ebook img

Understanding the history of extreme wave events in the Tuamotu Archipelago of French Polynesia PDF

17 Pages·2016·2.66 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Understanding the history of extreme wave events in the Tuamotu Archipelago of French Polynesia

MarineGeology380(2016)174–190 ContentslistsavailableatScienceDirect Marine Geology journal homepage: www.elsevier.com/locate/margo Understanding the history of extreme wave events in the Tuamotu Archipelago of French Polynesia from large carbonate boulders on Makemo Atoll, with implications for future threats in the central South Pacific A.Y.AnnieLaua,b,⁎,JamesP.Terryc,AlanD.Zieglera,AdamD.Switzerd,YingsinLeed,SamuelEtiennee aDepartmentofGeography,NationalUniversityofSingapore,1ArtsLink,Singapore117570,Singapore bSchoolofGeography,PlanningandEnvironmentalManagement,TheUniversityofQueensland,StLuciaCampus,Brisbane,Qld,4072,Australia cCollegeofSustainabilitySciencesandHumanities,ZayedUniversity,P.O.Box19282,Dubai,UnitedArabEmirates dEarthObservatoryofSingapore,NanyangTechnologicalUniversity,50NanyangAvenue,639798,Singapore eEPHE(ÉcolePratiquedesHautesÉtudes),PSLParisResearchUniversity,CNRSUMR6554LETGDinard,France a r t i c l e i n f o a b s t r a c t Articlehistory: Numerouslargecarbonatebouldersupto164tonnesinmasswereinvestigatedonthereefflatandbeachesof Received22December2015 MakemoAtollintheTuamotuArchipelagoofFrenchPolynesiatorevealthepastoccurrenceandtoanticipate Receivedinrevisedform14April2016 thefuturepotentialthreatofextremewaveevents,possiblygeneratedbytropicalcyclonesandtsunamis.The Accepted21April2016 modernreefedgeandemergedmid-Holocenecoastallandformswereidentifiedassourcesofbouldersmobilized Availableonline22April2016 duringextremewaveeventsinthepast.Theminimumflowvelocitiesproducedbyextremewaveeventswere estimatedtoexceed5.4–15.7m/satthereefedgeondifferentpartsoftheatoll.Comparisonofuranium–thorium Keywords: agesofbouldercoralfabricwithwrittenhistoricalrecordsindicatesthattwolargeboulders(77and68tonnes) Boulders Waves werepossiblyemplacedonthereefflatbyapowerfulcycloneinFebruary1878.Althoughmostboulderdatesare Tropicalcyclone olderthantheearliesthistoricalcycloneandtsunamirecordsinFrenchPolynesia,theiragesconcurwiththefol- Tsunami lowing:(a)periodsof“storminess”(i.e.increasedcycloneactivitycomparedtotoday)inthecentralSouthPacific Historicalrecords overthelastmillennium;and(b)periodsofhighsea-surfacetemperature(SST)attheGreatBarrierReef,possibly SouthPacific associatedwithhigher-than-normalSSTsPacific-widethatfacilitatedthegenerationofcyclonesaffectingthe centralSouthPacificOcean.NoneofthebouldersonMakemoweredatedyoungerthanCE1900,implyingthat thelastcenturyhasnotexperiencedextremewavesofsimilarmagnitudeinthepast.Nevertheless,thefindings suggestthatwavesofcomparablemagnitudestothosethathavetransportedlargebouldersonMakemomay recurintheTuamotusandthreatenislandcoastsacrossthecentralSouthPacificinthefuture. ©2016ElsevierB.V.Allrightsreserved. 1.Introduction gravel.Consequently,largerdeposits,inparticulartall-standingcarbon- atebouldersthatoriginatefromthereefframework,areimportantfea- TheTuamotuArchipelago(Tuamotus)consistsof77atollsandone turesforinvestigatingtheageof,andenergyassociatedwith,extreme emergedlimestoneisland,spreadover1500kminaWNW-ESEchain waveeventsinthearchipelago.Suchresearchhasproveneffectiveon acrossthecentralSouthPacificOcean.Extremewavehazardassess- theGreatBarrierReefof Australia(Nott,1997; Yu et al.,2012; Liu mentontheseinhabitedislandsishinderedbytheshortandpotentially etal.,2014),theRyukyuIslandsofJapan(Suzukietal.,2008;Goto incompletehistoricalrecordoftropicalcyclonesandtsunamisinthere- etal.,2010;Araokaetal.,2013),TongatapuIslandinTonga(Frohlich gion,aswellastheinfrequentoccurrenceofsucheventsinmodern etal.,2009);SumatrainIndonesia(Parisetal.,2010);TaveuniIsland times.Proxyinformationisthereforeusefulforassessingthecurrent- inFiji(EtienneandTerry,2012);BonaireintheCaribbean(Engeland day threat. However, fine-grained sedimentary evidence, such as May,2012)andLanyuIslandinTaiwan(Nakamuraetal.,2014). tsunami-orcyclone-depositedsandsheets,isnotreadilypreservedin Theoverallaimofthisresearchistoimprovecurrentunderstanding beach stratigraphies on low-lying coral atolls because of continual onthepotentialthreatsofextrememarinewavehazards,namelytsu- reworkingbywaves(Parisetal.,2010).Narrowatollrimsarealsonot namisandtropicalcyclones,fortheatollsofthecentralSouthPacificre- ideal locations for the preservation of storm ridges of reef-derived gion.Thisisachievedbyexaminingtheextremewaveeventhistoryfor theTuamotusofFrenchPolynesia.Theobjectivesarethreefold.First,the ⁎ Correspondingauthor. physicalcharacteristicsoftheatollsintheTuamotusandtheirrelation- E-mailaddress:[email protected](A.Y.A.Lau). shipwithHolocenesea-levelchangeinthecentralSouthPacificare http://dx.doi.org/10.1016/j.margeo.2016.04.018 0025-3227/©2016ElsevierB.V.Allrightsreserved. A.Y.A.Lauetal./MarineGeology380(2016)174–190 175 examined(Section2).Second,acomprehensiverecordofhistoricaltsu- windscanreach30knotsandgenerateswellsof3–5minamplitude. namisandtropicalcyclonesiscompiledfortheTuamotuArchipelago Asaresult,islandsofcoralshinglehaveformedonthenorth-eastern (Section3).Third,fieldinvestigationofnumerouslargecarbonateboul- atollrimsovertime(D'Hauteserre,1978;PirazzoliandMontaggioni, dersonthereefflatofMakemoAtollinthearchipelagoisconductedto 1988). interprethowandwhenbouldersweretransported(Sections4and5). Finally,thesefindingsarecomparedwiththehistoricalrecordsoftsu- 2.2.Holocenesea-levelchangeandtectonicsintheTuamotuArchipelago: namisandcyclonesinattempttoassessthethreatassociatedwithex- influenceoncoastalgeomorphology tremewaveeventsinthegreaterTuamotus. Relativesea-levelchangeduringthelastglacialmaximum(LGM) 2.Studyarea (23,000–17,000BP)intheTuamotuArchipelagowasmeasuredfrom thecoralreefrecordatMururoaAtollatapproximately135–143m 2.1.TheTuamotuArchipelago belowpresentsealevel(p.s.l.)