ebook img

Understanding the Role of Places and Activities on Mobile Phone Interaction and Usage Patterns PDF

22 Pages·2017·2.22 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Understanding the Role of Places and Activities on Mobile Phone Interaction and Usage Patterns

1 Understanding the Role of Places and Activities on Mobile Phone Interaction and Usage Pa￿erns ABHINAVMEHROTRA,UniversityCollegeLondon,UK SANDRINER.MU¨LLER,UniversityofCambridge,UK GABRIELLAM.HARARI,StanfordUniversity,USA SAMUELD.GOSLING,UniversityofTexasatAustin,USAandUniversityofMelbourne,Australia CECILIAMASCOLO,UniversityofCambridgeand￿eAlanTuringInstitute,UK MIRCOMUSOLESI,UniversityCollegeLondonand￿eAlanTuringInstitute,UK P.JASONRENTFROW,UniversityofCambridge,UK Userinteractionpa￿ernswithmobileappsandnoti￿cationsaregenerallycomplexduetothemanyfactorsinvolved.However adeepunderstandingofwhatin￿uencesthemcanleadtomoreacceptableapplicationsthatareabletodeliverinformationat therighttime.Inthispaper,wepresentforthe￿rsttimeanin-depthanalysisofinteractionbehaviorwithnoti￿cationsin relationtothelocationandactivityofusers.Weconductedanin-situstudyforaperiodoftwoweekstocollectmorethan 36,000noti￿cations,17,000instancesofapplicationusage,77,000locationsamples,and487daysofdailyactivityentriesfrom 26studentsataUKuniversity. Ourresultsshowthatusers’a￿entiontowardsnewnoti￿cationsandwillingnesstoacceptthemarestronglylinkedtothe locationtheyareinandinminorparttotheircurrentactivity.Weconsiderbothusers’receptivityanda￿entiveness,andwe showthatdi￿erentresponsebehaviorsareassociatedtodi￿erentlocations.￿ese￿ndingsarefundamentalfromadesign perspectivesincetheyallowustounderstandhowcertaintypesofplacesarelinkedtospeci￿ctypesofinteractionbehavior. ￿isinformationcanbeusedasabasisforthedevelopmentofnovelintelligentmobileapplicationsandservices. CCSConcepts:•Human-centeredcomputing HCIdesignandevaluationmethods;Empiricalstudiesinubiquitousand ! mobilecomputing; AdditionalKeyWordsandPhrases:MobileSensing,Noti￿cations,ApplicationUsage,Context-awareComputing. ACMReferenceformat: AbhinavMehrotra,SandrineR.Mu¨ller,GabriellaM.Harari,SamuelD.Gosling,CeciliaMascolo,MircoMusolesi,andP.Jason Rentfrow.2017.UnderstandingtheRoleofPlacesandActivitiesonMobilePhoneInteractionandUsagePa￿erns.PACM Interact.Mob.WearableUbiquitousTechnol.1,1,Article1(July2017),22pages. DOI:10.1145/nnnnnnn.nnnnnnn 1 INTRODUCTION Mobilephonestodayhavebecomeanindispensablepartofourdailylives.Farfrombeingsimplecallinginstru- ments,theyarenowadvancedcomputingplatformswithalways-onconnectivity,high-speeddataprocessingand advancedsensing[21].￿esea￿ordanceshaveopenedthepossibilityofimplementingnovelcontext-awareand personalizedapplicationsthatareabletoassistusinavarietyofday-to-daysituations.Atthesametime,they Permissiontomakedigitalorhardcopiesofallorpartofthisworkforpersonalorclassroomuseisgrantedwithoutfeeprovidedthat copiesarenotmadeordistributedforpro￿torcommercialadvantageandthatcopiesbearthisnoticeandthefullcitationonthe￿rst page.CopyrightsforcomponentsofthisworkownedbyothersthanACMmustbehonored.Abstractingwithcreditispermi￿ed.Tocopy otherwise,orrepublish,topostonserversortoredistributetolists,requirespriorspeci￿cpermissionand/orafee.Requestpermissionsfrom [email protected]. ©2017ACM. 2474-9567/2017/7-ART1$15.00 DOI:10.1145/nnnnnnn.nnnnnnn PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:2 • Mehrotraetal. (a) (b) (c) (d) Fig.1. TheMyLifeLoggerapplication. representauniqueplatformforreal-timedeliveryofinformationaboutavarietyofeventsrangingfromemails toupdatesononlinesocialnetworks,fromadvertisementstopositivebehaviorchangeinterventions[5,20,31]. ￿eadventofmobilesensinghasprovidedagreatopportunityforresearchersandpractitionerstoinvestigate users’mobileinteractionbehavior.Mobileappsarenowcapableofrecordinginformationaboutusers’interactions withmobilephonesandthesurroundingcontext(e.g.,location,activity,audioenvironment,andcollocationwith otherdevices).