ebook img

Unified description of the Zitterbewegung for spintronic, graphene and superconducting systems PDF

0.15 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Unified description of the Zitterbewegung for spintronic, graphene and superconducting systems

Unified Description of the Zitterbewegung for Spintronic, Graphene, and Superconducting Systems J´ozsef Cserti1 and Gyula D´avid2 1Department of Physics of Complex Systems, E¨otv¨os University 8 H-1117 Budapest, P´azm´any P´eter s´et´any 1/A, Hungary 0 2Department of Atomic Physics, E¨otv¨os University 0 H-1117 Budapest, P´azm´any P´eter s´et´any 1/A, Hungary 2 WepresentaunifiedtreatmentofZitterbewegungphenomenaforawideclassofsystemsincluding n spintronic, graphene, and superconducting systems. We derive an explicit expression for the time- a dependence of the position operator of the quasiparticles which can be decomposed into a mean J part and an oscillatory term. The latter corresponds to the Zitterbewegung. To apply our result 5 fordifferentsystemsoneneedstouseonlyvectoralgebra insteadof themorecomplicated operator 1 algebra. ] PACSnumbers: 71.70.Ej,73.63.Hs,81.05.Uw,73.43.Cd l l a h The Zitterbewegung (ZB) was first regarded as a rela- spectrum [18]. However, the experimental consequences - s tivistic effectrootedinthe Diracequationandrelatedto of such a relativistic electron dynamics were observed e m a ‘trembling’ or oscillatorymotion of the center of a free onlyrecentlyinHallconductivitymeasurements[19,20]. wave packet[1, 2]. The ZB is caused by the interference In bilayer graphene a more peculiar behavior of the Hall . t between the positive and negative energy states in the effectwasobservedexperimentally[21],andexplainedin a m wave packet; the characteristic frequency of this motion termsofthechiralHamiltonianfirstderivedbyMcChann is determined by the gap between the two states. It was and Fal’ko [22]. Both in single and bilayer graphene the - d believedthattheexperimentalobservationoftheeffectis appearance of the oscillatory motion of the electron re- n impossiblesinceonewouldconfinetheelectrontoascale latedtotheZBwaspointedoutbyKatsnelson[23]. Most o oftheComptonwavelength~/m0c,wherem0 isthebare recently, Tworzyd lo et al. associated the shot noise with c massoftheelectron[2]. However,theZBisnotastrictly the interference of electron-hole pairs at the Dirac point [ relativistic effect: it can appear even for a nonrelativis- in graphene [24]. As an experimental observation of the 3 tic particle moving in a crystal [3] or for quasiparticles ZB Trauzettel et al. proposed to measure the photon- v governed by the Bogoliubov–de Gennes equations in su- assisted electron transport in graphene [25]. 6 2 perconductors [4]. Inthis workwepresentaunifieddescriptionofthe ZB 5 Mostrecently,Schliemannetal.[5,6]predictedtheZB in the systems mentioned above. Our approachmakes it 4 inspintronicsystemswheretheexperimentalobservation possible to calculate with simple algebra (without using 0 oftheeffectismorerealisticduetothemuchsmallerfre- operator algebra) the time dependence of the position 6 quencyoftheoscillatorymotion. Inthesesemiconductor operator of the particle for a wide class of systems. We 0 / nanostructures [7] spin-orbit coupling generates an os- alsoeasilyverifytheresultsfirstobtainedbySchliemann t a cillatory motion of the wave packet. The semi-classical et al. [5, 6] for spintronic systems. Our result directly m time evolution of holes was investigated numerically for shows that the ZB is not necessarily a relativistic effect - the Luttinger Hamiltonian by Jiang