1 Understanding the Role of Places and Activities on Mobile Phone Interaction and Usage Paerns ABHINAVMEHROTRA,UniversityCollegeLondon,UK SANDRINER.MU¨LLER,UniversityofCambridge,UK GABRIELLAM.HARARI,StanfordUniversity,USA SAMUELD.GOSLING,UniversityofTexasatAustin,USAandUniversityofMelbourne,Australia CECILIAMASCOLO,UniversityofCambridgeandeAlanTuringInstitute,UK MIRCOMUSOLESI,UniversityCollegeLondonandeAlanTuringInstitute,UK P.JASONRENTFROW,UniversityofCambridge,UK Userinteractionpaernswithmobileappsandnoticationsaregenerallycomplexduetothemanyfactorsinvolved.However adeepunderstandingofwhatinuencesthemcanleadtomoreacceptableapplicationsthatareabletodeliverinformationat therighttime.Inthispaper,wepresentforthersttimeanin-depthanalysisofinteractionbehaviorwithnoticationsin relationtothelocationandactivityofusers.Weconductedanin-situstudyforaperiodoftwoweekstocollectmorethan 36,000notications,17,000instancesofapplicationusage,77,000locationsamples,and487daysofdailyactivityentriesfrom 26studentsataUKuniversity. Ourresultsshowthatusers’aentiontowardsnewnoticationsandwillingnesstoacceptthemarestronglylinkedtothe locationtheyareinandinminorparttotheircurrentactivity.Weconsiderbothusers’receptivityandaentiveness,andwe showthatdierentresponsebehaviorsareassociatedtodierentlocations.esendingsarefundamentalfromadesign perspectivesincetheyallowustounderstandhowcertaintypesofplacesarelinkedtospecictypesofinteractionbehavior. isinformationcanbeusedasabasisforthedevelopmentofnovelintelligentmobileapplicationsandservices. CCSConcepts:•Human-centeredcomputing HCIdesignandevaluationmethods;Empiricalstudiesinubiquitousand ! mobilecomputing; AdditionalKeyWordsandPhrases:MobileSensing,Notications,ApplicationUsage,Context-awareComputing. ACMReferenceformat: AbhinavMehrotra,SandrineR.Mu¨ller,GabriellaM.Harari,SamuelD.Gosling,CeciliaMascolo,MircoMusolesi,andP.Jason Rentfrow.2017.UnderstandingtheRoleofPlacesandActivitiesonMobilePhoneInteractionandUsagePaerns.PACM Interact.Mob.WearableUbiquitousTechnol.1,1,Article1(July2017),22pages. DOI:10.1145/nnnnnnn.nnnnnnn 1 INTRODUCTION Mobilephonestodayhavebecomeanindispensablepartofourdailylives.Farfrombeingsimplecallinginstru- ments,theyarenowadvancedcomputingplatformswithalways-onconnectivity,high-speeddataprocessingand advancedsensing[21].eseaordanceshaveopenedthepossibilityofimplementingnovelcontext-awareand personalizedapplicationsthatareabletoassistusinavarietyofday-to-daysituations.Atthesametime,they Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthat copiesarenotmadeordistributedforprotorcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationontherst page.CopyrightsforcomponentsofthisworkownedbyothersthanACMmustbehonored.Abstractingwithcreditispermied.Tocopy otherwise,orrepublish,topostonserversortoredistributetolists,requirespriorspecicpermissionand/orafee.Requestpermissionsfrom [email protected]. ©2017ACM. 2474-9567/2017/7-ART1$15.00 DOI:10.1145/nnnnnnn.nnnnnnn PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:2 • Mehrotraetal. (a) (b) (c) (d) Fig.1. TheMyLifeLoggerapplication. representauniqueplatformforreal-timedeliveryofinformationaboutavarietyofeventsrangingfromemails toupdatesononlinesocialnetworks,fromadvertisementstopositivebehaviorchangeinterventions[5,20,31]. eadventofmobilesensinghasprovidedagreatopportunityforresearchersandpractitionerstoinvestigate users’mobileinteractionbehavior.Mobileappsarenowcapableofrecordinginformationaboutusers’interactions withmobilephonesandthesurroundingcontext(e.g.,location,activity,audioenvironment,andcollocationwith otherdevices).ankstotheavailabilityofthisinformation,researchershavebeenabletoconductseveralstudies onavarietyofaspectsofhuman-smartphoneinteraction.Forexample,studieshaveinvestigatedthediversityin appusagebehaviorofindividuals[14],thecharacterizationofmobileusageinruralandurbansocieties[13] orindierentsocio-economicgroups[32]. Othershavefocussedontheinuenceofpersonality[10,11],the