￿ankstotheavailabilityofthisinformation,researchershavebeenabletoconductseveralstudies onavarietyofaspectsofhuman-smartphoneinteraction.Forexample,studieshaveinvestigatedthediversityin appusagebehaviorofindividuals[14],thecharacterizationofmobileusageinruralandurbansocieties[13] orindi￿erentsocio-economicgroups[32]. Othershavefocussedonthein￿uenceofpersonality[10,11],the associationbetweensocialcontextandappusagepa￿erns[26],andusers’motivationsforusingdi￿erenttypes ofapps[18].Moreover,somestudieshavealsofocusedonunderstandingusers’appusagepa￿ernsforpredicting theirfutureinteractionwithapps[27,38]. Anotherparticularaspectthathasa￿ractedthea￿entionofresearchersgivenitspracticalimportanceisthe characterizationofthereactionofuserstonoti￿cationsandthedesignofmobilenoti￿cationmanagementsystems. Forexample,somestudieshaveinvestigatedthefactorsthatin￿uenceusers’a￿entivenessandreceptivityto noti￿cations[24,30]andhowthesearein￿uencedbycontext[28],content[23],andthecomplexityofanongoing task[24].Otherprojectshaveaimedatanticipatingusers’a￿entiveness[30]andreceptivity[22]tonoti￿cations bylearningtheirbehavioralpa￿erns. However,existingworkhasnotconsideredtheimpactoftheexternalfactors,suchasthetypeoflocations usersareinandtheactivitiestheyarecurrentlycarryingout,ontheirinteractionwithnoti￿cationsandapp usage behavior. A deep understanding of these factors would enable us to improve users’ experience and the e￿ectiveness of noti￿cations as well as applications (e.g., marketing and positive behavior intervention applications). Keychallengesforsuchastudyincludedatacollectionatavery￿negranularity,whichmight requirefrequentinputsfromusers,andtheextractionofhigh-levelinformationfromrawsensordatawiththe goalofassigningsemanticstoit. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. UnderstandingtheRoleofPlacesandActivitiesonMobilePhoneInteractionandUsagePa￿erns • 1:3 Tobridgethisgap,inthispaperwepresentthe￿rstin-situstudyoftheimpactoflocationandactivitieson users’interactionwithmobilenoti￿cationsandapplications. Overaperiodoftwoweeks,wecollectedmore than36,000noti￿cations,17,000instancesofapplicationusage,77,000locationsamples,and487daysofdaily activityentries(i.e.,2984activityinstances)from26studentsataUKuniversity.Usingthisdata,weinvestigate users’interactionwithmobilenoti￿cationsandappswhentheyareperformingdi￿erentactivities,whenthey visitdi￿erenttypesoflocations,andlocationswithdi￿erentcharacteristicssuchasbeingboringvs.exciting,sad vs.happy,inactivevs.busy,lazyvs.productive,distressingvs.relaxing,andnaturalvs.urban. ￿ekeycontributionsand￿ndingsofthisworkcanbesummarizedasfollows: Wediscussanin-depthstudyoftherelationshipsbetweenusers’activitiesandinteractionwithnoti￿ca- • tionsandapps. Wediscussaquantitativeevaluationofusers’interactionwithnoti￿cationsandappswhentheyareat • di￿erenttypesoflocations;thisisimportantfromadesignperspective,sinceitallowsustounderstand howcertaintypesofplacesarelinkedtospeci￿ctypesofinteractionbehaviorasabasisofthedevelopment ofintelligentapplications. Wepresentanextensiveinvestigationoftheimpactoflocationcharacteristicsonusers’a￿entiveness • andreceptivitytonoti￿cationsandappusagepa￿ern.Weconsiderdi￿erentcharacterizationofplaces (e.g.,urban,productiveandsoon)inrelationtousers’interactionwithnoti￿cations.Again,besidesthe inherentintellectualinterest,the￿ndingsmightbeusedinthedesignofpersonalizedapplicationsbased onlyontheknowledgeofthecurrentlocation. ￿roughouranalysisweuncovervariousnewinsightsaboutthephoneusageandnoti￿cationinteraction behaviorsofusersandalso,quiteimportantly,con￿rmsome￿ndingsofpreviousstudies.Morespeci￿cally,the mainnovel￿ndingsofouranalysisare: Participantsweremorereceptivetonoti￿cationswhiletheywereexercisinganddoingroutinetasks. • Overallcommunicationappswereusedthemost,exceptwhileparticipantsweregoingtosleep,whichis • whentheymostlyusedlifestyleapps. Participantsweremorereceptivetonoti￿cationswhentheywereatcollege,inlibraries,onstreets,and • theywereleasta￿entivewhilebeingatreligiousinstitutions. ￿eappusagewashighestwhileparticipantswereatcollegeorinlibraries. • Participantsusedmostlymusicandreadingappswhilewaitingatbusstopsandtrainstations. • Participantsweremorea￿entivetonoti￿cationsatproductiveplacescomparedtolazyplaces. • Participantswerelessreceptivetonoti￿cationsatnaturalplacescomparedtourbanplaces. • Whileatlazy,distressingandnaturalplacesparticipantsusedtheirphoneslesscomparedtoproductive, • relaxingandurbanplacesrespectively. ￿isstudyhasledtomanyinterestinginsightsthatarediscussedindetailinthefollowingsections.Firstof all,peoplepaylessa￿entiontonoti￿cationswhentheyarepreparingtogotobed(ortheyareinbedbefore sleeping)andwhileexercising.Peopleacceptmostnoti￿cationsthataredeliveredwhiletheyaredoingexercise androutinetasks.Whenpeopleareonstreets,orincollege,universityandresidentialareas,theynotonlypay morea￿entiontowardsnoti￿cationsbutalsoacceptmostofthem.Also,peoplearemorea￿entivetonoti￿cations atplacesthatarecharacterizedas“productive”.￿eyacceptmorenoti￿cationsatproductiveandurbanplaces. Furthermore,overallphoneusagedurationaswellasusageofspeci￿cappsvarywhenpeoplevisitspeci￿ctypes ofplacesandwhileperformingspeci￿cactivities. Overallappusageishighestwhilepeoplearerelaxing,at collegeorinlibraries,whereasitislowestwhilepeoplearedoingexercise,routinetasksorgoingtosleep,and whentheyareatgyms,religiousinstitutionsorinparkingplaces. Webelievethatthepotentialapplicationsofthisworkaremany. Firstofallthe￿ndingsofthispapercan be used as a basis for the development of predictive applications that rely on the analysis of users’ current PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:4 • Mehrotraetal. locationsandnotonlyontheirpastbehavioralpa￿erns.Morespeci￿cally,thisisparticularlyimportantinthe bootstrappingphaseofintelligentapplicationsthatarebasedonlearningalgorithmsthatrequirealargehistory ofpastinteractionswiththephonesinordertomakeaccuratepredictionaboutusers’behavior.Examplesinclude noti￿cationmanagementsystems,andpre-cachingandpre-launchingmechanismsformobileapplications. 2 RELATEDWORK Inthissectionwereviewtherelatedworkintwokeyareas,namelythestudiesaboutthecharacterizationof users’interactionwithnoti￿cationsandthoseaboutusers’appusagebehavior. 2.1 UnderstandingUsers’InteractionwithNotifications Inrecentyearstheareaofmobileinterruptibilityhasreceivedincreasinga￿ention.Previousstudieshaveexplored variousaspectsofusers’interactionwithmobilenoti￿cations[4,6,7,12,24,29,35].Inparticular,in[35]Sahami etal.showthatusersdealwitharound60noti￿cationsperday,andmostoftheseareviewedwithinafewminutes ofarrival.Additionally,bycollectingthesubjectivefeedbackfrommobileusers,theauthorsdemonstratethat usersassigndi￿erentimportancetonoti￿cationstriggeredbyapplicationfromdi￿erentcategories.Atthesame time,Pielotetal.[29]showthatpersonalcommunicationnoti￿cationsarerespondedtoquickestbecauseofsocial pressureandtheexchangeoftimecriticalinformationthroughcommunicationapplications(i.e.,Whatsapp). Ontheotherhand, asIqbaletal. suggestin[19], usersarewillingtotoleratesomedisruptioninreturnfor receivingnoti￿cationsthatcontainvaluableinformation.Similarly,in[24]Mehrotraetal.showthatnoti￿cations containingimportantorusefulcontentareo￿enaccepteddespitethedisruptioncausedbythem. Moreover,otherstudieshavealsoinvestigatedhowusers’a￿entivenessandreceptivitytonoti￿cationsare in￿uencedbytheircontext[28,30]andcontent[16,22,23]. In[28],theauthorsshowthatthea￿entiveness ofuserscanbedeterminedbycontextualfactorsincludingactivity,locationandtimeofday. ￿eyproposea mechanismthatreliesonthesecontextmodalitiestopredictopportunemomentsfordeliveringnoti￿cations. In[30]Pielotetal.proposeamodelthatcanpredictwhetherauserwillviewanoti￿cationwithinafewminutes withaprecisionofapproximately81%. Ontheotherhand,in[16]theauthorsshowthatusers’receptivityis in￿uencedbytheirgeneralinterestinthenoti￿cationcontent,entertainmentvalueperceivedinitandaction required by it, but not the time of delivery. In [23] Mehrotra et al. suggest to use contextual information, sender-recipientrelationshipandapplicationcategorythattriggeredthenoti￿cationfordeterminingtheuser’s interruptibility.Inanotherstudy[22],theauthorsdemonstratethatusers’receptivitytonoti￿cationsisin￿uenced bytheirlocationandthecontentofnoti￿cationsdelivered.