ebook img

Understanding the genetic basis of storage root formation along with starch and beta PDF

153 Pages·2008·2.79 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Understanding the genetic basis of storage root formation along with starch and beta

Understanding the genetic basis of storage root formation along with starch and beta- carotene biosynthesis and their inter-relation in Sweetpotato (Ipomoea batatas LAM.). Inaugural-Dissertation zur Erlangung des Doktorgrades an der Universität für Bodenkultur Wien Department für Angewandte Pflanzenwissenschaften und Pflanzenbiotechnologie Institut für Angewandte Genetik und Zellbiologie Vorgelegt von Dhairyasheel P. Desai Wien,October 2008 Gutachter 1 Prof. Josef Glößl, IAGZ. Gutachter 2 Dr. Doz. Eva Wilhelm, ARCS, Seibersdorf, Austria. Die vorliegend Arbeit wurde im Austrian Research Centres GmbH – ARC, Seibersdorf, Bereich Biogenetics and Natural Resources, Abteilung Platform for Integrated Clone Management (PICME) unter der Betreung von Dr. Kornel Burg erstellt. I To my Grandfather…………… I I Acknowledgements First of all, I would like to thank god for all He has done to show me this day. I am greatly thankful to Mag. Silvia Fluch and to Dr. Kornel Burg for giving me the opportunity to work along with them in PICME, Austrian Research Centres, Seibersdorf, Austria. Without them I wouldn’t have been writing this acknowledgement. Thanks to Josef Schmidt for all his help. A special thanks goes to Dr. Kornel Burg for almost every possible invaluable help during the course of my research. I think he is the “perfect supervisor” and I was fortunate to be his student. I hope I have not disappointed him about his expectations from me. Thank you so much for your guidance and continuous support, especially in developing critical outlook towards the huge gene expression data and interpretation of the research results. Your help was most important in preparing this thesis and the manuscripts within. I would like to acknowledge my gratitude to Dr. Maria Berenyi for her patient introduction to most of the laboratory techniques I have learned here. I am very grateful for her step-by-step guidance throughout this research. Her wide knowledge and experience in this field has been tremendously helpful in guiding the course of this work. I would like to express my deepest gratitude to my University Supervisor, Prof. Josef Glößl for his invaluable guidance and advice throughout my studies at the BOKU. His timely advice in course work was very benevolent and gave me confidence that I would be able to complete this PhD thesis in light of so many difficulties. He was never too busy to meet me for the discussions. I would like to thank a lot to Michael Stierschneider for his help in Microarray chip spotting and slide scanning, to Dieter, Ildiko and Stephan for their invaluable help in all bioinformatics related work, to Karin for her help in the laboratory. II I I acknowledge the Austrian Research Centres GmbH- ARC in Seibersdorf, Bioresources division and CIP (Centro Internacional de la Papa), Lima, Peru, for the financial support of this project. Special thanks to Mrs Agnes Burg and Mag Silvia Fluch for their delicious cakes on Monday morning lab meetings. Thanks to my fellow PhD students and friends; Ratri, Edward, Andreas, Renata, Tania, Priscilla, Nadine, Sohail, Joy, Rara, Pepe, Pervez, Afzhal, Sutti, Jaykumar, Sanjay, Ruturaj, Sudarshan, Yogesh, Saptarshi and All the Kaisrstrasse-106 community friends. You people made my work and stay in Vienna a lot easier than it would ever have been. Most of all I would like to thank my parents for their emotional support and for giving me the opportunity to pursue a career from which I derive great enjoyment and satisfaction. My heartiest appreciation goes to my beautiful wife for everything. It’s a great fortune to have such a supportive, understanding and reassuring wife who have made many sacrifices to make me see this achievement. I would specially thank my Grandfather who kept faith in me and who inspired all my professional ambitions. I would like to dedicate this thesis to him. I will end up with this infinite gratitude, which cannot possibly cover all the names, with this short Sanskrit prayer, dedicated to all. ॐॐॐॐ अअअअससससततततोोोो ममममाााा सससस(cid:9)(cid:9)(cid:9)(cid:9)ममममयययय | ततततममममससससोोोो ममममाााा (cid:11)(cid:11)(cid:11)(cid:11)ययययोोोोििििततततगगगगमम(cid:14)(cid:14)मम(cid:14)(cid:14) यययय | मममम(cid:16)(cid:16)(cid:16)(cid:16)ृृृृययययोोोोरररर ््््ममममाााा अअअअममममततततृृृृ ं ं ं ं गगगगममममयययय | ॐॐॐॐ शशशशाााांंििंंिितततत शशशशाााांिंिंिंितततत शशशशाााांिंिंिंितततत || - बहृदार(cid:25)यक उपिनष(cid:31) 1.3.28 Translation, O’ Lord, Lead Us From Unreal To Real, From Darkness To Light, From Death To Immortality, Let There Be Peace Peace Peace. - Brihadaranyak Upanishad 1.3.28 IV Abstract Sweetpotato is one of the most important root crops in the world and constitutes a major source of dietary carbohydrate in third world countries. Based on comparative analysis of gene expression in four stages of storage root formation, this study revealed two distinct phases of storage root development in Sweetpotato. In general, up regulation of genes were characteristic for the fibrous phase, while an overall down regulation of genes along with up regulation of some storage related functions characterised the storage phase. Activity of several signalling pathways could be monitored but Jasmonic acid and Transforming Growth Factor signalling dominated the fibrous phase while Brassinolide signalling was predominant in the storage phase. Biofortified Sweetpotato with higher starch as well as beta-carotene content is of principle interest in respect to combating Vitamin A deficiency in developing countries. In the present study Sweetpotato accessions with diverse starch and beta-carotene phenotypes were compared to discover differences at gene expression level with respect to starch and beta-carotene biosynthesis. It was observed that beta-amylase and sucrose phosphate synthase influence the higher starch biosynthesis phenotype in the storage roots. Extremely high expression of chromoplast differentiation related DnaJ like protein and Thioredoxin/Ferredoxin post-translation modification system as well as ROS were found to be related to high beta-carotene content phenotype. Beta-amylase and DnaJ-like Protein