associationbetweensocialcontextandappusagepaerns[26],andusers’motivationsforusingdierenttypes ofapps[18].Moreover,somestudieshavealsofocusedonunderstandingusers’appusagepaernsforpredicting theirfutureinteractionwithapps[27,38]. Anotherparticularaspectthathasaractedtheaentionofresearchersgivenitspracticalimportanceisthe characterizationofthereactionofuserstonoticationsandthedesignofmobilenoticationmanagementsystems. Forexample,somestudieshaveinvestigatedthefactorsthatinuenceusers’aentivenessandreceptivityto notications[24,30]andhowtheseareinuencedbycontext[28],content[23],andthecomplexityofanongoing task[24].Otherprojectshaveaimedatanticipatingusers’aentiveness[30]andreceptivity[22]tonotications bylearningtheirbehavioralpaerns. However,existingworkhasnotconsideredtheimpactoftheexternalfactors,suchasthetypeoflocations usersareinandtheactivitiestheyarecurrentlycarryingout,ontheirinteractionwithnoticationsandapp usage behavior. A deep understanding of these factors would enable us to improve users’ experience and the eectiveness of notications as well as applications (e.g., marketing and positive behavior intervention applications). Keychallengesforsuchastudyincludedatacollectionataverynegranularity,whichmight requirefrequentinputsfromusers,andtheextractionofhigh-levelinformationfromrawsensordatawiththe goalofassigningsemanticstoit. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. UnderstandingtheRoleofPlacesandActivitiesonMobilePhoneInteractionandUsagePaerns • 1:3 Tobridgethisgap,inthispaperwepresenttherstin-situstudyoftheimpactoflocationandactivitieson users’interactionwithmobilenoticationsandapplications. Overaperiodoftwoweeks,wecollectedmore than36,000notications,17,000instancesofapplicationusage,77,000locationsamples,and487daysofdaily activityentries(i.e.,2984activityinstances)from26studentsataUKuniversity.Usingthisdata,weinvestigate users’interactionwithmobilenoticationsandappswhentheyareperformingdierentactivities,whenthey visitdierenttypesoflocations,andlocationswithdierentcharacteristicssuchasbeingboringvs.exciting,sad vs.happy,inactivevs.busy,lazyvs.productive,distressingvs.relaxing,andnaturalvs.urban. ekeycontributionsandndingsofthisworkcanbesummarizedasfollows: Wediscussanin-depthstudyoftherelationshipsbetweenusers’activitiesandinteractionwithnotica- • tionsandapps. Wediscussaquantitativeevaluationofusers’interactionwithnoticationsandappswhentheyareat • dierenttypesoflocations;thisisimportantfromadesignperspective,sinceitallowsustounderstand howcertaintypesofplacesarelinkedtospecictypesofinteractionbehaviorasabasisofthedevelopment ofintelligentapplications. Wepresentanextensiveinvestigationoftheimpactoflocationcharacteristicsonusers’aentiveness • andreceptivitytonoticationsandappusagepaern.Weconsiderdierentcharacterizationofplaces (e.g.,urban,productiveandsoon)inrelationtousers’interactionwithnotications.Again,besidesthe inherentintellectualinterest,thendingsmightbeusedinthedesignofpersonalizedapplicationsbased onlyontheknowledgeofthecurrentlocation. roughouranalysisweuncovervariousnewinsightsaboutthephoneusageandnoticationinteraction behaviorsofusersandalso,quiteimportantly,conrmsomendingsofpreviousstudies.Morespecically,the mainnovelndingsofouranalysisare: Participantsweremorereceptivetonoticationswhiletheywereexercisinganddoingroutinetasks. • Overallcommunicationappswereusedthemost,exceptwhileparticipantsweregoingtosleep,whichis • whentheymostlyusedlifestyleapps. Participantsweremorereceptivetonoticationswhentheywereatcollege,inlibraries,onstreets,and • theywereleastaentivewhilebeingatreligiousinstitutions. eappusagewashighestwhileparticipantswereatcollegeorinlibraries. • Participantsusedmostlymusicandreadingappswhilewaitingatbusstopsandtrainstations. • Participantsweremoreaentivetonoticationsatproductiveplacescomparedtolazyplaces. • Participantswerelessreceptivetonoticationsatnaturalplacescomparedtourbanplaces. • Whileatlazy,distressingandnaturalplacesparticipantsusedtheirphoneslesscomparedtoproductive, • relaxingandurbanplacesrespectively. isstudyhasledtomanyinterestinginsightsthatarediscussedindetailinthefollowingsections.Firstof