￿eauthorsproposeasystemthatreliesonmachine learningalgorithmsfortheautomaticextractionofrulesthatre￿ectuser’spreferencesforreceivingnoti￿cations indi￿erentsituations. 2.2 UnderstandingUsers’AppUsageBehavior Previous studies have investigated the association between users’ app usage behavior and various socio- economic[13,14,32]andpsychological[10,11,26]factors.Othershavefocussedonusers’motivationsforusing di￿erenttypesofapps[8,18]. Morespeci￿cally, in[32], Rahmatietal. presentastudythatinvestigateshowuserswithacertainsocio- economicstatusinstallanduseapps.￿eir￿ndingscon￿rmthein￿uenceofsocio-economicstatusonphone usage. In[11], theauthorsshowthatthereisasigni￿cantassociationbetweenusers’personalitytraitsand phoneusage.Furthermore,quiteinterestingly,in[18]Hinikeretal.provideevidencethatusers’motivationsfor engagingwithtechnologycanbedividedintoinstrumentalandritualistic. In[8],Bohmeretal. presentalarge-scalestudywiththegoalofunderstandingusers’appusagepa￿erns basedontheircontext.￿e￿ndingsofthisstudydemonstratethatusersspendaroundanhoureverydayusing theirphones,buttheiraveragesessionusinganapplicationlastsforaminute.Overall,communicationappsget PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. UnderstandingtheRoleofPlacesandActivitiesonMobilePhoneInteractionandUsagePa￿erns • 1:5 Group Feature Description Arrivaltime Timeatwhichanoti￿cationarrivesinthenoti￿cationbar. Removaltime Timeatwhichanoti￿cationisremovedfromthenoti￿cationbar. Noti￿cation Senderapplication Nameandpackageoftheapplicationthattriggersthenoti￿cation. AppName Nameoftheapplication. ApplicationUsage LaunchTime Timeatwhichtheapplicationislaunchedandappearedintheforeground. BackgroundTime Timeatwhichtheapplicationuseisendedanditismovedfromforeground tobackground. Lock/unlockevent Timeatwhichthephonewaslockedandunlocked. PhoneInteraction Screeninteraction Typeofinteraction(i.e.,singleclick,longclickandscroll),timeandthename offoregroundapplications(includinghomescreen)withwhichtheinteraction happened. Location Geo-locationoftheplacesvisited. Context DailyActivity Typeandtimedurationofdi￿erentactivitiesperformedinaday.￿eseactiv- itiesincludesleep,eat,work,physicalexercise,socialactivityandrelaxation. Table1. Descriptionoffeaturesfromthedataset. usedmost,exceptwhenusersaretraveling,inwhichcasetheyaremorelikelytousemultimediaapps.In[15], Ferreiraet.al.conductedastudyshowingthatappusagebehaviorofusersisstronglyin￿uencedbytheirsocial andspatialcontext. Also,Xuetal.[37]exploitthenetworktra￿cfromapps(basedonHTTPsignatures)to demonstratethatappusageisin￿uencedbyspatialandtemporalfactorsincludinggeographicalareasandtime oftheday.￿eir￿ndingsalsoshowthatcertainappshaveanonnegligiblelikelihoodofco-occurrence. An open question in this area remains the impact of locations and activities on users’ interaction with noti￿cations. ￿epresentstudyaimstobridgethisgapbyinvestigatingthee￿ectsofthesefactorsonusers’ a￿entivenessandreceptivitytonoti￿cationsaswellasontheirappusagebehavior. 3 METHODOLOGY Inthissectionwepresentourapproachforinvestigatingthein￿uenceofdailyactivities,typeandcharacteristics ofvisitedlocationsonusers’appusage,andnoti￿cationinteractionbehavior. 3.1 LifeLoggerApp Giventheaimsoftheproposedinvestigation,wedesignedandcarriedoutanin-the-wild study[34]tocollect users’data.Morespeci￿cally,wedevelopedanAndroidappcalledMyLifeLogger (showninFigure1).￿eapp performs continuous sensing in the background to log users’ interaction with noti￿cations, app usage, and context.Table1providesadescriptionofthefeaturescapturedbyMyLifeLogger. ￿eappreliesonAndroid’sNoti￿cationListenerService[1]andUsageStatsManager[2]totracenoti￿cations andapplicationusage. Moreover, theappallowsuserstoprovidetheirdailyactivityschedules, forwhicha remindernoti￿cationistriggeredeverynightat9pm(localtime).AsshowninFigure1(b),usersweregivenalist ofsixpossibledailyactivities: Eat:timeperiodwhenauserishavingfood. • Sleep:timeperiodforwhichauserslept.1 • Work:timeperiodwhenauserisengagedinanactivityinvolvingmentalorphysicale￿ort.Sinceour • participantsarestudents,thisactivitywouldmostlyconsistoforberelatedtostudying. 