(Camoinetal.,2001).Followingthe post-LGMmarinetransgression,thesealevelwasestimatedat17– TheTuamotuArchipelago(Fig.1)isoneofthefiveislandarchipela- 23mbelowp.s.l.at9000BP,thenrosesharplyto2–3mbelowp.s.l.at gosofFrenchPolynesia;theothersaretheSociety,Austral,Marquesas about8000BP(Camoinetal.,2001).SealevelintheTuamotusreached andGambierarchipelagos.Situatedfarfromanytectonicboundary, aHolocenehighstandof0.8±0.2mabovep.s.l.fromabout4500BPto theatollsintheTuamotuswerebuiltontopofvolcanicbasements after2000BP,buthassincegraduallydroppedtopresentsealevel that formed from hot spot activity at least 37.5 million years ago (PirazzoliandMontaggioni,1988;Pirazzolietal.,1988a).Alternatively, (ClagueandJarrard,1973;Pirazzolietal.,1988a).Thesubmarinevolca- recentresearchhassuggestedthesealevelhighstandintheTuamotus nicedificessupportingthearchipelagoriseover4000mfromtheocean reachedabout1mabovep.s.l.andremainedstableuntilCE800,before bottomatanangleexceeding45°.Submarineslopesbecomemoregrad- droppingsteadilyuntilCE1900,thensubsequentlyrosetopresentsea ualatadepthof1000m(Vitousek,1963;Jordahletal.,2004).Atthesea levelduringthelastcentury(Dickinson,2003). surface,low-lyingislandsformontopofatollreefs.Theyarecomposed Meanwhile,localtectonicactivityhasinducedverticalmovementof ofcoralrubbledepositedbywavesontheoldcoralplatforms.Theeleva- atolls.InthetectonicallystablepartofthearchipelagotowardsVahitahi tionofthesecoralislandsrarelyexceeds10mabovesealevel(Dupon, andMururoaattheeasternendoftheatollchain,thermalsubsidence 1986;Etienne,2012). occurs(Pirazzolietal.,1987a).TherateofsubsidenceofMururoaises- AnnualweatherintheTuamotuArchipelagovarieslittle.Humidityis timatedat7–8mm/1000years,asdeterminedbytheK-Ardatingofthe high(~80%)mostofthetime;thesummerseasonhasaslightlyhigher volcanicbasement(Trichetetal.,1984;Camoinetal.,2001).Incontrast, temperaturefromNovembertoApril(25–30°C)thantheothersix- tectonicupliftisevidentatthesouthernboundaryonMakateaandAnaa month period (24–28 °C) (Sachet, 1983). The Tuamotu coasts are (raisedcoralatolls),owingtolithosphericflexureassociatedwiththe microtidal,withtidesrangingfrom0.2to0.7m.Mostwavesare1– hotspotwhereMehetiaiscurrentlylocatedandwhichcreatedTahiti 3mhighandbreakatperiodsof6–9s(IntesandCaillart,1994).The during the Pleistocene (Montaggioni et al., 1985; Pirazzoli et al., yearly average wave height measured in the western Tuamotus is 1988b;PirazzoliandMontaggioni,1988;MontaggioniandCamoin, 1.6m(Andréfouëtetal.,2012),althoughprevailingnorth-easttrade 1997;Dickinson,2001)(refertoFig.1). Fig.1.LocationmapofMakemoAtollintheTuamotuArchipelagoofFrenchPolynesia.ThehotspotthatcreatedTahitiinthePleistoceneiscurrentlylocatedatMehetia.Thisactivevolcano iscausingsubsidencearoundMehetia,andtheemergenceofatollsincludingAnaaandMakateaduetoflexuralupwarp(redcircle)outsidetheconeofsubsidence(orangecircle).Inferred extentoftectonicverticalmovementsisadaptedfromDickinson(2001).Locationsofotheratollsmentionedinthetextarealsolabelled.A“+”indicatesthatlargeboulderdepositshave beenreportedbyothers(seeSection3.3).+An=Anaa;+Hi=Hikueru;Ka=Kaukura;Ma=Makatea;Mu=Mururoa;+Nk=Nukutavake;+Np=Nukutepipi;Pu=Pukarua;Ra= Raroia;Re=Reao;+Rg=Rangiroa;+Ta=Takapoto;+Tu=Tureia;Vh=Vahitahi;+Vt=Vairaatea.(InsetfromGoogleMap). 176 A.Y.A.Lauetal./MarineGeology380(2016)174–190 ThecombinedeffectsoflateHolocenesea-levelfallandlocaltec- consistsmainlyoftheshortbranchingcoralsAcroporaandPocillopora.A tonic influences have resulted in the slight emergence of mid- mixedzoneofbranching,encrustingandmassivecoralsarefoundat HolocenereefsabovemodernsealevelonatollsacrosstheTuamotuAr- 10–15mdepths.Adominanceofdomalandplatycorals,including chipelago.Emergedmid-Holocenereefsaregenerallyfoundateleva- Porites,MontiporaandAstreopora,extendto15–20m.Encrustingcorals tions ranging from 0.8–1.1 m. On the most uplifted atoll, Anaa, andelephantskincoralsPachyseriscanbefoundbelow20m,reaching Holocenecoralreefs(14Cage2000–2600BP)occurat1.3–1.5mabove depthsover40minsomecases(Bruckner,2014). p.s.l.(MontaggioniandCamoin,1997;Dickinson,2001).EmergedPleis- tocenereefsanddepositsarealsopreservedasevidenceoftectonicup- liftandlocalsea-levelfallonTuamotuatolls.Examplesincludeemerged 3.HistoricalextremewaveeventsintheTuamotus reefs4–5mhighonAnaaandupto3.5monKaukura(Pirazzoliand Montaggioni,1986;Pirazzolietal.,1988b).Elevateddome-shapedrem- 3.1.Tropicalcyclonesandstorms nantsofHolocenealgalcrusts,indicatorsofpastsealevel,arealsopres- entonsomeatolls.Exfoliationofemergedreefflats,coralconglomerate ThecycloneseasonintheSouthPacificcommonlyextendsfromNo- platforms,andcorallinealgalcrustsbymechanicalerosion,mostlydur- vembertoApril.Onaverage,aboutninetropicalcyclonesoccureastof ingcyclonicevents,havealsobeenobservedonseveralsouthernatolls: the 160°E meridian each year; however, the number per year was Rangiroa,Reao,VahitahiandPukarua(Stoddart,1969;Ricard,1985; foundtovarygreatlyfrom3to17duringtheperiod1970to2006 Pirazzolietal.,1987a,1987b,1988a). (Terry,2007).ThisannualvariabilityislargelyrelatedtotheElNiño SouthernOscillation(ENSO).Moretropicalcyclonesandtypicallystron- 2.3.MakemoAtoll gerstormsoccurinthecentralSouthPacificinElNiñoyears(Revelland Goulter,1986;TerryandGienko,2010).Theeastwardshiftofwarmer MakemoAtoll(16°37′S,143°40′W),lyinginthemiddleregionofthe