all,peoplepaylessaentiontonoticationswhentheyarepreparingtogotobed(ortheyareinbedbefore sleeping)andwhileexercising.Peopleacceptmostnoticationsthataredeliveredwhiletheyaredoingexercise androutinetasks.Whenpeopleareonstreets,orincollege,universityandresidentialareas,theynotonlypay moreaentiontowardsnoticationsbutalsoacceptmostofthem.Also,peoplearemoreaentivetonotications atplacesthatarecharacterizedas“productive”.eyacceptmorenoticationsatproductiveandurbanplaces. Furthermore,overallphoneusagedurationaswellasusageofspecicappsvarywhenpeoplevisitspecictypes ofplacesandwhileperformingspecicactivities. Overallappusageishighestwhilepeoplearerelaxing,at collegeorinlibraries,whereasitislowestwhilepeoplearedoingexercise,routinetasksorgoingtosleep,and whentheyareatgyms,religiousinstitutionsorinparkingplaces. Webelievethatthepotentialapplicationsofthisworkaremany. Firstofallthendingsofthispapercan be used as a basis for the development of predictive applications that rely on the analysis of users’ current PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:4 • Mehrotraetal. locationsandnotonlyontheirpastbehavioralpaerns.Morespecically,thisisparticularlyimportantinthe bootstrappingphaseofintelligentapplicationsthatarebasedonlearningalgorithmsthatrequirealargehistory ofpastinteractionswiththephonesinordertomakeaccuratepredictionaboutusers’behavior.Examplesinclude noticationmanagementsystems,andpre-cachingandpre-launchingmechanismsformobileapplications. 2 RELATEDWORK Inthissectionwereviewtherelatedworkintwokeyareas,namelythestudiesaboutthecharacterizationof users’interactionwithnoticationsandthoseaboutusers’appusagebehavior. 2.1 UnderstandingUsers’InteractionwithNotifications Inrecentyearstheareaofmobileinterruptibilityhasreceivedincreasingaention.Previousstudieshaveexplored variousaspectsofusers’interactionwithmobilenotications[4,6,7,12,24,29,35].Inparticular,in[35]Sahami etal.showthatusersdealwitharound60noticationsperday,andmostoftheseareviewedwithinafewminutes ofarrival.Additionally,bycollectingthesubjectivefeedbackfrommobileusers,theauthorsdemonstratethat usersassigndierentimportancetonoticationstriggeredbyapplicationfromdierentcategories.Atthesame time,Pielotetal.[29]showthatpersonalcommunicationnoticationsarerespondedtoquickestbecauseofsocial pressureandtheexchangeoftimecriticalinformationthroughcommunicationapplications(i.e.,Whatsapp). Ontheotherhand, asIqbaletal. suggestin[19], usersarewillingtotoleratesomedisruptioninreturnfor receivingnoticationsthatcontainvaluableinformation.Similarly,in[24]Mehrotraetal.showthatnotications containingimportantorusefulcontentareoenaccepteddespitethedisruptioncausedbythem. Moreover,otherstudieshavealsoinvestigatedhowusers’aentivenessandreceptivitytonoticationsare inuencedbytheircontext[28,30]andcontent[16,22,23]. In[28],theauthorsshowthattheaentiveness ofuserscanbedeterminedbycontextualfactorsincludingactivity,locationandtimeofday. eyproposea mechanismthatreliesonthesecontextmodalitiestopredictopportunemomentsfordeliveringnotications. In[30]Pielotetal.proposeamodelthatcanpredictwhetherauserwillviewanoticationwithinafewminutes withaprecisionofapproximately81%. Ontheotherhand,in[16]theauthorsshowthatusers’receptivityis inuencedbytheirgeneralinterestinthenoticationcontent,entertainmentvalueperceivedinitandaction required by it, but not the time of delivery. In [23] Mehrotra et al. suggest to use contextual information, sender-recipientrelationshipandapplicationcategorythattriggeredthenoticationfordeterminingtheuser’s interruptibility.Inanotherstudy[22],theauthorsdemonstratethatusers’receptivitytonoticationsisinuenced bytheirlocationandthecontentofnoticationsdelivered.eauthorsproposeasystemthatreliesonmachine learningalgorithmsfortheautomaticextractionofrulesthatreectuser’spreferencesforreceivingnotications indierentsituations. 