1Itisworthnotingthatparticipantsdidnotreceiveanystandardde￿nitionoftheseactivitiesbeforethestudy.￿erefore,forexample,some participantsmighthaveinterpretedsleepingasbeinginbed. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:6 • Mehrotraetal. Exercise:timeperiodwhenauserisperforminghealthand￿tnessactivities. • Social:timeperiodwhenauserissocializingwithothers. • Relaxation:timeperiodduringwhichauserisbeingfreefromtensionandanxiety. • Itisworthnotingthatparticipantswereabletoselectonlyoneactivityforaspeci￿ctimeinterval.Moreover, theywereallowedtoenterotheractivitiesbyselectingtheother option,throughwhichtheycouldinputan activitynameasfreetext. Mostactivitiesregisteredthroughtheother activityoptionwererelatedtoroutine taskssuchaslaundry,cooking,ge￿ingready,packing,supermarketandsoon.￿erefore,wecreatedanother categoryforchoresandmappedtheroutinetasksenteredthroughtheother activityoptiontothisnewactivity. ￿eMyLifeLoggerappalsocollectedadditionaldataaboutothercontextualfeatures(suchasmovement,call andSMSlogs)aswellasmood-relatedquestionnaires. However,wedonotdiscussthoseaspectsofthedata becausetheyarenotusedfortheanalysispresentedinthispaper. 3.2 RecruitmentoftheParticipants MyLifeLoggerwaspublishedonGooglePlayStore2andadvertisedto￿rst-yearundergraduatestudentsataUK University.Itwasinstalledby28studentsand26studentscompletedthestudybykeepingtheapprunningon theirphoneforaminimumoftwoweeks.￿eseparticipantscomefrombothsexes(16malesand10females), withtheagespanbetween18and27years(mean =19.46andstandardde�iation =2.18). ￿estudentswere enrolledin15di￿erentcoursesand27%(n=7)werenon-British.Allparticipantswhocompletedthestudywere given£25. 3.3 EnsuringPrivacyCompliance InordertoallowtheMyLifeLoggerapplicationtomonitornoti￿cationsandappusage,theuserhastogiveexplicit permissionasrequiredbytheAndroidoperatingsystem.Moreover,theapplicationalsoshowsaconsentform detailingtheinformationthatiscollected.￿isensuresthattheusergoesthroughatwo-leveluseragreement andiscompletelyawareofthetypeofinformationcapturedbytheapplication. Itisworthnotingthatwereceivedethicalapprovalforthestudy,includingallproceduresandmaterials,from thePsychologyResearchEthicsCommi￿eeattheUniversityofCambridge. 3.4 Dataset Weanalyzedthedataof26userswhoparticipatedforaminimumperiodoftwoweeks.￿edatasetcorresponding totheseusersincludes36,106noti￿cations,17,680instancesofapplicationusage,77,306locationsamples,and 487daysofdailyactivityentries(i.e.,2,984activities). 3.4.1 CharacterizingLocations. Inordertoperformouranalysisontheimpactoflocationonnoti￿cation responseandapplicationusage,wecannotjustrelyonsensor(i.e.,GPS)dataasitonlyprovidesthecoordinates ofaplaceratherthanitstypeandcharacteristics.￿erefore,wemanuallycategorizedthelocationsbyclustering themintosigni￿cantplaces,andthencharacterizedthesigni￿cantplacesbyhavingcodersrateeachplaceon severaldimensions(e.g.,thedegreetowhichaplaceisinactivevsbusy). IdentifyingSigni￿cantPlaces.Firstofall,wediscardthelocationsampleswithmorethan50metersaccuracy sothattheestimatedlocationclustersareofbe￿erquality.Wethen￿ndthelocationsamplesthatwerecollected whileusersweremovingandwealsodiscardthem.Inordertoinfersuchlocationpoints,wecomputethespeed oftheuserbyusingthedistanceandthetimebetweenthelastandthecurrentlocationpoints.Ifthespeedis 2h￿ps://play.google.com/store/apps/details?id=com.nsds.mystudentlife PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. UnderstandingtheRoleofPlacesandActivitiesonMobilePhoneInteractionandUsagePa￿erns • 1:7 lessthanacertainthreshold(i.e.,5kmperhour)weconsiderthatlocationreadingwascollectedwhentheuser wasnotmoving. Now,weusethelocationclusteringapproachpresentedin[36]forgroupingthe￿lteredlocationsamples.We iterateoveralllocationsamplesandforeachlocationpointwecreateanewclusteronlyifthedistanceofthis locationfromthecentroidofeachexistingclusterismorethan200meters.Otherwise,weaddthislocationto thecorrespondingclusterandupdateitscentroid.Finally,weconsiderallcentroidsassigni￿cantplaces. IdentifyingPlaceTypeandCharacteristics.Placescanbedescribedintermsofobjectiveinformation,such