et al. [8]. The rela- butit is relatedto the couplingbetweenthe components d tion between the ZB and the spin transverse force was of the eigenstates of the system. This phenomenon is n studiedbyShen[9]. InanumericalworkLeeandBruder thus the direct consequence of the pseudo-spin degree of o c observed an oscillatory behavior in the charge and spin freedom. : densitiesofquantumwireswithRashbaandDresselhaus The time-dependence of the position operator in the v i types of spin-orbit coupling [10]. With a spin-polarized Heisenbergpicture is givenby r(t)=eiHt/~r(0)e−iHt/~, X electron injected into a waveguide, Nikoli´c et al. [11] where H is the Hamiltonian of the system. To calculate r found an oscillatory motion of the wave packet numeri- the operator r(t) one can work with the eigenstates of a cally,and the ZB patternwas alsopredictednumerically H. However, a further insight into the nature of the by Brusheim and Xu [12]. Similarly, Zawadzki studied ZB can be gained by solving the equations of motion. the ZB in narrowgap semiconductors [13], in single-wall We start with a quite general form of the Hamiltonian semiconductingcarbonnanotubes[14]andincrystalsus- thatis suitable to describe the systems mentionedin the ing the nearly-free electron approximation [15], which is introduction: essentially the same as the two-band model in [3]. H =ε(p)11+ΩT S, (1) Two-dimensional carbon sheets, known as graphene, havebeenstudiedtheoretically[16,17]formanydecades, where the system is characterized by the one-particle since their band structure is unique, a gapless Dirac-like energy dispersion ε(p) and the effective magnetic field 2 system D H Ω ε(p) References Rashba-Dresselhaus 2 2pm2++β~ α~(py(pσxyσ−y−pxpσyxσ)x) ~22 0−ααppxy+0−ββppyx 1 2pm2 [5, 6,7, 26] B C @py 3p2x−p2y A in aHqeuavaynthuomleswell 2 2pm2 +i2α~˜3 p3−σ+−p3+σ− 2~α˜4 0px`3p2y−p2x´ 1 2pm2 [6, 26, 27] ` ´ B ` 0 ´C B C Bulk Dresselhaus 3 γ~D3 ˆσxpx`+pσ2yz−pzp2zp´2x+−σpy2ypy`p2z−p2x´ 2~γ4D@0BBpppyxz``ppp2x2z2y−−−ppp2x2y2z´´1CCA 0 [7,26] ` ´˜ @ A Single-layer ` px ´ 2 v(pxσx+pyσy) 2~v 0py 1 0 [16, 17, 19, 20, 23] graphene 0 B C @p2 −pA2 Bilayer graphene 2 21m p2++2p2−σx− p2−2−ip2+σy m1~ 0 2xpxpyy 1 0 [21, 22, 23] „ « 0 B C @ ∆ A Cooper pairs 3 2pm2 −EF σz+∆σx ~20 0 1 0 [4,28] “ ” B p2x+2pm2y+p2z −EF C @ ℜ{Vq} A Nearly free electrons 3 H = ǫVk+q∗q Vǫkq ! 0BB 21(−ǫkℑ+{qV−q}ǫk) 1CC 12(ǫk+q+ǫk) [3,15] @ A TABLE I: The Hamiltonian of different systems can be expressed as in Eq. (1). Here D is the dimension of the system, p± = px±ipy, σ± = σx ±iσy, and the spin operator is S = ~2σ, where σ = (σx,σy,σz) is the set of Pauli matrices. For Cooperpairsweassume(forsimplicity)thatthepairpotential∆isrealandindependentofr,andthattheenergyismeasured from the Fermi energy EF. In the last row, ǫp = ~2k2/(2m), where p = ~k, q is fixed, and Vq is the Fourier transform of the periodic potential treated as a perturbation in the crystal. Here ℜ{·} and ℑ{·} are the real and imaginary parts of the argument. More details of these systems can befound in the references listed in the last column. Ω(p) coupled to the spin S. Here we assume that ε(p) that are currently intensely studied in spintronics, and and Ω(p) are differentiable functions of the momentum in the researchof graphene and superconductors. p=(p ,p ,p ). HereT standsforthetransposeofavec- x y z tor,while11istheunitmatrixinspinspace,whichwillbe It should be emphasized that although in Table I the omitted hereafter. In the absence of an electrostatic po- HamiltonianforallsystemsisgivenintermsofthePauli tential V(r) the momentum p, and, consequently, Ω(p), matrices corresponding to a spin S = 1, in our general 2 are constants of motion. In Table I we listed a few sys- consideration, the spin operator S in Eq. (1) can repre- tems (together with the effective magnetic field Ω(p)) sent a quasiparticle with an arbitrary spin S ≥ 1. 