SSTsduringElNiñoyearsalsoallowsmorestormstotravelfurther Tuamotu Archipelago, is the fourth largest atoll in the group eastintothecentralSouthPacificwheretheTuamotusarelocated. (~670km2).TheatollisorientedNW-SEandhasalengthof65km TropicalcyclonesarenotfrequentwithinFrenchPolynesia(Larrue (Fig.2).Theleewardreefsinthesouthoftheatollaremostlysub- andChiron,2010).Cyclonehazardassessmentssuggesta50-yearre- merged.Thewindwardreefsinthenorthoftheatollhavelowislands turnperiodforwavesexceeding12matboththeTuamotusandTahiti with vegetation covering 56 km2. The islands support one village, intheSocietyIslands(Météo-France,1995;Damlamianetal.,2013;Ste- Pouheva, having a population of less than 900 (L'Institut de la phensandRamsay,2014).DeAngelis(1983)statedthatonly20tropical statistiquedelaPolynésiefrançaise,2012). cyclonesaffectedtheTuamotusinthe150yearsextendingfrom1825to Onthenorthernshore,twodeeppasses(avainPolynesian)connect 1982(citedbyRuminski,1990).However,inthecycloneseasonof thelagoonwiththeopenoceanandseparatethelow-lyingcoralislands 1982–83,aperiodunderthestronginfluenceofanElNiñoeventthat (Fig.2).Carbonatebouldersarefoundmainlyonthe70–100mwide causedtheseasurfaceneartheTuamotustobesignificantlywarmer reefflatthatisexpandingbyaccretioninanoceanwarddirectionto thannormalyears,fivetropicalcyclonesandonetropicaldepressionoc- thenorth.AredalgalreefcrestcomprisingPorolithonorLithothamnion curredinthedurationofsixmonths.Fiveofthesestormstrackedpassed (primary reef-building algae types) occurs at the reef edge where theTuamotus,causingseafloodingtoadepthofmorethan1m,soilero- waveenergyishighest.Emergedfeatures,includingHolocenereefs, sion,anddisplacementofcoralrubbleon theatolls(Dupon,1986; coralconglomerateplatforms,andbeachrockareexposedatheightsof Etienne,2012). nomorethan0.6monandbehindthemodernreefflatonsomeparts Intotal,approximatelyonly24known(includingsomedoubtful) oftheshore(Fig.3).Anarrowbeachupto20mwide,composedpri- tropicalcycloneshaveaffectedtheTuamotusin192yearsspanning marilyofcoraldebrisofsandtocobblesize,islocatedfurtherbehind. 1822–2014(Table1).Therecordofstormhistoryisfragmented,asex- Threetofourzonesofcoralscanbeidentifiedonthesubmarinereef emplifiedbythefactthatonlyonestormin1958wasdocumentedfor slopeonTuamotuAtollreefs(Bruckner,2014).Theuppermost5–10m the72yearsbetween1907and1979.Sachet(1983)commentedthat Fig.2.MakemoAtollinthecentralTuamotuArchipelagoconsistsofwindwardlowislandsformingthenorthcoast(darkgreyshading),submergedleewardreefsinthesouth(lightgrey), acentrallagoon(whiteareabetweenthereefs).TherearetwodeeppassesconnectingthecentralatolllagoontotheopenPacific.Partsoftheshore(blueshading)werevisitedforboulder datacollection,andtheseshoresweredividedintofivezones(AtoE)foranalyses. A.Y.A.Lauetal./MarineGeology380(2016)174–190 177 (a) (b) (c) Fig.3.Emergedcoastalfeaturesincluding(a)emergedreefremnantsofdifferentformsand(b)calcareousbeachrockarepresentatpartsofthenorthernrim.(c)Ageneralizedprofileand zonationsoftheMakemowindwardisland.Algalreefcrestisformedonthereefedgewherewaveenergyisthehighest,whichisthesourceofmostwave-transportedboulders.Boulders aremostlydepositedonthe70–100mreefflat,whilesomeweretransportedfartherontoorbehindthebeach.Diagramisnotdrawntoscale. theremusthavebeenotherstormsinpre-Europeantimes,butthereis onTarawaAtollinKiribati,morethan1000kmdistanttothenortheast nowrittenrecordverifyingthis. (Stone,2015).ThisexampleindicateshowMakemomightbeaffected Thecyclonesintheunusual1982–83season,andthedamagethey byswellsfromcyclonesthattrackanywherewithintheFrenchPolyne- brought to the Tuamotus, have been reported in great detail (e.g. sianterritory. Harmelin-VivienandStoddart,1985;Dupon,1986).Stormsurges3– 4minheightandfloodingofinhabitedareastomorethan1mwereex- 3.2.Tsunamis periencedonsomeatolls(Harmelin-VivienandStoddart,1985;Dupon, 1986).VeryhighwaveswerereportedbyeyewitnessesonTureia(16– ThehistoricaltsunamirecordisverylimitedintheTuamotuArchi- 18m),Hao(15m)andAnaa(12m)(desGarets,2005;Damlamian pelago(Etienne,2012).Ithasbeensuggestedthatduetothesteepsub- etal.,2013).Asaresultofpowerfulsurgesandwaves,largeboulders marineslopeandsmallsizeofatollislands,relativetolongtsunami excavatedfrombeachrockandreefslopeswerethrownontothereef wavelengths,amplificationofwavesuponshoalingisminimal,resulting flats,inboulderramparts,acrosstheinter-islandpassages(hoainPoly- in little destruction by tsunami waves on atolls (Vitousek, 1963; nesian), or into atoll lagoons (Sachet, 1983; Harmelin-Vivien and StoddartandWalsh,1992;Reymondetal.,2012).However,theimpact Stoddart,1985).Sheetsofcoralshingleandrubblewerealsodeposited ofthe2004IndianOceanTsunamiintheMaldiveshasshownthatatolls onshorelines,whilebothaccumulationanderosionofsandonsmallis- arenotimmunetothedestructiveforcesoftsunamiwaves.In2004, letsandinchannelswerenoticedondifferentpartsoftheaffectedatolls waveheightsof1.8mtogetherwithextensivefloodingcauseddamage (Sachet,1983;Dupon,1986).Itismoredifficulttoassesstheimpactsof ofinfrastructureonMaléIslandatsouthernNorthMaléAtoll.Morethan oldercyclonesbutinterestingperspectivesemergewithmultidisciplin- 80liveswerelostintheMaldivesduringthe2004IndianOceanTsu- aryapproaches.Correlatingcyclonevelocityandatmosphericpressure nami(Kenchetal.,2006,2008). derivedfromvariousarchives,Canavesio(2014)suggestedthatwaves Nevertheless,bothnumericalmodellingandrecentobservations ashighas15.5–18.5mmighthavesweptAnaaAtollduringtheFebru- duringtsunamishavedemonstratedthattheTuamotuatolls,being ary1906cyclonethatkilledbetween95and130inhabitants. protectedbyfringingreefs,receivesmallertsunamiwavesandsustain