aswhetheralocationisindoororoutdoor,orinaresidentialorindustrialarea,andalsointermsofinformation thatrelatestousers’a￿ectiveappraisalsofthem.Despitepeople’sexperiencesofcoursebeingsubjective,they on average agree on a variety of characteristics such as liveliness, pleasantness, and naturalness, to name a few[17,25].Atthesametime,werecruitedcodersbelongingtothesamedemographicsoftheparticipants(e.g., studentstatus,averageage,evengenderdistribution)toreducethesubjectivenessinplaceratings.Moreover,we computedthesimilarityintheratingstoensurethattheyarereliable. Onaverage,53signi￿cantplaces(perperson)wereidenti￿edinthetwo-weekstudyperiod.Foreachparticipant weselectedthetoptenplacesinwhichtheyhadspentmosttime.Werecruitedfourindependentcoderswho wereundergraduatestudentsthemselvesbutnotparticipantsinthestudy.First,theyweretrainedinpersonand providedwithadetailedhandbookonthelocationcodingprocess.A￿ertheirtraining,theywereprovidedwith alistofcoordinates(i.e.,longitudeandlatitude)oftherespectiveplaces,andtheywereaskedtocategorizeand evaluatetheseplacesforthegivencharacteristicsbylookingatthemusingGooglemaps. Inordertocategorizetheplacetype,werelyonGoogle’sPlaceTypes[3]asthepossiblecategories.Moreover, coderswereprovidedwithanoptiontoenteranadditionalplacetypeincaseitwasnotpresentinthegivenlist. Incaseswhereaplacetypewasunclear,codersusedan“unclear”categorytodenoteanambiguousplace.Finally, eachplacetypethatwasclassi￿edbyfourcoderswasmergedbyoneoftheauthors.Itisworthnotingthatwe ￿lteredoutthecategoriesthatappearedrarelyornotatall.Inordertoperformthis￿ltering,weensuredthat placesofeachcategorywerevisitedatleastoncebyaminimumof50%oftheparticipants. Inordertoidentifythecharacteristicsofsigni￿cantplaces,thesewerealsocodedfor24descriptivecharacter- isticsthatcapturedtheambienceoftheplace,andthetypesofpeoplethatwouldvisittheplace.Inthiswork,we focusedonthefourcharacteristicratingsthatdescribetheambianceoftheplace.Speci￿cally,wefocusedonthe degreetowhichtheplacewas:inactive-busy,lazy-productive,distressing-relaxing,andnatural-urban.￿esefour characteristicswereratedona7-pointLikertscale. ￿eseratingsfromthefourcoderswerethenmergedby computingtheirmean. Finally,themergedratingswerecenteredandrescaledfroma1to7scaletoa-3to3 scale.Wethentransformthesefroma7-pointscaletoa3pointsscale(-1to1)byusingtheseranges:-3to-0.5as -1,-0.5to0.5as0,and0.5to3as1.￿isturnedthecontinuousvariableintoacategoricaloneandmakesitlikely thatwehaveenoughdataforalllevels.Levels 1,0,1representthenegative,neutral,andpositivevalueofthe � locationcharacteristicrespectively.Forinstance,theseratingsforinactive-busycharacteristicswouldconvertto inactive,neutralandbusy. 3.4.2 AppCategories. Inordertoinvestigateusers’behaviorforinteractingwithspeci￿capps,wecategorized all apps using the categories de￿ned on the Google Play store. Overall, the apps belong to 11 categories, namelyreading,￿tness,business,photography,communication,game,lifestyle,music,social,tools,andtravel applications. However,appsofcertaincategoriesarenotusedbyallparticipants. ￿erefore,weconsiderthe typeofappsthatwereusedbyallparticipants. Consequently,wecameupwiththefollowingsixcategories: communication,lifestyle,music,reading,social,andtravelapplications. PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:8 • Mehrotraetal. 3.5 ￿antitativeMeasuresforNotificationandPhoneUsage In this section we discuss the metrics used in this study for quantifying users’ behavior in terms of their interactionswithnoti￿cationsandapps. Weusetwometricsforquantifyinginteractionwithnoti￿cations– Noti￿cationReceptivityandNoti￿cationSeenTime,andonemetricforinteractionwithapp–AppUsageTime. ￿eseareclassicindicatorswidelyadoptedforthistypeofstudiesbytheubiquitouscomputingcommunity(see forexample[16,30]).￿ede￿nitionsofthesemetricsarereportedbelow. Noti￿cationReceptivity:theuser’swillingnesstoreceiveanoti￿cation.