2.2 UnderstandingUsers’AppUsageBehavior Previous studies have investigated the association between users’ app usage behavior and various socio- economic[13,14,32]andpsychological[10,11,26]factors.Othershavefocussedonusers’motivationsforusing dierenttypesofapps[8,18]. Morespecically, in[32], Rahmatietal. presentastudythatinvestigateshowuserswithacertainsocio- economicstatusinstallanduseapps.eirndingsconrmtheinuenceofsocio-economicstatusonphone usage. In[11], theauthorsshowthatthereisasignicantassociationbetweenusers’personalitytraitsand phoneusage.Furthermore,quiteinterestingly,in[18]Hinikeretal.provideevidencethatusers’motivationsfor engagingwithtechnologycanbedividedintoinstrumentalandritualistic. In[8],Bohmeretal. presentalarge-scalestudywiththegoalofunderstandingusers’appusagepaerns basedontheircontext.endingsofthisstudydemonstratethatusersspendaroundanhoureverydayusing theirphones,buttheiraveragesessionusinganapplicationlastsforaminute.Overall,communicationappsget PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. UnderstandingtheRoleofPlacesandActivitiesonMobilePhoneInteractionandUsagePaerns • 1:5 Group Feature Description Arrivaltime Timeatwhichanoticationarrivesinthenoticationbar. Removaltime Timeatwhichanoticationisremovedfromthenoticationbar. Notication Senderapplication Nameandpackageoftheapplicationthattriggersthenotication. AppName Nameoftheapplication. ApplicationUsage LaunchTime Timeatwhichtheapplicationislaunchedandappearedintheforeground. BackgroundTime Timeatwhichtheapplicationuseisendedanditismovedfromforeground tobackground. Lock/unlockevent Timeatwhichthephonewaslockedandunlocked. PhoneInteraction Screeninteraction Typeofinteraction(i.e.,singleclick,longclickandscroll),timeandthename offoregroundapplications(includinghomescreen)withwhichtheinteraction happened. Location Geo-locationoftheplacesvisited. Context DailyActivity Typeandtimedurationofdierentactivitiesperformedinaday.eseactiv- itiesincludesleep,eat,work,physicalexercise,socialactivityandrelaxation. Table1. Descriptionoffeaturesfromthedataset. usedmost,exceptwhenusersaretraveling,inwhichcasetheyaremorelikelytousemultimediaapps.In[15], Ferreiraet.al.conductedastudyshowingthatappusagebehaviorofusersisstronglyinuencedbytheirsocial andspatialcontext. Also,Xuetal.[37]exploitthenetworktracfromapps(basedonHTTPsignatures)to demonstratethatappusageisinuencedbyspatialandtemporalfactorsincludinggeographicalareasandtime oftheday.eirndingsalsoshowthatcertainappshaveanonnegligiblelikelihoodofco-occurrence. An open question in this area remains the impact of locations and activities on users’ interaction with notications. epresentstudyaimstobridgethisgapbyinvestigatingtheeectsofthesefactorsonusers’ aentivenessandreceptivitytonoticationsaswellasontheirappusagebehavior. 3 METHODOLOGY Inthissectionwepresentourapproachforinvestigatingtheinuenceofdailyactivities,typeandcharacteristics ofvisitedlocationsonusers’appusage,andnoticationinteractionbehavior. 3.1 LifeLoggerApp Giventheaimsoftheproposedinvestigation,wedesignedandcarriedoutanin-the-wild study[34]tocollect users’data.Morespecically,wedevelopedanAndroidappcalledMyLifeLogger (showninFigure1).eapp performs continuous sensing in the background to log users’ interaction with notications, app usage, and context.Table1providesadescriptionofthefeaturescapturedbyMyLifeLogger. eappreliesonAndroid’sNoticationListenerService[1]andUsageStatsManager[2]totracenotications andapplicationusage. Moreover, theappallowsuserstoprovidetheirdailyactivityschedules, forwhicha remindernoticationistriggeredeverynightat9pm(localtime).AsshowninFigure1(b),usersweregivenalist ofsixpossibledailyactivities: Eat:timeperiodwhenauserishavingfood. • Sleep:timeperiodforwhichauserslept.1 • Work:timeperiodwhenauserisengagedinanactivityinvolvingmentalorphysicaleort.Sinceour • participantsarestudents,thisactivitywouldmostlyconsistoforberelatedtostudying. 