Cyclone-generatedswellsareacommonhazardinFrenchPolynesia lessdamagethanvolcanicislandsinotherarchipelagosofFrenchPoly- (Canavesio,2014).Theseswellsareusuallygeneratedbycyclonesys- nesia(Sladenetal.,2007).Accordingtowrittenrecords,changesin temsoutsideoftheterritory,mostoftencomingfromthewesternPa- waterlevelwereobservedintheTuamotusfollowedthegenerationof cific(Etienne,2012).IntheTuamotuArchipelago,swellamplitudesof tsunamisoccurringin1946(AleutianIslandearthquake),1960(Chile upto10–15mwererecordedduringthe1982–1983cycloneseason. earthquake),2009(SouthPacificearthquake),2010(Chileearthquake) Themeancyclonicswellheightnormallyrangesbetween4and12m and2011(Tohoku-okiearthquakeinJapan).Yet,Tuamotuatollssuf- (Ministère du Développement Durable, 2006 as cited in Etienne, feredonlymoderatelyinthe1946and1960events(Reymondetal., 2012).Ascyclonicswellhazardisnotdocumentedsystemicallyinthe 2012).Islandersobservedwaterlevelchangesoflessthan1monsev- region,thereturnperiodforlargeswellscannotbedetermined.Yetit eralinhabitedatollsduringthe1960Chiletsunami(Vitousek,1963). can be assumed that strong cyclones tracking through or near the WhereasintheMarquesasArchipelago,wherevolcanicislandsarenot Tuamotuslikelygeneratedhighswells,affectingtheatolls.Cyclonic protectedbycoralreefs,run-upsexceeding10mfollowedthe1946 swells can also travel long distances. For instance, Cyclone Pam in and1960tsunamis(Schindeléetal.,2006;Etienne,2012). March2015causedmuchdestructionasittrackedthroughthesouthern Anoraltraditionofaplausibletsunamidatingfromthe16thcentury islandsofVanuatu.Butitspowerfulswellsalsodamagedinfrastructure wasreportedbyBourrouilh-LeJanandTalandier(1985)citingOttino 178 A.Y.A.Lauetal./MarineGeology380(2016)174–190 Table1 DetailsofhistoricalcyclonestrackedthroughandaffectedtheTuamotussince1822. Date(Nameofstorm) Cycloneseason/El Damage/descriptions Ref.# Niñointensity(ifany) 1822 Unknown Anaaandneighbouringatollsdevastated 6 1825 Unknown Anaahitbystorm 6 21Jan.1856(RecordedintheSociety 1855–56 HMSDidoofBritishRoyalNavywasdismastedinacycloneoffRaiateaoftheSocietyIslands. 4 Islands) Jan1877 1876–77 “SeveralstormscauseddamagetovariousatollsincludingManihi”(Sachet,1983,p.3) 2,6 NoElNiño Sept1877 1877–78 Hurricaneofparticularforce 1,2,5,6 StrongElNiño “SeveralstormscauseddamagetovariousatollsincludingManihi”(Sachet,1983,p.3) 6–7Feb.1878 Hurricaneofparticularforce 1,2,5,6,7 Extremelyviolent,117peoplekilledinKaukura.Damagedonebystormtidesratherthanwind. 14–15Jan.1903 1902–03 Hurricaneofparticularforce 2,4,6,7 ModerateElNiño Devastatedalargenumberofatolls,515peoplediedincluding377onHikueruAtoll.Damagedone bystormtidesratherthanwind. Bouldersof4–5tor/and4–6minlengthdepositedonRaroia 23–25Mar.1905 1904–05 ExtensivedamageonManihiandTakaroa 2,6,7 ModerateElNiño 6–8Feb.1906 1906–07 Hurricaneofparticularforce 2,5,6,7 ModerateElNiño ImmensedamageintheSocietyIslandsandTuamotus,includingonManihiandTakaroaatolls. Northcoastsflooded,atleast121peoplekilled.Damagecausedbystormtidesratherthanwind. Boulders4–6minlengthdepositedonRangiroa Jan.1958(Doubtfulevent) 1957–58 “Teissier(1969)mentionsonlyonemorestormtohittheTuamotus,inJan.1958”(Sachet,1983,p.4) 3,6,12 StrongElNiño ButaccordingtoRef#(9),nocyclonetrackedthroughorneartotheTuamotusinthiscyclone season. 5–9Dec.1977(Tessa) 1977–78 TrackedatnorthoftheTuamotuswithaminimumpressureof990hPa 3,11 WeakElNiño 27–29Nov.1980(Diola) 1980–81 OriginatedandtravelledintheTuamotus,maxwindspeed35knots 3,6,13 NoElNiño 22–26Jan.1983 1982–83 OriginatedandtravelledintheeasternTuamotus 3,6,7 (Nano) StrongElNiño 22–27Feb.1983 PassedclosetoTakapoto-Manihiarea,demolishingbuildingsandinstallations,breakingtress, 3,6,7 (Nisha/Orama) pilingupcoralshingle,tearinguplargeblocksofcoralfromreefandthrowingthemonreefflats 6–14Mar.1983 BoulderstransportedonNukutipipi(upto30m3),Takapoto(unrecordedsize),Anaa(45–145m3, 3,6,7 (Rewa) byCycloneOrama) 7–13Apr.1983 3,6,7 (Veena) 17–21Apr.1983 OriginatedandtravelledintheeasternTuamotus. 3,6,7 (Williams) 5–17Dec.1991 1991–92 Maximummeanwinds45m/s,lowestpressure976hPa.TrackedpassedthesouthernTuamotus 8 (Wasa/Arthur) StrongElNiño nearMururoa,butmostdamagewasintheSocietyIslandswherepropertiesweredestroyed. 5–9Feb.1992 OriginatedatnorthoftheTuamotusandtravelledthrougheasternTuamotus.Nodamagerecord 3,12 (Cliff) found. 29Jan.-2Feb.1998 1997–98 PassedthroughtheTuamotus,damagedonebypre-cycloneswellratherthanwinds. 3,8 (Ursula) StrongElNiño 30Jan.-3Feb.1998 PassedthroughthemiddleoftheTuamotus.TCsUrsulaandVelitogetherdamagedhouses,roads 3,9 (Veli) andbridgesonMataiva,andafewhousesonMakatea.AirstriponRangiroadisruptedbycoraland sandwashedup.Nolossoflifeinthesetwoevents. 29Apr.-3May1998 Weakcyclone(tropicaldepression)passedovertheTuamotus.Tenpeoplekilledwhenwaves 3,9 (Bart) capsizedaboat. 23–29Feb.2000(Kim) 1999–2000 TrackedsouthoftheTuamotus.Swellsexceeded2mwererecordedattheGambierIslandsin 3,10,12 (Cyclonedidnottrackthroughthe NoElNiño southeastoftheTuamotus. Tuamotus) (StrongLaNiña) 29Jan.-8Feb.2010(Oli)(Cyclonedid 2009–10 DidnottrackintheTuamotusbutasaseveretropicalcycloneofcategory4,muchdamagewas 3,12 nottrackthroughtheTuamotus) StrongElNiño doneontheSocietyIslandsandtheAustralArchipelagobythestormandrelatedlargeswells. AccordingtoaresidentonMakemoAtoll,thelow-lyingbeachwasfloodedduringthestorm. #References: ForElNiñoconditionidentification 1:AllanandNicholls(1991). 2:WolterandTimlin(2011). 3:NOAAClimaticPredictionCenter(2015). Forcyclonedescriptions 4:EditorofTheNauticalMagazine(1856) 5:Stoddart(1969),quoteddirectlyfromGeographicalhandbooksSeries(1943). 6:Sachet(1983),referredtotheworkofMorenhout(1937),Giovanelli(1940);Teissier(1969)andDeAngelis(1983). 