￿ismetricrepresentshow • willingauseristoreceiveinterruptions. Highreceptivity(i.e.,moreclicks)indicatesincreaseinthe willingnessoftheusertobeinterruptedandviceversa.Inordertoinfertheresponsetoanoti￿cation,we checkwhetherthecorrespondingapp(whichtriggeredthenoti￿cation)waslauncheda￿ertheremoval timeofthatnoti￿cation.Weareawarethatourapproachhaslimitations,becausesomenoti￿cationsthat donotrequirefurtheractionmightnotbeclickedratherjustseenanddismissedbytheuser. Noti￿cationSeenTime(Noti￿cationAttentiveness):thetimefromthenoti￿cationarrivaluntilthe • time the noti￿cation was seen by the user. ￿is metric re￿ects the user’s a￿entiveness towards new noti￿cations.Inordertodetectthemomentatwhichanoti￿cationisseen,weusetheunlockeventof thephoneandassumethatallnewlyavailablenoti￿cationsinthenoti￿cationbarareseenwhentheuser unlocksthephone.Incaseanoti￿cationarriveswhentheuserisalreadyusingthephone(i.e.,thephone isunlocked),theseentimeofthisnoti￿cationwouldbeconsideredequaltozero.Todetectthelockand unlockeventsweusethePhoneInteractiondata(discussedinTable1).Itisworthnotingthatweremoved allnoti￿cationinstancesthatwerenotrespondedtowithin2hours.Asarecentstudy[29]demonstrated thatpeoplereceivenoti￿cationseveryhour(frommorningtolatenight),whicharehandledwithinafew minutes.￿erefore,weuse2-hourthresholdforthemaximumseentimeto￿lteroutnoti￿cationsthat arrivedwhentheuserwasawayfromthephoneorsleeping. AppUsageTime:durationforwhichanapplicationwasinforeground.Morespeci￿cally,itisthetime • intervalbetweenthelaunchofanapplicationandtheinstantoftimewhenitwassenttothebackground. We compute these metrics for each user when they are performing speci￿c activities and when they are atcertaintypesofplaces. Wethenaggregatethesemetricstocomputetheiraveragevalues. Finally,weuse statisticalteststocomparethedi￿erenceinusers’interactionwhenperformingdi￿erentactivitiesatdi￿erent typesofplaces. ItisworthnotingthatwhilecomputingAppUsageTimefordi￿erentactivities,wenormalizetheappusage valuebydividingitbythetimespentbytheuserengaginginthecorrespondingactivity.Similarly,tocompute theAppUsageTimefordi￿erenttypesofplaces,wenormalizetheappusagevaluebydividingitbythetime spentbytheuseratthecorrespondingplace.￿isstepisnecessaryinordertoavoidbiasesduetotherelative timesspentinagivenlocationorwhileengaginginacertainactivity.￿erefore,theuseofanon-normalized AppUsageTimemetriccouldproducebiasedresults. 3.6 Procedure Wewanttoinvestigatethein￿uenceofvariables,includingdailyactivities,typeandcharacteristicsofvisited locations,onthenoti￿cationandphoneusagebehaviorofusers,soweconsiderthemastheindependentvariables. Ontheotherhand,ourdependentvariablesshouldrepresentthenoti￿cationandphoneusagebehaviorofusers. ￿erefore,weusethethreenoti￿cationandphoneusagemetrics(Noti￿cationReceptivity,Noti￿cationSeenTime, andAppUsageTime)asdependentvariables. ￿eanalyseswereperformedforeachpairofindependentand dependentvariables.Weperformaone-wayANOVAforquantifyingthedi￿erencesinthedependentvariables (i.e.,Noti￿cationReceptivityandNoti￿cationSeenTime)thatrepresentsnoti￿cationinteractionbehavior.However, forquantifyingthevariabilityinthedependentvariable(i.e.,AppUsageTime)thatrepresentappusagebehavior, PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. UnderstandingtheRoleofPlacesandActivitiesonMobilePhoneInteractionandUsagePa￿erns • 1:9 ANOVA (p<0.05) 90 ANOVA (p<0.05) 40 Seen Time (mins)123000 ● ● Receptivity (%)678000 ● ● ● ● ● ● ● ● ● ● ● 50 ● 0 work sleep chores relaxation social eat exercise work sleep chores relaxation social eat exercise Daily Activity Daily Activity (a) (b) Fig.2. Roleofdailyactivityininfluencingtheuser’s(a)a￿entivenessand(b)receptivity.Di￿erentcolorindicatesstatistically significantdi￿erences(p<0.05).Intheseplotsthedotsrepresentthemeansandthebarsrepresentthestandarddeviations. Activity work chores social exercise Activity work chores social exercise sleep relaxation eat sleep relaxation eat 0.08 0.015 0.06 Density0.04 Density0.010 0.02 0.005 0.00 0.000 0 25 50 75 0 25 50 75 100 Seen Time (mins) Receptivity (a) (b) Fig.3. Probabilitydistributionsofusers’average(a)a￿entivenessand(b)receptivitywhileperformingdi￿erentdailyactivities. Here,probabilitiescanbecomputedasmultiplicationofdensitywitha￿entivenessandreceptivityvaluesrespectively. weperformatwo-wayANOVA,becauseappcategoryisconsideredasanotherindependentvariableapartfrom activityandlocationbasedindependentvariables.Itisworthnotingthatweremovedthelevelsofindependent variablesthatdidnothaveobservationsfromatleast50%oftheparticipants. 