2 The equations of motion of the position operator r(t) NotethatEqs.(2)arecoupledequationsofallthreecom- and the spin operator S(t) in the Heisenberg picture for ponents of S(t) and r(t). However, in the case of two- the Hamiltonian (1) read dimensionalsystemsonlythex-andy-componentsofr(t) are involved in Eq. (2a). d i dε(p) It is clear from Eq. (2b) that the spin vector S(t) pre- r(t) = [H,r]= +KS(t), (2a) dt ~ dp cesses around the vector Ω. The solution of Eq. (2b) d i with the initial condition S(0)=S0 can be written as S(t) = [H,S]=Ω(p)×S(t), where (2b) dt ~ S(t)=[n◦n+(11−n◦n)cosΩt+sinΩt n×]S0, (3) i ∂Ω Kik = −~ [xi,Ωk(p)]= ∂pk. (2c) where Ω = Ωn, n is a unit vector, Ω2 = ΩTΩ, and i 3 n◦ndenotestheouterordirectproduct,i.e.,(n◦n) = and for bilayer graphene ik nink. Here the operator S0 on the right-hand side is in p σ +p σ p the Schr¨odingerpicture,i.e.,itistime independent. One x(t) = x0+ x xm y y t+ py2 ~σz(1−cosΩt) canshow thatthe usualcommutationrelations still hold [S (t),S (t)]=i~ε S (t). p Σ i j ijk k y G − (Ωt−sinΩt), (6a) Inserting Eqs. (3) into Eq. (2a) and solving the differ- p4 ential equation one finds −p σ +p σ p 1 dε(p) y(t) = y0+ y xm x y t− px2 ~σz(1−cosΩt) r(t) = r0+ K(n×S0)+ t+(Kn)(nS0)t Ω dp p Σ x G + (Ωt−sinΩt), (6b) sinΩt cosΩt p4 + K(I−n◦n) S0− K(n×S0),(4) Ω Ω p2 with the initial condition r(0) = r0. This is our central ΣG = ~ 2pxpyσx−(p2x−p2y)σy , Ω= ~m. (6c) result. The interpretation of the different terms in (4) (cid:2) (cid:3) is as follows. The ZB stems from the oscillatory terms Here σi are the Pauli matrices and p2 =p2x+p2y. (cosine andsine terms). Incontrastto the usualdynam- Similarly,usingtheHamiltonianforCooperpairsgiven ics (first and third terms), two new terms appear in the in Table I the following results are obtained: non-oscillatory part: the transverse displacement, which p p is independent of time (second term), and a term that r(t) = r0+ mσxt+ mΣC(Ωt−sinΩt) corresponds to a particle motion with constant anoma- p ∆ ~ lous velocity (third term). In addition to the oscillatory + σ (1−cosΩt), (7a) m E2(p)2 y part,these twoterms in r(t) areinherentof the ZB.The anomalous velocity plays a crucialrole in the anomalous p2 2 2E(p) and spin Hall effects in semiconductors [29]. E(p) = −E +∆2, Ω= , (7b) To evaluate the time-dependent position operatorr(t) s(cid:18)2m F(cid:19) ~ within a Gaussian wave packet one can follow, e.g., the ~ ∆ p2 calculation presented in Refs. [5, 6]. Σ = −E σ −∆σ . (7c) C 2E3(p) 2m F x z We are now in a position to apply our results to the (cid:20)(cid:18) (cid:19) (cid:21) systems listed in Table I. Using Eqs. (2c) and (4), some Here p2 =p2+p2+p2. One can show that these results x y z simplealgebrayieldsthesameresultsasgivenbyEqs.(7) agree with those presented in Ref. [4]. and (8) in Ref. [6] for the Rashba-Dresselhaus system. Similarly, some simple algebra yields the same results Similarly, it is easy to verify the results Eqs. (41) and asinRefs.