7:Bourrouilh-LeJanandTalandier(1985),usingdatafromMeteorologicalBureauofPapeete,Tahiti,FrenchPolynesia. 8:Gill(1994). 9:ChappelandBate(2000). 10:Tahitipress(2010). 11:SouthernHemisphereTropicalCycloneDataPortal(2011). 12:JointTyphoonWarningCenterTropicalCycloneBestTrackDataSite(2014). 13:NOAAnationalclimaticdatacenter(2014). A.Y.A.Lauetal./MarineGeology380(2016)174–190 179 (1965)fromRangiroaAtollintheeasternTuamotus.Thefolklorerefers 3.3.Wave-depositedbouldersonTuamotuatolls:publishedaccounts to the conditions related to a sudden and brutal catastrophe that destroyedthewesternandsouth-westernofRangiroa.Apassagebegins OwingtothelowreliefofatollsintheTuamotus,largeblocksand “Souslesoleilmettantdeséclairséblouissantsdanslecreuxdesimmenses bouldersareprominentfeaturesthathavebeenrecordedhistorically. vagues”(Bourrouilh-LeJanandTalandier,1985,p.314),whichtrans- IntheeasternTuamotus,agiantreefboulder(approx.150m3)on latesto“Underthesettingsun,dazzlingflashesinthetroughsofhuge Vairaateawasindicatedon theFrenchchartno.5878 asa“Rocher waves”.Sunnyweathermentionedsimultaneouslywithhugewaves Noir”orblackrock(Pirazzolietal.,1988a).Twootherreefbouldersof impliestheeventwasatsunamiratherthanacyclone. upto15m3werefoundonNukutavakeAtoll;andseveralbouldersof TsunamisbelievedtohaveaffectedotherpartsofFrenchPolynesia upto30m3werefoundonTureia.Alloftheseboulderswereconsidered may have also struck the Tuamotu atolls. Bourrouilh-Le Jan and inearlierpublicationstoberemnantsofpastcyclones(Pirazzolietal., Talandier(1985),forexample,haveinferredthepossibleoccurrence 1988a). Carbon-14 dating of boulder coral fabric suggests that the ofmultipletsunamisintheMarquesasArchipelagofromtheabandon- waveeventsthatbroughtthemonlandspannedtheperiod3995– mentofcoastalhabitats.Similarly,examiningarchaeologicalandgeo- 1220BP(Pirazzolietal.,1988a). morphologicalfeaturesinvariousPacificIslandcountries,Goffetal. Oneprominentreefboulderdatedat1470±60BPexistsonHikueru (2011) presented the case for four plausible palaeo-tsunamis that inmiddleoftheTuamotuArchipelago(Pirazzolietal.,1988a).Asitis couldhaveaffectedFrenchPolynesia.Threeabandonedoccupation situatedontopofapedestalthatis0.7mabovethepresentreefflat, sitespreservedundersandlayersonUaHuka,NukaHivaandRurutu thisboulderisbelievedtohavebeenemplacedontothereefbycyclonic islandsmighthaveresultedfromasingletsunamigeneratedbythe waveswhenthesealevelwashigher(Pirazzolietal.,1988a).Mean- 1450earthquake,whichGoffetal.(2012)proposedoccurredatthe whileonRaroia,bouldersweighing4–5tweretransportedontothe Tonga-KermadecTrench(TKT),3000kmwestoftheTuamotus.Asum- coastbyacyclonein1903(Giovanelli,1940).BouldersonNukutipipi maryofthese“equivocal”eventsispresentedtogetherwithotherhis- Atollupto30m3insizewereemplacedbyoneofthetropicalcyclones toricaltsunamisreportedintheTuamotusinTable2. duringtheunusual1982–83cycloneseason(SalvatandSalvat,1992). Table2 Detailsofconfirmedhistoricaltsunamisandpossible/inferredpalaeo-tsunamisintheTuamotusorFrenchPolynesiaingeneral. Date/period Locationaffected Tsunamisource Evidence Impact/remarks Ref.# ConfirmedhistoricaltsunamisintheTuamotuArchipelago 1Apr.1946 TheTuamotus Earthquake(Mw=8.1)intheAleutian Witnessesreport Waveheight1.9matHaoatoll 6 Islands,Alaska 22May1960 TheTuamotus Earthquake(Mw=9.5)atChile Witnessesreport Observationofwater-levelchangesofb1mreported 1 frommultipleatolls 29Sept.2009 TheTuamotus Earthquake(Mw=8.2)intheSamoa Tidegaugerecord Waveheight0.4matRangiroaatoll 7 Islands,SouthPacific 27Feb.2010 TheTuamotus Earthquake(Mw=8.8)atChile Tidegaugerecord Waveheight0.3matRikiteaIsland 8 11Mar.2011 TheTuamotus Earthquake(Mw=8.9)ateastJapan Tidegaugerecord Waveheight0.29matRangiroa 9 PossibletsunamiattheTuamotuArchipelago 16thcentury Rangiroa,the Oraltradition Suddenandbrutalwaves,destroyedsettlementsinSW 2 Tuamotus andSRangiroa InferredtsunamiaffectingotherpartsofFrenchPolynesia Latefirst HaneofUaHuka,the Suddenabandonment Inferredfromethnologystudies 3 millennium Marquesas ofcoastalhabitats CE1430–1570 UaHuka,the PossiblyanearthquakeinSouth Mobilisedcoastaldune Dateinferredfromcarbon-14datingofsoiland 10 Marquesas America. coveringoccupation skeletons. (orpossiblythe1450TKTTsunami) CE1450–1500 NukaHiva,the Possiblyfromthe1450TKTTsunami Cleansandsheet Thesandsheetcouldbedepositedfromamajorstorm. 10 Marquesas betweenarchaeological Dateinferredfromcarbon-14datingofarchaeological layers units. CE1450–1600 Rurutu,theAustrals EarthquakeatTongaTrenchorSouth Cleansandsheet Dateinferredfromcarbon-14datingofculturalunits. 10 America(Possiblythe1450TKT betweenarchaeological Tsunami) layers 16thcentury HaneofUaHuka,the Suddenabandonment Inferredfromethnologicalstudies 3 Marquesas ofcoastalhabitats Possibly16th Huahine,Raiateaand Suddenabandonment Inferredfromethnologicalstudies 4,5 century Scilly,SocietyIslands ofcoastalhabitats Post1650 Huahine,Society Cleansandlayerontop Dateinferredfromcarbon-14datingofboneunderneath 10 Islands ofabandoned sandlayer. occupation #References: 1:Vitousek(1963). 2:Ottino(1965)ascitedin#7. 3:KellumOttino(1971)ascitedin#7. 4:Sinoto(1978)ascitedin#7. 5:Semah(1979)ascitedin#7. 6:Bourrouilh-LeJanandTalandier(1985). 7:CEA(2009). 8:CEA(2010). 9:PacificTsunamiWarningCenter(2011). 10:Goffetal.(2011). 