1Itisworthnotingthatparticipantsdidnotreceiveanystandarddenitionoftheseactivitiesbeforethestudy.erefore,forexample,some participantsmighthaveinterpretedsleepingasbeinginbed. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:6 • Mehrotraetal. Exercise:timeperiodwhenauserisperforminghealthandtnessactivities. • Social:timeperiodwhenauserissocializingwithothers. • Relaxation:timeperiodduringwhichauserisbeingfreefromtensionandanxiety. • Itisworthnotingthatparticipantswereabletoselectonlyoneactivityforaspecictimeinterval.Moreover, theywereallowedtoenterotheractivitiesbyselectingtheother option,throughwhichtheycouldinputan activitynameasfreetext. Mostactivitiesregisteredthroughtheother activityoptionwererelatedtoroutine taskssuchaslaundry,cooking,geingready,packing,supermarketandsoon.erefore,wecreatedanother categoryforchoresandmappedtheroutinetasksenteredthroughtheother activityoptiontothisnewactivity. eMyLifeLoggerappalsocollectedadditionaldataaboutothercontextualfeatures(suchasmovement,call andSMSlogs)aswellasmood-relatedquestionnaires. However,wedonotdiscussthoseaspectsofthedata becausetheyarenotusedfortheanalysispresentedinthispaper. 3.2 RecruitmentoftheParticipants MyLifeLoggerwaspublishedonGooglePlayStore2andadvertisedtorst-yearundergraduatestudentsataUK University.Itwasinstalledby28studentsand26studentscompletedthestudybykeepingtheapprunningon theirphoneforaminimumoftwoweeks.eseparticipantscomefrombothsexes(16malesand10females), withtheagespanbetween18and27years(mean =19.46andstandardde�iation =2.18). estudentswere enrolledin15dierentcoursesand27%(n=7)werenon-British.Allparticipantswhocompletedthestudywere given£25. 3.3 EnsuringPrivacyCompliance InordertoallowtheMyLifeLoggerapplicationtomonitornoticationsandappusage,theuserhastogiveexplicit permissionasrequiredbytheAndroidoperatingsystem.Moreover,theapplicationalsoshowsaconsentform detailingtheinformationthatiscollected.isensuresthattheusergoesthroughatwo-leveluseragreement andiscompletelyawareofthetypeofinformationcapturedbytheapplication. Itisworthnotingthatwereceivedethicalapprovalforthestudy,includingallproceduresandmaterials,from thePsychologyResearchEthicsCommieeattheUniversityofCambridge. 3.4 Dataset Weanalyzedthedataof26userswhoparticipatedforaminimumperiodoftwoweeks.edatasetcorresponding totheseusersincludes36,106notications,17,680instancesofapplicationusage,77,306locationsamples,and 487daysofdailyactivityentries(i.e.,2,984activities). 3.4.1 CharacterizingLocations. Inordertoperformouranalysisontheimpactoflocationonnotication responseandapplicationusage,wecannotjustrelyonsensor(i.e.,GPS)dataasitonlyprovidesthecoordinates ofaplaceratherthanitstypeandcharacteristics.erefore,wemanuallycategorizedthelocationsbyclustering themintosignicantplaces,andthencharacterizedthesignicantplacesbyhavingcodersrateeachplaceon severaldimensions(e.g.,thedegreetowhichaplaceisinactivevsbusy). IdentifyingSignicantPlaces.Firstofall,wediscardthelocationsampleswithmorethan50metersaccuracy sothattheestimatedlocationclustersareofbeerquality.Wethenndthelocationsamplesthatwerecollected whileusersweremovingandwealsodiscardthem.Inordertoinfersuchlocationpoints,wecomputethespeed oftheuserbyusingthedistanceandthetimebetweenthelastandthecurrentlocationpoints.Ifthespeedis 2hps://play.google.com/store/apps/details?id=com.nsds.mystudentlife PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. UnderstandingtheRoleofPlacesandActivitiesonMobilePhoneInteractionandUsagePaerns • 1:7 lessthanacertainthreshold(i.e.,5kmperhour)weconsiderthatlocationreadingwascollectedwhentheuser wasnotmoving. Now,weusethelocationclusteringapproachpresentedin[36]forgroupingthelteredlocationsamples.We iterateoveralllocationsamplesandforeachlocationpointwecreateanewclusteronlyifthedistanceofthis locationfromthecentroidofeachexistingclusterismorethan200meters.Otherwise,weaddthislocationto