4 UNDERSTANDINGTHEROLEOFDAILYACTIVITY Inthissectionweprovideaquantitativeevaluationoftherelationshipbetweendailyactivityandtheusers’ behaviorintermsofnoti￿cationinteractionandappusage. ￿ekey￿ndingsofthissectionare: Peopleareleasta￿entivetonoti￿cationswhiletheyarepreparingtogotobed(orusingthephone • inbed)andduringthetimetheyexercise. Peoplearemorereceptivetonoti￿cationswhiletheyareexercisinganddoingchores(i.e.,routine • tasks). Overallappusageishighestwhilepeoplearerelaxingandlowestwhentheyareengagedinchores, • doingexerciseandgoingtosleep. Usageofspeci￿cappsisassociatedtousers’dailyactivities. • PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017. 1:10 • Mehrotraetal. Application Category ● communication ● lifestyle ● music ● reading ● social ● travel ANOVA App Category (p<0.05) %)3 ● Daily Activity (p<0.05) me ( ● ● Interaction (p<0.05) Ti e 2 ● g a s ● pp U1 ● ● ● ● ● ● ●● ● A0 ● ● ● ●●● ● ● ●●●● ●●● ● ●●●●● ● ● ●●●●● work eat sleep social chores relaxation exercise Daily Activity Fig.4. Relationbetweendailyactivityandapplicationusage.Inthisplotthedotsrepresentthemeansandthebarsrepresent thestandarddeviations.. 4.1 A￿entivenessandReceptivity Toinvestigatetherelationshipbetweendailyactivityandusers’a￿entivenessandreceptivitytonoti￿cations, weperformtwoseparateone-wayANOVAsthatquantifythedi￿erencesintheuser’s(i)a￿entivenessand(ii) receptivitytonoti￿cationswhiletheyperformdi￿erentactivities.￿eresultsofthe￿rstanalysis(i.e.,e￿ects ona￿entiveness)showthatthereisasigni￿cante￿ectofdailyactivitiesontheuser’sa￿entiveness,withF = 4.788,p <0.05.Inorderto￿ndwhichdailyactivitiesa￿ectusers’a￿entiveness,weperformaTukeypost-hoc test(byse￿ing� equalto0.05).AsshowninFigure2(a),thetestrevealsthattheseentimeislongest(i.e.,low a￿entiveness)whennoti￿cationsarrivewhiletheuserissleeping.However,thereisnosigni￿cantdi￿erence ina￿entivenessofuserswhiletheyareengagedinanyotherdailyactivity,exceptthattheyareslightlyless a￿entivewhileexercising. ￿eresultsofthesecondanalysisshowthatthereisalsoasigni￿cante￿ectofdailyactivitiesontheusers’ receptivitytonoti￿cations,withF =2.947,p <0.05.AsshowninFigure2(b),aTukeypost-hoctest(byse￿ing� equalto0.05)revealsthatusers’aremostreceptivetonoti￿cationswhentheyareperformingchoresorphysical exercisecomparedtootheractivities. Moreover,inordertoinvestigatethediversityinusers’a￿entivenessandreceptivity,inFigure3wepresentthe probabilitydistributionofusers’averagea￿entivenessandreceptivitywhiletheyareperformingdi￿erentdaily activities.￿eresultsdemonstratethatthereissomevariabilityinbotha￿entivenessandreceptivitybetween users.Forinstance,someusersareconsiderablylessa￿entivetonoti￿cationswhileexercisingcomparedtoother users.Users’receptivityvariesacrossallactivities. 4.2 AppUsageTime Inordertoinvestigatetherelationshipbetweendailyactivitiesandtheappusage,weperformatwo-wayANOVA byse￿ingappusagetimeasdependentvariable(DV),anddailyactivityandappcategoryasindependentvariable (IVs). Here,weusetwoIVsaswecanquantifyboththee￿ectofdailyactivityonoverallappusagetimeand thee￿ectofdailyactivityoftheuseofspeci￿capps.￿eresultsdemonstratethatalle￿ectswerestatistically signi￿cantatthe0.05signi￿cancelevel.￿emaine￿ectfordailyactivityyieldedF =7.45(p <0.05),indicatinga signi￿cantdi￿erenceintheuser’soverallappusagetime(allcategoriesconsideredtogether)whileperforming PACMonInteractive,Mobile,WearableandUbiquitousTechnologies,Vol.1,No.1,Article1.Publicationdate:July2017.

Description:
Understanding the Role of Places and Activities on Mobile Phone . Participants used mostly music and reading apps while waiting at bus stops and train stations. locations and not only on their past behavioral pa erns.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.