180 A.Y.A.Lauetal./MarineGeology380(2016)174–190 FurtherwestintheTuamotus,largecarbonateboulders(ofunre- andmedium-sizedboulderswerechosen:clastswithintermediate(b-) cordedsize)onthenorthwestreefofTakapotosimilarlyoriginated axeslessthan1mweregenerallynotmeasured.However,sevenboul- fromcyclonesin1982–83(Sachet,1983).OnthewesternrimofAnaa derswithb-axesb1mwereincluded,eitherbecausetheywereonly Atoll,sevenboulders(25–145m3)movedbyCycloneOramaonthe slightlybelowthechosensizethreshold,orweredepositedfarinlandbe- reef flat in 1983 were measured by Etienne et al. (2014). Another hindthebeach(135–161m)wheretheirpresencewasassumedtobe eightlargerbouldersranginginvolume150to450m3wereencoun- representativeofthelimitofstrongwaveinundation.Forboulderorien- tered,butcausesofdepositionarestillunknown(Etienneetal.,2014). tationandwavedirectionanalyses,thestudiedshorelinewasdivided OnRangiroa,thelargestatollintheTuamotus,largecoralblockscan intofivezones(A–E)accordingtotheshoreorientation(refertoFig.2). be found at multiple locations. Surveying three large blocks at the Foreachselectedboulder,thefollowinginformationwasrecorded: southern,westernandnorthernrims,Stoddart(1969)foundthatthe (1)thedimensionsofthreeaxes(termeda-,b-,c-axesforlong,inter- largestblockonthewesternrimmeasured5.5×5.5×4.5m.Research mediate,andshortaxisrespectively)measuredbytape;(2)theorienta- byBourrouilh-LeJanandTalandier(1985)recordednumerousboulders tion of thea-axis in degrees; (3) shape(rectangular, triangular, or onwesternatollrims,withthelargestblock(15×10×5m)weighting ellipsoidal);(4)GPSlocation(MobileMapper10;spatialaccuracy± 1500t.Recentlythedimensionandmassofthisboulderwereadjusted 0.5m);and(5)thedistancefromthealgalcrestreefedge(determined to14×8×4.5m(approx.504m3)andabout1000t(Etienneetal., withaLaserTechnologyTruPulse360Blaserrangefinder;accuracy 2014).Whilethecauseofthewavesthatbroughtthelargestblock ±1m).Incaseswherethedistancetothereefedgecouldnotbemea- ontothereefhasnotbeendetermined,boulders4–6minlengtharebe- sured,forexamplewhenobstructionswerepresent,thedistancewas lieved to have been transported by cyclonic waves on Raroia and estimatedfromsatelliteimagesavailableonGoogleEarth(accuracyes- Rangiroain1903and1906respectively(StoddartandWalsh,1992). timatedat2m).Forboulderorientationanalysis,onlyelongatedboul- derswithasignificantlongaxis(a-axisN20%longerthanb-axis)were 4.Methods considered,becausesquarebouldersdonothavearepresentativelong axisforthisanalysis. 4.1.Datacollection Carbonatesampleswerechiselledfrom24bouldersforage-dating anddensitydetermination.Amongthem,22weredeadcoralsamples OnMakemoAtoll,numerouslargebouldersexistonthenorthernatoll takenfromthesurfaceofboulders;theothertwosamplesweredead rim.Thesehavenotpreviouslybeenstudied.Bouldersmeasuredinthis giantclamsthathadanchoredonseparateboulders.Samplesweregen- investigationwerechosenbasedontheirsizeandaccessibility.Atthe erallycollectedfromboulderswiththelargestvolumeorthoselocated westernsectionoftheisland,whereapproximately0.7kmofcoastlines farthestfromthereefedgewherewavesbreak.Theiragestherefore hadabundantbouldersbutnoroadaccess,onlylarge(intermediate possiblyrepresentoccurrencesofthestrongestextremewaveeventsaf- axesN2m)clastsweremeasured(zoneAinFig.2).Elsewhere,large fectingtheatoll. Fig.4.Bouldervolumewascalculatedbasedongeneral3Dgeometricshapes.(a)Asthesimplegeometriccalculationofrectangularbouldersresultsinsignificantoverestimationof volume,theirinitialvolumesweremultipliedbya0.7scalar(seetext).Nocorrectionwasappliedto(b)ellipsoidalor(c)triangularboulders. A.Y.A.Lauetal./MarineGeology380(2016)174–190 181 4.2.Volumeanddensitydetermination estimatedvolumes.Spiskeetal.(2008)highlightedthattheporosityof bouldersshouldnotbeneglectedindensitydeterminationofwave- Thevolumeofeachboulderwascalculatedbasedonits3Dgeomet- emplacedcoastalboulders.TheyshowedthatArchimedeanbuoyancy ricshape:e.g.,rectangularprism(‘rectangular’),triangularprism(‘tri- measurementsprovidethemostaccurateestimationofcoraldensity. angular’),orellipsoidal.Thevolumes(V)wereestimatedthus: BulkdensitywasthereforecalculatedbasedontheArchimedesprinci- Triangularboulders: ple: (cid:4) (cid:5) V¼ða(cid:2)b(cid:2)cÞ ð1Þ BD¼1:02(cid:3) Wa ð4Þ 2 ðW −W Þ a f Ellipsoidalboulders: where1.02g/cm3isthedensityofseawater;W isthedryweight(g)of (cid:1) (cid:3) a sampleinair;andW istheweight(g)ofthesampleinseawater.Dry 4 a b c f V¼ π (cid:2) (cid:2) ð2Þ weightwasdeterminedfrom22samples(17–83g)withadigitalbal- 3 2 2 2 ance(accuracyto0.01g).Tomeasurethecoralweightinseawater withadensityof1.02g/cm3,seasaltwasaddedtoabeakerofdistilled Rectangularboulders: water of known volume. Salinity was monitored with a calibrated, V¼0:7ða(cid:2)b(cid:2)cÞ ð3Þ handheldsalinitymeterwhilestirringuntiltheconcentrationreached thatofnaturalseawater(35ppt).Theplastic-wrappedsamplewas wherea,b,andcinallequationsarethelong,intermediate,andshort thentiedtoahangingscaleandloweredintothebeakerofseawater. axes. For rectangular boulders, volumes are almost always TheW valuewasmeasuredimmediatelyaftersamplesubmergence. f overestimatedbythegeneralgeometriccalculationV=a×b×cbe- Bulkdensitywasalsobedeterminedbyasimplemethodusingdry causebouldersarerarelyperfectlyrectangular(Terryetal.,2013).Com- mass(M)andbulkvolume(BV): a parison of accurate measurements of boulder volumes determined usingterrestriallaserscanning,differential-GPS,andphotogrammetric BD¼Ma=BV ð5Þ 3Dmodelling(Scicchitanoetal.,2012;EngelandMay,2012;Gienko andTerry,2014),hasdemonstratedthattheactualvolumesofboulders whereM wasdeterminedinthesamewayasW above,andbulkvol- a a areonlyafraction(0.41–0.76)ofthoseestimatedusingrectangularge- ume of the same sample was determined via water displacement. ometry.Thus,inthisstudy,0.7wasusedtominimizeerrorintheesti- Briefly,theplastic-wrappedsamplewasplacedintoawater-filledbea- mationofbouldervolumeandmass(Eq.3).Aconservativevalueof kerandthedifferenceinwaterlevelwasrecordedasthebulkvolumeof 