thecorrespondingclusterandupdateitscentroid.Finally,weconsiderallcentroidsassignicantplaces. IdentifyingPlaceTypeandCharacteristics.Placescanbedescribedintermsofobjectiveinformation,such aswhetheralocationisindoororoutdoor,orinaresidentialorindustrialarea,andalsointermsofinformation thatrelatestousers’aectiveappraisalsofthem.Despitepeople’sexperiencesofcoursebeingsubjective,they on average agree on a variety of characteristics such as liveliness, pleasantness, and naturalness, to name a few[17,25].Atthesametime,werecruitedcodersbelongingtothesamedemographicsoftheparticipants(e.g., studentstatus,averageage,evengenderdistribution)toreducethesubjectivenessinplaceratings.Moreover,we computedthesimilarityintheratingstoensurethattheyarereliable. Onaverage,53signicantplaces(perperson)wereidentiedinthetwo-weekstudyperiod.Foreachparticipant weselectedthetoptenplacesinwhichtheyhadspentmosttime.Werecruitedfourindependentcoderswho wereundergraduatestudentsthemselvesbutnotparticipantsinthestudy.First,theyweretrainedinpersonand providedwithadetailedhandbookonthelocationcodingprocess.Aertheirtraining,theywereprovidedwith alistofcoordinates(i.e.,longitudeandlatitude)oftherespectiveplaces,andtheywereaskedtocategorizeand evaluatetheseplacesforthegivencharacteristicsbylookingatthemusingGooglemaps. Inordertocategorizetheplacetype,werelyonGoogle’sPlaceTypes[3]asthepossiblecategories.Moreover, coderswereprovidedwithanoptiontoenteranadditionalplacetypeincaseitwasnotpresentinthegivenlist. Incaseswhereaplacetypewasunclear,codersusedan“unclear”categorytodenoteanambiguousplace.Finally, eachplacetypethatwasclassiedbyfourcoderswasmergedbyoneoftheauthors.Itisworthnotingthatwe lteredoutthecategoriesthatappearedrarelyornotatall.Inordertoperformthisltering,weensuredthat placesofeachcategorywerevisitedatleastoncebyaminimumof50%oftheparticipants. Inordertoidentifythecharacteristicsofsignicantplaces,thesewerealsocodedfor24descriptivecharacter- isticsthatcapturedtheambienceoftheplace,andthetypesofpeoplethatwouldvisittheplace.Inthiswork,we focusedonthefourcharacteristicratingsthatdescribetheambianceoftheplace.Specically,wefocusedonthe degreetowhichtheplacewas:inactive-busy,lazy-productive,distressing-relaxing,andnatural-urban.esefour characteristicswereratedona7-pointLikertscale. eseratingsfromthefourcoderswerethenmergedby computingtheirmean. Finally,themergedratingswerecenteredandrescaledfroma1to7scaletoa-3to3 scale.Wethentransformthesefroma7-pointscaletoa3pointsscale(-1to1)byusingtheseranges:-3to-0.5as -1,-0.5to0.5as0,and0.5to3as1.isturnedthecontinuousvariableintoacategoricaloneandmakesitlikely thatwehaveenoughdataforalllevels.Levels 1,0,1representthenegative,neutral,andpositivevalueofthe � locationcharacteristicrespectively.Forinstance,theseratingsforinactive-busycharacteristicswouldconvertto inactive,neutralandbusy. 3.4.2 AppCategories. Inordertoinvestigateusers’behaviorforinteractingwithspecicapps,wecategorized all apps using the categories dened on the Google Play store. Overall, the apps belong to 11 categories, namelyreading,tness,business,photography,communication,game,lifestyle,music,social,tools,andtravel applications. However,appsofcertaincategoriesarenotusedbyallparticipants. erefore,weconsiderthe typeofappsthatwereusedbyallparticipants. Consequently,wecameupwiththefollowingsixcategories: communication,lifestyle,music,reading,social,andtravelapplications. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:8 • Mehrotraetal. 