[3,15]fornearlyfreeelectronslistedinTableI (42) in Ref. [6] for systems of heavy holes in a quantum (except that the off-diagonal elements are swapped in well [30]. the latter reference). For bulk Dresselhaus systems (3rd The current operator in graphene systems splits into row in Table I) the calculation is again straightforward three terms of which the last one can be associated with buttheresultsarerathercumbersomeandnotpresented the ZB phenomenon[23]. Ourgeneralapproachcanalso here. be applied to graphene layers to find the time evolution Discussion. As mentioned above, the position opera- ofthepositionoperatorr(t). Wenowpresentexplicitre- tor r(t) in (4) is decomposed into a mean part and an sults for the position operator r(t) from which the trem- oscillatory term. If one derives the position operator bling (oscillatory) motion of the electron in graphene r(t) directly from r(t) = eiHt/~r(0)e−iHt/~ then such systems is clearly seen. For single-layer and bilayer a decomposition can only be obtained using the Foldy- graphene,theexplicitformulasforx(t)andy(t)canagain Wouthuysen transformation [4, 31]. In this transforma- be easily obtained using Table I and Eqs. (2c) and (4). tion the operator r(t) is calculated in the basis of the The results for single-layer graphene are eigenstates of Hamiltonian (1). It can be shown that for x(t) = x0+vσxt+ ppy2 ~2 σz 1−cos 2~pv t tShe=e21ig(ewnsitthatPesauψl±im(ra)t=ric|eχs±)itehiekreiagreenegniveerngiebsyE±(k)and (cid:20) (cid:18) (cid:19)(cid:21) ~ py ~ 2pv 2pv E±(k) = ε(~k)± |Ω(~k)|, (8a) +p3 2(pxσy −pyσx) ~ t−sin ~ t , (5a) 2 (cid:20) (cid:18) (cid:19)(cid:21) y(t) = y0+vσyt− ppx2 ~2 σz(cid:20)1−cos(cid:18)2~pv t(cid:19)(cid:21) |χ+i = csoisnΘ2Θ2ee−iiΦ2Φ2 !,|χ−i= −csoinsΘΘ22eei−Φ2iΦ2 !(8b,) p ~ 2pv 2pv whereΘandΦarethesphericalpolaranglesofthevector x − (p σ −p σ ) t−sin t , (5b) p3 2 x y y x ~ ~ Ω(~k) in k-space, and |a| is the magnitude of vector a. (cid:20) (cid:18) (cid:19)(cid:21) 4 However, for S > 1 the Foldy-Wouthuysen transforma- [15] T. M. Rusin and W.Zawadzki, cond-mat/0605384. 2 tionismorecomplicated. Theadvantageofourapproach [16] J. W. McClure, Phys. Rev. 104, 666 (1956); D. P. Di- is that it leads directly to the desired decomposition of Vincenzo and E. J. Mele, Phys.Rev.B 29, 1685 (1984). [17] A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and the position operator r(t). G.Grinstein,Rev.B50,7526(1994);F.D.M.Haldane, ForpureRashbacouplingandforsingle-layergraphene Phys.Rev.Lett.61,2015(1984);Y.Zheng,andT.Ando, the ZB can be interpreted as a consequence of the con- Phys. Rev. B 65, 245420 (2002); H. Suzuura, and T. servation of the total angular momentum Jz = Lz +Sz, Ando,Phys.Rev.Lett.89,266603(2002);V.P.Gusynin where L = r×p is the orbital angular momentum (see andS.G.Sharapov,Phys.Rev.Lett.95,146801(2005); Ref. [6]). However, in general, J is not a constant of N.M.R.Peres,F.Guinea,andA.H.CastroNeto,Phys. z motion, ie., [H,J] = Ω×S−p×KS 6= 0. As it can Rev. B 73, 125411 (2006). [18] K. Ziegler, Phys. Rev. B 53, 9653 (1996); K. Ziegler, be readilyseen,this isthecase,forexample,forRashba- Phys. Rev.Lett. 80, 3113 (1998). Dresselhaussystemswhereα6=0andβ 6=0,orforheavy [19] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, holes in a quantum well. Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Finally, it should be mentioned that the ZB is related Firsov, Science 306, 666 (2004); K. S. Novoselov, A. K. to the non-trivial behavior of the conductivity of single Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. andbilayergraphenes[23]sincethevelocityoperator(2a) Grigorieva,S.V.Dubonos,andA.A.Firsov,Nature438, does not commute with the Hamiltonian (1). The pecu- 197 (2005). [20] Y.Zhang,J.P.Small,M.E.S.Amori,andP.Kim,Phys. liar behavior of the spin Hall effect may also be related Rev.Lett.94,176803(2005);Y.-W.Tan,H.L.Stormer, to the ZB [9]. and P. Kim, Nature 438, 201 (2005); Y. Zhang, Y.