0.7wasusedbecauseobservedboulderswerenothighlyweathered thecoralsample. intorugged,irregularshapesthatwouldotherwisesupporttheuseof smallerscalars.Nocorrectionwasneededforellipsoidalandtriangular 4.3.Wavevelocityestimation bouldersbecausetheirvolumesarewellapproximatedbysimplegeo- metricformulae(Fig.4). CarbonatebouldersontheMakemoreefflatoriginatedfromtwo Thebulkdensity(BD)ofcollectedcoralsamples(n=22)wasused plausiblesources(Fig.5):(1)theactivereefedgeorreefslope(collec- tocalculatethemass(M)ofallmeasuredboulders(M=BD×V)from tivelycalled“reef-edgeboulders”);or(2)frommid-Holoceneemerged Fig.5.BouldersonthecoastofMakemoAtollwerederivedfromtwopossiblesources:someoriginatedfromtheemergedreefremnantsoremergedbeachrock(source1)andweremoved byeitherrun-upwaves(landwarddirection)orbackwash(oceandirection).Theywerethendepositedeitherbehindthebeachontheislandas“beachtopboulders”,oronthereefsurface as“reeftopboulders”.Thesurfaceappearanceofthesebouldersisconsistentwiththelocalreefremnant;andthethicknessofsuchbouldersiswithintherangeofreefemergencesincethe mid-Holocene.Mostbouldersinthedatasetwerehoweverderivedfromtheactivereef(source2)andreferredtoas“reef-edgeboulders”.Atsomepartsofthereefedge,socketsofsimilar sizeasbouldersdepositedonreefflatwereobservedatthereefedgeandcouldbeidentifiedasbouldersources. 182 A.Y.A.Lauetal./MarineGeology380(2016)174–190 reefremnantsorotheremergedfeatures(collectivelycalled“emerged 2ðρ=ρ −1Þgccosθ u2≥ s w ðliftingÞ: ð8Þ reefboulders”).Reef-edgebouldersweretransportedinthelandward C l direction by run-up flow; while emerged reef boulders were transportedeitherbyrun-upontothebeachinthelandwarddirection, Forareef-edgeboulderinajoint-boundedsetting,transportcan orbybackwashtothereefflatintheoceandirection(Fig.5).Thedirec- onlybeinitiatedbyliftingwhen: tionofmovementofthelatterprocessisoftendebatable(discussed belowinSection5.1).Whenaboulderexhibitedasurfaceappearance 2ðρ=ρ −1Þgcðcosθþμ sinθÞ u2≥ s w s : ð9Þ resemblingthatoftheremnantreefatthelocality,andhadatleast C l one axis that was shorter than the elevation of the emerged reef (approx. 1.1 m), the boulder was considered to originate from the Inallequations,uisflowvelocity(m/s);bandcaretheb-andc-axes emergedreef(i.e.,“emergedreefboulders”).Theemergedreefboulders (m),respectively;ρ,boulderdensity;ρ ,waterdensity(1.02g/ml);C , s w d werefurtherdividedintotwogroupsbasedontheirpresentlocation: dragcoefficient(C =1.95);C,liftcoefficient(C =0.178);θ,angleof d l l “beachtop”or“reeftop”(Fig.5). thebedslopeatpre-transportlocation;μ,coefficientofstaticfriction s The hydrodynamic flow transport equations proposed by (μ =0.5);andg,accelerationofgravity(g=9.81m/s2). s Nandasenaetal.(2011)wereusedforestimatingplausibleflowveloc- Becausethestudiedreefflatisnotinclined,theangleofthebed itiesthatmovedthecarbonatebouldersonMakemo.Assumingthat slopeθissetat0°.Whenθ=0°,thecalculatedflowvelocityrequired clastswerealreadydetachedfromthereefpriortotransport,themini- to initiate boulder transport by lifting is the same for both non- mumflowvelocities(MFVs)requiredtoinitiatebouldertransportfrom obstructed(SAorSM;Eq.8)andjoint-boundedpre-transportcondi- twodifferentpre-transportpositionsbythreeinitialtransportmodes tions(Eq.9),becausesineθ°=0. wereestimated(Nandasenaetal.,2011).Bouldersoriginallyfoundoc- cupyinganon-obstructedsurface(eithersubaerial(SA)orsubmerged 4.4.Coralage-dating (SM)setting)couldbetransportedbysliding,rolling(overturning)or liftingbecausedrag,inertiaandliftforcescanallbeappliedtotheboul- Theagesofsurfacecoralsamplescollectedfrom20boulderswere derbytheflowtoinitiatemovement.Incontrast,foraclastrestingina measuredbyuranium-thorium(U-Th)datingusinghigh-precisionther- joint-bounded(JB)socket,liftistheonlyforcethatcanbeappliedini- malionizationmassspectrometry(TIMS)attheRadiogenicIsotopeFacil- tially,becauseonlythetopsurfaceoftheboulderisexposed,andlateral ityoftheUniversityofQueensland(refertoZhaoetal.(2009))forthe movementbyslidingandrollingisrestricted(Nandasenaetal.,2011) detailsofthisdatingmethod).DetailsoftheTIMSU-Thdatinglaboratory (Fig.6). procedureareprovidedbyYuetal.(2012),whodatedover100coral Emergedreefboulderslocatedonthesub-aerialreefflatpriorto samplesfrombouldersonthesouthernGreatBarrierReeftoexamine movementcouldbetransportedbysliding,rollingorlifting(Fig.6). the decadal variations in storm activity in the region over the past Reef-edgeboulderssituatedatelevationslowerthanthereefflatbefore century. movement,similartotheinitiallocationforjoint-boundedboulders, Itisassumedthatlivecoralwasdislodgedfromtheupperlivingreef couldonlybetransportedontothereefflatvialifting.Aftertheboulder surfaceatthetimeofpastextremewaveeventswhenaboulderwas wasliftedontothereefflat,itcouldbemovedfurtherbyslidingor transported.Thus,theageofthecoralsamplesmaybetakentorepresent rollingbylowerflowvelocities.AccordingtoNandasenaetal.(2011), theapproximatetimingoftheevent(Yuetal.,2009),oratleastthemin- theinitialtransportofanon-obstructedemergedreefboulderinasub- imumtimethathaspassedsincetheeventoccurred.Timingofpre- aerialorsubmergedsettingoccursforthefollowingconditionsviathree historicalextremewaveeventsinferredfromboulderagesyieldedby processes: U-Thdatingofconstituentcoralsshouldbeinterpretedwithcaution, however,aschallengesexistwiththismethod.Forexample,onTaveuni 2ðρ=ρ −1Þgcðμ cosθþ sinθÞ Island(Fiji),EtienneandTerry(2012)showedthatiftheoldestinstead u2≥ s w s ðslidingÞ ðn:6Þ C ðc=bÞþμ C oftheyoungestpartofalargeboulderissampledfordating,theresulting d s l ‘boulderage’mightbe250yearsolderthantheactualbouldertransport 2ðρ=ρ −1Þgcðcosθþðc=bÞsinθÞ timing.OntheMakemoreefflat,bioerosionisnotintenseandboulders u2≥ s w (cid:6) (cid:7) ðrollingÞ ð7Þ C c2=b2 þC arenotseverelyweathered.Fossilcoralgrowthdirectionscanbeidenti- d l fiedonmostboulders,thereforesuchageerrorishopefullyavoided. FollowingtheapproachofYuetal.