3.5 antitativeMeasuresforNotificationandPhoneUsage In this section we discuss the metrics used in this study for quantifying users’ behavior in terms of their interactionswithnoticationsandapps. Weusetwometricsforquantifyinginteractionwithnotications– NoticationReceptivityandNoticationSeenTime,andonemetricforinteractionwithapp–AppUsageTime. eseareclassicindicatorswidelyadoptedforthistypeofstudiesbytheubiquitouscomputingcommunity(see forexample[16,30]).edenitionsofthesemetricsarereportedbelow. NoticationReceptivity:theuser’swillingnesstoreceiveanotication.ismetricrepresentshow • willingauseristoreceiveinterruptions. Highreceptivity(i.e.,moreclicks)indicatesincreaseinthe willingnessoftheusertobeinterruptedandviceversa.Inordertoinfertheresponsetoanotication,we checkwhetherthecorrespondingapp(whichtriggeredthenotication)waslaunchedaertheremoval timeofthatnotication.Weareawarethatourapproachhaslimitations,becausesomenoticationsthat donotrequirefurtheractionmightnotbeclickedratherjustseenanddismissedbytheuser. NoticationSeenTime(NoticationAttentiveness):thetimefromthenoticationarrivaluntilthe • time the notication was seen by the user. is metric reects the user’s aentiveness towards new notications.Inordertodetectthemomentatwhichanoticationisseen,weusetheunlockeventof thephoneandassumethatallnewlyavailablenoticationsinthenoticationbarareseenwhentheuser unlocksthephone.Incaseanoticationarriveswhentheuserisalreadyusingthephone(i.e.,thephone isunlocked),theseentimeofthisnoticationwouldbeconsideredequaltozero.Todetectthelockand unlockeventsweusethePhoneInteractiondata(discussedinTable1).Itisworthnotingthatweremoved allnoticationinstancesthatwerenotrespondedtowithin2hours.Asarecentstudy[29]demonstrated thatpeoplereceivenoticationseveryhour(frommorningtolatenight),whicharehandledwithinafew minutes.erefore,weuse2-hourthresholdforthemaximumseentimetolteroutnoticationsthat arrivedwhentheuserwasawayfromthephoneorsleeping. AppUsageTime:durationforwhichanapplicationwasinforeground.Morespecically,itisthetime • intervalbetweenthelaunchofanapplicationandtheinstantoftimewhenitwassenttothebackground. We compute these metrics for each user when they are performing specic activities and when they are atcertaintypesofplaces. Wethenaggregatethesemetricstocomputetheiraveragevalues. Finally,weuse statisticalteststocomparethedierenceinusers’interactionwhenperformingdierentactivitiesatdierent typesofplaces. ItisworthnotingthatwhilecomputingAppUsageTimefordierentactivities,wenormalizetheappusage valuebydividingitbythetimespentbytheuserengaginginthecorrespondingactivity.Similarly,tocompute theAppUsageTimefordierenttypesofplaces,wenormalizetheappusagevaluebydividingitbythetime spentbytheuseratthecorrespondingplace.isstepisnecessaryinordertoavoidbiasesduetotherelative timesspentinagivenlocationorwhileengaginginacertainactivity.erefore,theuseofanon-normalized AppUsageTimemetriccouldproducebiasedresults. 3.6 Procedure Wewanttoinvestigatetheinuenceofvariables,includingdailyactivities,typeandcharacteristicsofvisited locations,onthenoticationandphoneusagebehaviorofusers,soweconsiderthemastheindependentvariables. Ontheotherhand,ourdependentvariablesshouldrepresentthenoticationandphoneusagebehaviorofusers. erefore,weusethethreenoticationandphoneusagemetrics(NoticationReceptivity,NoticationSeenTime, andAppUsageTime)asdependentvariables. eanalyseswereperformedforeachpairofindependentand dependentvariables.Weperformaone-wayANOVAforquantifyingthedierencesinthedependentvariables (i.e.,NoticationReceptivityandNoticationSeenTime)thatrepresentsnoticationinteractionbehavior.However, forquantifyingthevariabilityinthedependentvariable(i.e.,AppUsageTime)thatrepresentappusagebehavior, PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. UnderstandingtheRoleofPlacesandActivitiesonMobilePhoneInteractionandUsagePaerns • 1:9 ANOVA (p<0.05) 90 ANOVA (p<0.05) 40 Seen Time (mins)123000 ● ● Receptivity (%)678000 ● ● ● ● ● ● ● ● ● ● ● 50 ● 0 work sleep chores relaxation social eat exercise work sleep chores relaxation social eat exercise Daily Activity Daily Activity (a) (b) Fig.2. Roleofdailyactivityininfluencingtheuser’s(a)aentivenessand(b)receptivity.Dierentcolorindicatesstatistically significantdierences(p<0.05).Intheseplotsthedotsrepresentthemeansandthebarsrepresentthestandarddeviations. Activity work chores social exercise Activity work chores social exercise sleep relaxation eat sleep