-W. We gratefully acknowledge discussions with C. W. Tan,H.L.Stormer,andP.Kim,Nature438,201(2005). J. Beenakker, J. Schliemann, B. Nikoli´c, V. Fal’ko, T. [21] K.S.Novoselov,E.McCann,S.V.Morozov,V.I.Fal’ko, Geszti, and A. Pir´oth. This work is partly supported by M. I.Katsnelson, U.Zeitler, D.Jiang, F. Schedin,A.K. E. C. Contract No. MRTN-CT-2003-504574. Geim, NaturePhysics 2, 177 (2006); [22] E.McCannandV.I.Fal’ko,Phys.Rev.Lett.96,086805 (2006). [23] M. I.Katsnelson, Eur. J. Phys B 51, 157 (2006). [24] J.Tworzydl o,B.Trauzettel,M.Titov,A.Rycerz,C.W.J. Beenakker, cond-mat/0603315. [1] E. Schr¨odinger, Sitzungsber. Preuss. Akad. Wiss. Phys. [25] B. Trauzettel, Ya. M. Blanter, A. F. Morpurgo, Math. Kl. 24, 418 (1930). cond-mat/0606505. [2] H. Feschbach and F. Villars, Rev. Mod. Phys. 30, 24 [26] S. Murakami, cond-mat/0504353; J. Sinova, S. Mu- (1958);A.O.BarutandA.J.Bracken,Phys.Rev.D23, rakami, S.-Q. Shen, and M.-S. Choi, Solid Sate Comm. 2454(1981); A.O.BarutandW.Thacker,Phys.Rev.D 138, 214 (2006) (see also in cond-mat/0512054); J. 31,1386(1985);K.Huang,Am.J.Phys.20,479(1952). Schliemann, Int. J. Mod. Phys. B 20, 1015 (2006) (see [3] F. Cannata, L. Ferrari, and G. Russo, Solid State Com- also in cond-mat/0602330); H.-A. Engel, E. I. Rashba, mun.74,309(1990);L.Ferrari,andG.Russo,Phys.Rev. and B. I. Halperin, cond-mat/0603306. B42,7454(1990);F.CannataandL.Ferrari,Phys.Rev. [27] R. Winkler, Phys. Rev. B 62, 4245 (2000); M. G. Pala, B 44, 8599 (1991). M. Governale,J.K¨onig, andU.Zu¨licke, Europhys.Lett. [4] D.Luri´e and S. Cremer, Physica 50, 224 (1970). 65, 850 (2004); M. G. Pala, M. Governale, J. K¨onig, U. [5] J.Schliemann,D.Loss,andR.M.Westervelt,Phys.Rev. Zu¨licke, and G. Iannaccone, Phys. Rev. B 69, 045304 Lett.94, 206801 (2005). (2004); J. Schliemann, and D. Loss, Phys. Rev. B 71, [6] J.Schliemann,D.Loss,andR.M.Westervelt,Phys.Rev. 085308 (2005); M. Zarea, and S. E. Ulloa, Phys. Rev. B B 73, 085323 (2006). 73, 165306 (2006). [7] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, [28] P. G. de Gennes, Superconductivity of Metals and Al- J. M. Daughton, S. von Moln´ar, M. L. Roukes, loys(Benjamin,NewYork,1996); J.B.KettersonandS. A.Y.ChtchelkanovaandD.M.Treger,Science294,1488 N.Song,Superconductivity(CambridgeUniversityPress, (2001); Semiconductor Spintronics and Quantum Com- United Kingdom, 1999). putation, edited by D. D. Awschalom, D. Loss, and N. Samarth(Springer,Berlin,2002);I.Zˇut´ıc,J.Fabian,and [29] D.Culcer,A.MacDonald, andQ.Niu,Phys.Rev.B68, 045327 (2003); S. Murakami, N. Nagaosa, S.-C. Zhang, S.DasSarma,Rev.Mod. Phys.76,323 (2004); R.Win- Phys. Rev. B 69, 235206 (2004); B. Zhou, L. Ren, and kler, Spin-Orbit Coupling Effects in Two-Dimensional S.-Q. Shen, Phys. Rev. B 73, 165303 (2006); X-L. Qi, Electron and Hole Systems (Springer, Berlin, 2003). Y.-S. Wu,and S.-C. Zhang, cond-mat/0505308. [8] Z.F.Jiang,R.D.Li,S.-C.Zhang,andW.M.Liu,Phys. [30] After consulting the authors of Ref. [6] we clarified a Rev.B 72, 045201 (2005). [9] S.-Q.Shen,Phys. Rev.Lett. 95, 187203 (2005). misprint in their paper: the factors px and py in the 4th terms of Eqs. (41) and (42), respectively, should be [10] M. Lee and C. Bruder,Phys. Rev.B 72, 045353 (2005). swapped. [11] B. K. Nikoli´c, L. P. Zˆarbo, and S. Welack, Phys. Rev.B [31] L. L. Foldy, and S. A. Wouthuysen, Phys. Rev. 78, 29 72, 075335 (2005). (1950); T. D. Newton, and E. P. Wigner, Rev. Mod. [12] P.Brusheim and H.Q. Xu,cond-mat/0512502. Phys. 21, 400 (1949). [13] W. Zawadzki, Phys. Rev.B 72, 085217 (2005). [14] W. Zawadzki, cond-mat/0510184.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.