(2012),theageerrorduetosam- plethicknesswasaddedtotheageuncertaintyrange,becausethedated materialmaynotbetheyoungestpartofthecollectedcoralsample.In samplepreparation,cubesofabout3cm3weresenttotheisotopefacil- ityforU-Thdatinganalyses.GrowthratesofcoralsnearMakemoAtoll are~10mm/yearonaverage:e.g.,onMooreaintheSocietyIslands, theaveragegrowthrateofthemassivecoralPoriteswas10.7mm/ yearovertheperiodCE1800-1905(BessatandBuigues,2001);onTa- hiti,themeanaggradationrateoftherobust-branchingAcroporacoral, whichcommonlydominatestheupperforereef,was9.3–11mm/year through the postglacial period from 14,000 BP (Montaggioni and Camoin,1997). Each 3-cm thick sample thereforerepresents three yearsofcoralgrowth,soanadditionalerrorof±3yearswasaddedto eachdatingresult. Fig.6.Illustrationoftwodifferentpre-transportsettings(SA/SMonleft;JBonright)and therespectivepossibletransportmodes(sliding,rollingandlifting).Theboulder 5.Results exampleontheleftisanemergedreefboulder;theoneontherightisareef-edge boulder(seeFig.5).Thebouldersareassumedtoberectangular,anddetachedfromthe 5.1.Boulderdistribution bedrockwitha-axisalignednormaltoflowinthepre-transportposition.Fdisdrag;Fm, iannedrtcia-a;xFil,s,lirfte;sFpfe,cfrtiicvteiolyn.;TahnedtFerr,mreast’riasinthinegafxoirscoe.fTohveervtaurrinabinlegs(broatnadtiocnreafberoutottthheeba-- Atotalof286boulderswererecordedalongthe15-kmlongnorth- axis).TheconceptisadaptedfromNandasenaetal.(2011). ernMakemoreefflat(Fig.7).Someofthelargestclastsreachedthe A.Y.A.Lauetal./MarineGeology380(2016)174–190 183 ‘meso-boulder’category(i.e.b-axisN4.1m),followingthescaleofTerry 5.2.Flowvelocityestimation andGoff(2014).Atotalof45(16%)clastswereover20m3involume. Thedensityofsamplesmeasuredbybothmass/volumeandArchimedean Theminimumflowvelocity(MFV)requiredtoinitiatethetransport methodsweresimilar:1.67±0.2g/cm3and1.70±0.3g/cm3,respec- ofthe256reef-edgebouldersrangefrom5.4–15.7m/s.Velocitiesof tively.Thus,aroundeddensityvalueof1.7g/cm3wasusedforthedeter- only1.5–4.4m/sweresufficienttoinitiatethemovementofthe30 minationofclastmass.Thelargestmeso-boulder(7.5×5.5×3.35m)had emergedreefbouldersbysliding.However,someemergedreefboul- anestimatedmassof164.4t;thesmallest(0.77×0.68×0.66m)0.41t dersshowedevidenceofrollingorlifting,e.g.onebouldersittingon (metrictonsortonnes,t).Themean(±standarddeviation)volumeand topofanother.Therefore,highervelocitiesassociatedwiththesetrans- massofall286boulderswas11.8±11.3m3and20.0±19.2trespec- portmodesweretheassumedMFVs. tively;themedian(±medianabsolutedeviation)volumewas8.9± TheMFVscalculatedfrombouldersrepresenttheflowgeneratedby 5.0m3andmedianmasswas15.2±8.4t. breakingwavesatthebouldersourcewheretransportisinitiated.Reef- ThemajorityofthebouldersinallzonesexceptzoneBareorientated edgeboulderswereconsideredtocomefromthenearestreefedgeloca- paralleltoslightlysub-paralleltotheshore(Table3).Theminimumdis- tion.Asnumerousbouldersweremeasuredinthisstudy,theMakemo tancebetweenameasuredclastandthereefedgewas11m.Themax- reefedgewasdividedinto100-mintervalsonthemapforillustration imum distance was 162 m for a small spherical boulder andanalyses(Fig.9).ThehighestMFVcalculatedfromallboulders (1.17×1.16×1.14m;mass=0.82t)thatwasdepositedbehindthe withineach100-msectionthereforerepresentsaconservativeestimate beachinthevegetationzone.Thedistributionofbouldersonthecoast ofthemaximumflowthathasimpactedthissectionofthecoastline.A followsaclearlandward-finingtrend(Fig.8). flowvelocityexceedingthehighestMFVisassumedtobecapableofini- Ofthe286bouldersinvestigated,30wereemergedreefboulders. tiatingtransportofallbouldersinthis100-msection.Foremergedreef Sixteenoftheseweredepositedonthereeftop;theother14were boulders,itwasdifficulttoidentifytheoriginalsourcelocationandorig- washedfartherlandwardonthebeachsurface.The2ndand7thlargest inaltransportdirection,i.e.eitherbyrun-uporbackwash.Evidenceof boulders(84.5tand74.9t)werereeftopboulders,derivedfromthe run-uporbackwashcouldbeclearlyidentifiedforonlyfourboulder emergedreef.Theotherreeftopboulderswereofvarioussizes,with sourcesontheemergedreef(labelledonFig.9).Colouredlinestoindi- massesrangingfrom1.2to33.0t.Mostofthelargereeftopboulders cate MFVaredrawn atboulderlocationswhenabouldersourceis weresituatedinzoneAinthewesternsectionofthestudiedshore.In unknown. contrast,thebeachboulderswereallsmallbouldersweighingb4t. ThebouldersthatrequirehighestMFVsfortransportareclusteredin Most(12of14)beachboulderswerefoundinzoneBwithmassesrang- zonesDandE,where19outof20measuredclastsrequiredN13m/sto ingbetween0.4and2.2t.Thefarthestlandwardboulderwassituated betransported(Fig.9).Theexceptionisinthenorth-facingzoneC.De- 162mfromthereefedgeandwas67mfromtheemergedreef. spitethepresenceoflargebouldersinzoneA,thelargestofallwere Fig.7.Distribution,size,andorientationofbouldersinZonesAtoEonMakemoAtoll.SeeFig.2forthelocationofeachzoneontheatoll.Rosediagramsofboulderorientationateachzone aredisplayedincircles.Theboulderorientationsweregroupinto10°gridsforcalculation.AtallzonesexceptB,themajorityofthebouldersarealignedwitha-axesparalleltotheshore. RefertoLauetal.(2014)formoreresultsanddiscussiononboulderorientationintheMakemoboulderfield.(SatelliteimagesfromGoogleEarth).

Description:
Hurricane of particular force. “Several storms caused .. hiti, the mean aggradation rate of the robust-branching Acropora coral, which commonly
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.