relaxation eat 0.08 0.015 0.06 Density0.04 Density0.010 0.02 0.005 0.00 0.000 0 25 50 75 0 25 50 75 100 Seen Time (mins) Receptivity (a) (b) Fig.3. Probabilitydistributionsofusers’average(a)aentivenessand(b)receptivitywhileperformingdierentdailyactivities. Here,probabilitiescanbecomputedasmultiplicationofdensitywithaentivenessandreceptivityvaluesrespectively. weperformatwo-wayANOVA,becauseappcategoryisconsideredasanotherindependentvariableapartfrom activityandlocationbasedindependentvariables.Itisworthnotingthatweremovedthelevelsofindependent variablesthatdidnothaveobservationsfromatleast50%oftheparticipants. 4 UNDERSTANDINGTHEROLEOFDAILYACTIVITY Inthissectionweprovideaquantitativeevaluationoftherelationshipbetweendailyactivityandtheusers’ behaviorintermsofnoticationinteractionandappusage. ekeyndingsofthissectionare: Peopleareleastaentivetonoticationswhiletheyarepreparingtogotobed(orusingthephone • inbed)andduringthetimetheyexercise. Peoplearemorereceptivetonoticationswhiletheyareexercisinganddoingchores(i.e.,routine • tasks). Overallappusageishighestwhilepeoplearerelaxingandlowestwhentheyareengagedinchores, • doingexerciseandgoingtosleep. Usageofspecicappsisassociatedtousers’dailyactivities. • PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:10 • Mehrotraetal. Application Category ● communication ● lifestyle ● music ● reading ● social ● travel ANOVA App Category (p<0.05) %)3 ● Daily Activity (p<0.05) me ( ● ● Interaction (p<0.05) Ti e 2 ● g a s ● pp U1 ● ● ● ● ● ● ●● ● A0 ● ● ● ●●● ● ● ●●●● ●●● ● ●●●●● ● ● ●●●●● work eat sleep social chores relaxation exercise Daily Activity Fig.4. Relationbetweendailyactivityandapplicationusage.Inthisplotthedotsrepresentthemeansandthebarsrepresent thestandarddeviations.. 4.1 AentivenessandReceptivity Toinvestigatetherelationshipbetweendailyactivityandusers’aentivenessandreceptivitytonotications, weperformtwoseparateone-wayANOVAsthatquantifythedierencesintheuser’s(i)aentivenessand(ii) receptivitytonoticationswhiletheyperformdierentactivities.eresultsoftherstanalysis(i.e.,eects onaentiveness)showthatthereisasignicanteectofdailyactivitiesontheuser’saentiveness,withF = 4.788,p <0.05.Inordertondwhichdailyactivitiesaectusers’aentiveness,weperformaTukeypost-hoc test(byseing� equalto0.05).AsshowninFigure2(a),thetestrevealsthattheseentimeislongest(i.e.,low aentiveness)whennoticationsarrivewhiletheuserissleeping.However,thereisnosignicantdierence inaentivenessofuserswhiletheyareengagedinanyotherdailyactivity,exceptthattheyareslightlyless aentivewhileexercising. eresultsofthesecondanalysisshowthatthereisalsoasignicanteectofdailyactivitiesontheusers’ receptivitytonotications,withF =2.947,p <0.05.AsshowninFigure2(b),aTukeypost-hoctest(byseing� equalto0.05)revealsthatusers’aremostreceptivetonoticationswhentheyareperformingchoresorphysical exercisecomparedtootheractivities. Moreover,inordertoinvestigatethediversityinusers’aentivenessandreceptivity,inFigure3wepresentthe probabilitydistributionofusers’averageaentivenessandreceptivitywhiletheyareperformingdierentdaily activities.eresultsdemonstratethatthereissomevariabilityinbothaentivenessandreceptivitybetween users.Forinstance,someusersareconsiderablylessaentivetonoticationswhileexercisingcomparedtoother users.Users’receptivityvariesacrossallactivities. 4.2 AppUsageTime Inordertoinvestigatetherelationshipbetweendailyactivitiesandtheappusage,weperformatwo-wayANOVA byseingappusagetimeasdependentvariable(DV),anddailyactivityandappcategoryasindependentvariable (IVs). Here,weusetwoIVsaswecanquantifyboththeeectofdailyactivityonoverallappusagetimeand theeectofdailyactivityoftheuseofspecicapps.eresultsdemonstratethatalleectswerestatistically signicantatthe0.05signicancelevel.emaineectfordailyactivityyieldedF =7.45(p <0.05),indicatinga signicantdierenceintheuser’soverallappusagetime(allcategoriesconsideredtogether)whileperforming PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017.
Description: