34 4.1 Complexuniformalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.1.1 Swisscheesesetsinthecomplexplane . . . . . . . . . . . . . . . 36 4.1.2 Classicalisationtheorem . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Non-complexanalogsofuniformalgebras . . . . . . . . . . . . . . . . . . 48 iv CONTENTS 4.2.1 Realfunctionalgebras . . . . . . . . . . . . . . . . . . . . . . . . . 50 5 Commutativegeneralisationovercompletevaluedfields 53 5.1 Maindefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 Generalisationtheorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.4 Non-Archimedeannewbasicfunctionalgebrasfromold . . . . . . . . . 65 5.4.1 Basicextensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.4.2 Residuealgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6 Representationtheory 79 6.1 FurtherBanachringsandBanachF-algebras . . . . . . . . . . . . . . . . 79 6.2 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.2.1 Establishedtheorems . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.2.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 6.2.3 Representationunderfinitebasicdimension . . . . . . . . . . . . 91 7 Non-commutativegeneralisationandopenquestions 98 7.1 Non-commutativegeneralisation . . . . . . . . . . . . . . . . . . . . . . . 98 7.1.1 Non-commutativerealfunctionalgebras . . . . . . . . . . . . . . 98 7.1.2 Non-commutativenon-Archimedeananalogs . . . . . . . . . . . 100 7.2 Openquestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 References 105 v CHAPTER 1 Introduction Thisshortchapterprovidesaninformaloverviewofthematerialinthisthesis. Justifi- cationofthestatementsmadeinthischaptercanthereforebefoundinthemainbody ofthethesiswhichstartsatChapter2. 1.1 Background and Overview Complexuniformalgebrashavebeenextensivelyinvestigatedbecauseoftheirimpor- tanceinthetheoryofuniformapproximationandasexamplesofcomplexBanachalge- bras. LetCC(X)denotethecomplexBanachalgebraofallcontinuouscomplex-valued functionsdefinedonacompactHausdorffspace X. Acomplexuniformalgebra Aisa subalgebra of CC(X) that is complete with respect to the sup norm, contains the con- stantfunctionsmakingitaunitalcomplexBanachalgebraandseparatesthepointsofX inthesensethatforall x ,x ∈ X with x (cid:54)= x thereis f ∈ Asatisfying f(x ) (cid:54)= f(x ). 1 2 1 2 1 2 Attempting to generalise this definition to other complete valued fields simply by re- placingCwithsomeothercompletevaluedfield Lproducesverylimitedresults. This isbecausethevariousversionsoftheStone-Weierstrasstheoremrestrictsourattention toC (X)inthiscase. L However the theory of real function algebras introduced by S. H. Kulkarni and B. V. Limaye in the 1980s does provide an interesting generalisation of complex uniform algebras. Oneimportantdepartureinthedefinitionofthesealgebrasfromthatofcom- plex uniform algebras is that they are real Banach algebras of continuous complex- valued functions. Similarly the elements of the algebras introduced in this thesis are also continuous functions that take values in some complete valued field or division ringextendingthefieldofscalarsoverwhichthealgebraisavectorspace. Aprominentaspectoftheemergingtheoryisthatithasalottodowithrepresentation. As a very simple example the field of complex numbers itself is isometrically isomor- phictoarealfunctionalgebra,allbeitonatwopointspace. 1 CHAPTER 1: INTRODUCTION When considering the generalisation of complex uniform algebras over all complete valuedfieldsInaturallywantedthecomplexuniformalgebrasandrealfunctionalge- bras to appear directly as instances of the new theory. This resulted in the definition ofbasicfunctionalgebrasinvolvingtheuseofaGaloisautomorphismandhomeomor- phicendofunctionthatinteractinausefulway,seeDefinition5.1.2. Inretrospectthese particular algebras should more appropriately be referred to as cyclic basic function algebras since the functions involved take values in some cyclic extension of the un- derlyingfieldofscalarsofthealgebra. Necessarilythisthesisstartsbysurveyingcompletevaluedfieldsandtheirproperties. ThetransitionfromtheArchimedeansettingtothenon-Archimedeansettingpreserves in places several of the nice properties that complete Archimedean fields have. How- ever all complete non-Archimedean fields are totally disconnected, some of them are not locally compact and there is no non-Archimedean analog of the Gel’fand-Mazur Theorem. Ontheotherhandsomecompletenon-Archimedeanfieldshaveinterestingproperties thatonlyappearinthenon-Archimedeansetting. Considerforexampletheclosedunit discofthecomplexplane. Itisclosedundermultiplicationbutnotwithrespecttoad- dition. In the non-Archimedean setting the closed unit ball O , of a complete valued F field F,isaringsinceinthiscasethevaluationinvolvedobservesthestrongversionof thetriangleinequality,seeDefinition2.1.1. Theset M = {a ∈ F : |a| < 1} isamax- F F imal ideal of O from which the residue field F = O /M is obtained. The residue F F F fieldisofgreatimportanceinthestudyofsuchfields. Similarly in the non-Archimedean setting we will see that certain basic function al- gebras have residue algebras that are also basic function algebras. In the process of proving this result an interesting fact is shown concerning a large class of complete non-Archimedeanfields. ForsuchafieldFandeveryfiniteextensionLofF,extending F asa valuedfield, itis shownthat foreachGalois automorphism g ∈ Gal(L/ ) there F exists a set R ⊆ O of residue class representatives such that the restriction of g to L,g L R isanendofunction,i.e. aselfmap,onR . Thisfactisprobablyknowntocertain L,g L,g numbertheorists. Thisthesisalsoincludesseveralexamplesofbasicfunctionalgebrasandthesearecon- sideredatdepth. Anewproofofanexistingtheoreminthesettingofcomplexuniform algebrasisgivenandtheoryinthenon-commutativesettingisalsoconsidered. With respect to commutative Banach algebra theory, Chapter 6 presents an interest- ingnewGel’fandrepresentationresultextendingthoseoftheArchimedeansetting. In particular we have the following theorem where the condition of finite basic dimen- sionisautomaticallysatisfiedintheArchimedeansettingandcompensatesforthelack of a Gel’fand-Mazur Theorem in the non-Archimedean setting. See Chapter 6 for full 2 CHAPTER 1: INTRODUCTION details. Theorem1.1.1. LetFbealocallycompactcompletevaluedfieldwithnontrivialvaluation. Let AbeacommutativeunitalBanachF-algebrawith(cid:107)a2(cid:107) = (cid:107)a(cid:107)2 foralla ∈ Aandfinitebasic A A dimension. Then: (i) if F is the field of complex numbers then A is isometrically F-isomorphic to a complex uniformalgebraonsomecompactHausdorffspace X; (ii) if F is the field of real numbers then A is isometrically F-isomorphic to a real function algebraonsomecompactHausdorffspace X; (iii) if F is non-Archimedean then A is isometrically F-isomorphic to a non-Archimedean analog of the real function algebras on some Stone space X where by a Stone space we meanatotallydisconnectedcompactHausdorffspace. Inparticular A isisometrically F-isomorphictosomesubalgebra Aˆ ofabasicfunctionalgebra and Aˆ separatesthepointsof X. Notethat(i)and(ii)ofTheorem1.1.1arethewellknownresultsfromtheArchimedean setting. Thisbringsustothefollowingsummary. 1.2 Summary Chapter2: Therelevantbackgroundconcerningcompletevaluedfieldsisprovided. Several examples are given and the topological properties of complete valued fields are comparedanddiscussed. Aparticularlyusefulandwellknownwayofexpress- ing the extension of a valuation is considered and the relevant Galois theory is introduced. Chapter3: Some background concerning functional analysis over complete valued fields is given. Analytic functions are discussed. Banach F-algebras are introduced and thespectrumofanelementisconsidered. Chapter4: Complex uniform algebras are introduced. In the context of complex uniform algebras, a new proof is given using transfinite induction of the Feinstein-Heath Swisscheese“Classicalisation”theorem. Thisnewproofalsoappearedinapaper byJ.W.Masonin2010. Thisisfollowedbyapreliminarydiscussionconcerning non-complexanalogsofuniformalgebras. Realfunctionalgebrasareintroduced. Chapter5: Basic function algebras are defined providing the required generalisation of real functionalgebrastoallcompletevaluedfields. Ageneralisationtheoremproves 3 CHAPTER 1: INTRODUCTION thatBasicfunctionalgebrashavetheobligatorypropertiesofuniformalgebras. Several examples are provided. Complex uniform algebras and real function al- gebras now appear as instances of the new theory. A basic function algebra is constructed in the non-Archimedean setting on a p-adic ball such that the only globallyanalyticelementsofthealgebraareconstants. Each basic function algebra is shown to have a lattice of basic extensions related to the field structure. Further, in the non-Archimedean setting it is shown that certain basic function algebras have residue algebras that are also basic function algebras. ToprovethiseachGaloisautomorphism,forcertainfieldextensions,is showntorestricttoanendofunctiononsomesetofresidueclassrepresentatives. Chapter6: A representation theorem is established in the context of locally compact com- plete fields with nontrivial valuation. For such a field F, commutative unital Banach F-algebras with square preserving norm and finite basic dimension are shown to be isometrically F-isomorphic to some subalgebra of a Basic function algebra. The condition of finite basic dimension is automatically satisfied in the ArchimedeansettingbytheGel’fand-MazurTheorem. Chapter7: The theory of non-commutative real function algebras was established by K. Jarosz in 2008. The possibility of their generalisation to the non-Archimedean setting is established in this thesis having been originally pointed out in a pa- per by J. W. Mason in 2011. The thesis concludes with a list of open questions highlightingthepotentialforfurtherinterestingdevelopmentsofthistheory. 4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.