genes could well be acting synergistically towards amyloplast to chromoplast conversion indicating that controlling mechanisms related to amyloplast/chromoplast development and differentiation govern the accumulation of starch and beta-carotene in Sweetpotato storage root. V ZUSAMENFASSUNG Süßkartoffel (Ipomea batatas) ist eine der bedeutendsten knollenbildenden Pflanzen und wichtiger Kohlenhydratelieferant in den Ländern der Dritten Welt. Der Nähr- und Inhaltstoffgehalt der Knollen verschiedener Sorten ist sehr unterschiedlich, und führt dadurch zu unterschiedlicher Eignung als Nahrungsmittel. So findet man Pflanzen mit orangen Knollen (i.e. hoher Betakarotin Gehalt) und geringem Stärkegehalt, aber auch weiße Knollen, deren Stärkegehalt weit über dem Durchschnitt liegt. Eine verbesserte Süßkartoffel mit höherem Stärke- und Betakarotingehalt ist von großem Interesse in Bezug auf die Bekämpfung des Vitamin A Mangels in der Ernährung in Entwicklungsländern. In der vorliegenden Studie wurden verschiedene Süßkartoffel-Sorten mit unterschiedlichem Stärke- und Betakarotingehalt auf der Genexpressionsebene verglichen, mit dem Ziel, Gene zu identifizieren, die für Stärke- und Betakarotingehalt verantwortlich sind. Basierend auf vergleichenden Genexpressionsanalysen von vier Entwicklungsstadien während der Wurzelbildung von der Sekundärwurzel hin zur Wurzelknolle konnten zwei Phasen der Entwicklung identifiziert werden – i) Versorgungswurzel und ii) Wurzelknolle als Speicherorgan. Während der Entwicklung der Versorgungswurzel trat mehrheitlich eine Erhöhung der Genexpression verschiedener Gene auf, während die Speicherphase durch die mehrheitliche Reduktion der Genexpression der selben Genen charakterisiert war. Nur Gene die eine Rolle in der Speichefunktion spielen, zeigten in der Speicherphase eine erhöhte Expression. Eine Untersuchung der Aktivität von verschiedenen Signalpfaden zeigt, dass Jasmonsäure- und Wachstumsfaktorensignale in der Versorgungswurzel dominieren während Signale des Brassinol-Signalweges in der Speicherphase zum Zug kommen. Darüber hinaus wurde beobachtet, dass Beta-Amylase und ‚Sucrose Phosphate Synthase’ die erhöhte Stärkebildung in den Speicherknollen der Phänotypen mit hohem Stärkegehalt beeinflussen. Bei Knollen mit hohem Betakarotingehalt konnte eine stark erhöhte Expression der Gene für die Differenzierung von Chromoplasten, ein DnaJ Protein, sowie Gene für das ‚Thioredoxin/Ferrodoxin post-translations Modifizierungssystem’ und ROS gefunden V I werden. Es wird vermutet, dass die Beta-Amylase und das DnaJ Protein bei der Umwandlung von Amyloplasten zu Chromoplasten synergistisch agieren. Das bedeutet, dass Kontrollmechanismen während der Amyloplasten/Chromplasten Differenzierung die Akkumulation von Stärke und Betakarotin in Süßkartoffel-Speicherwurzeln kontrollieren und steuern. V II Table of contents Acknowledgements.............................................................................................................II Abstract...............................................................................................................................V ZUSAMENFASSUNG.....................................................................................................VI Chapter I..............................................................................................................................1 2.1 General introduction.................................................................................................1 2.1.1 Sweetpotato and beta-carotene..........................................................................2 2.1.2 Sweetpotato and carbohydrate (starch) biosynthesis.........................................3 2.1.3 Storage root formation morphology and molecular biology..............................4 2.1.4 The technology...................................................................................................6 2.1.5 Aims and Objectives..........................................................................................7 CHAPTER 2 Gene expression profiling reveals two distinct phases of storage root development in Sweetpotato...............................................................................................9 2.1 Abstract...................................................................................................................10 2.1.1 Background......................................................................................................10 2.1.2 Results..............................................................................................................10 2.1.3 Conclusion.......................................................................................................10 2.2 Background.............................................................................................................12 2.3 Results.....................................................................................................................14 2.3.1 General pattern of gene expression during storage root formation..................14 2.3.2 Root developmental stages show two distinct transcriptional profile phases..16 2.3.3 Genes contributing to changing root architecture............................................17 2.3.4 Regulatory processes.......................................................................................17 2.3.5 Signal transduction...........................................................................................18 2.3.6 Growth and development related gene activities.............................................19 2.3.7 Cell differentiation and proliferation related gene activities...........................20 2.3.8 Cell wall metabolism.......................................................................................22 2.3.9 Storage processes.............................................................................................25 2.4 Discussion...............................................................................................................27 2.4.1 Fibrous phase...................................................................................................28 2.4.2 Storage phase...................................................................................................29 2.4.3 Plant defence response during storage root formation.....................................31 2.5 Conclusion..............................................................................................................33 2.6 Material and method...............................................................................................34 2.6.1 cDNA library and Microarray production.......................................................34 2.6.2 Annotations......................................................................................................34 2.6.3 Target preparatio..............................................................................................35 2.6.4 Hybridizations..................................................................................................35 2.6.5 Data analysis....................................................................................................36 VI II 2.6.6 Real-Time PCR analysis..................................................................................36 2.7 Figure legends.........................................................................................................38 2.8 Additional files........................................................................................................39 CHAPTER 3 Elucidation of Starch and Beta-carotene biosynthesis and their inter-relation in sweetpotato storage roots..............................................................................................53 3.1 Abstract...................................................................................................................54 3.2 Introduction.............................................................................................................55 3.3 Material and method...............................................................................................57 3.3.1 cDNA library and Microarray production.......................................................57 3.3.2 Annotations......................................................................................................57 3.3.3 Target preparation............................................................................................58 3.3.4 Hybridizations..................................................................................................58 3.3.5 Data analysis....................................................................................................59 3.3.6 Real-Time PCR analysis..................................................................................59 3.4 Results.....................................................................................................................61 3.4.1 Global gene expression profile in four sweetpotato accessions.......................61 3.4.2 Starch biosynthesis related gene expression....................................................62 3.4.3 Starch degradation/ related gene expression....................................................64 3.4.4 Beta-carotene biosynthesis related gene expression........................................65 3.4.5 Expression of supporting genes influencing starch and beta-carotene accumulation.............................................................................................................67 3.5 Discussion...............................................................................................................69 3.5.1 SPS and Beta-amylase controls starch accumulation in sweetpotato..............69 3.5.2 DnaJ-like protein, redox post translation regulatory system and ROS are the putative regulator of beta-carotene accumulation in sweetpotato storage root.........70 3.6 Figure legends.........................................................................................................74 3.7 Additional files........................................................................................................75 Chapter 4 General conclusion...........................................................................................83 4.1 Sweetpotato storage root development...................................................................83 4.1.1 Fibrous phase...................................................................................................84 4.1.2 Storage phase...................................................................................................84 4.2 Starch and beta-carotene accumulation in storage roots.........................................85 4.2.1 Starch biosynthesis...........................................................................................86 4.2.2 Beta-carotene biosynthesis...............................................................................86 4.2.3 Inter-relation of starch and beta-carotene biosynthesis phenotypes................87 Bibliography.....................................................................................................................91 Annex..............................................................................................................................104 IX General introduction Chapter I 2.1 General introduction Sweetpotato (Ipomoea batatas LAM.) is an important, adaptable, and underexploited food crop in the world. Annual production of this crop is more than 133 million tons/year and is cultivated in over 100 developing countries and ranks among the five most important food crops in over 50 countries (FAOSTAT data, 2005). Sweetpotato currently ranks as the fifth most important food crop on a fresh-weight basis in developing countries after rice, wheat, maize, and cassava. The cultivated Sweetpotato is hexaploid (2n=6x=90) and member of the Convolvulaceae (Morning Glory) family with high level of variations within the species [Gichuki et al., 2003]. Sweetpotato is principally a small farmer crop and often grown on marginal soils with limited outputs and production of which tends to be concentrated with lower per capita income population. It is a natural staple crop of many African countries. The agronomically important organ of this plant is its tuber, which is actually a modified root called as storage root which in a form of staple food serves as one of the major sources of dietary carbohydrates in third world countries. Additionally to carbohydrates Sweetpotato storage roots also accumulate proteins (Sporamin and Cystatin) and certain genotypes beta-carotene, which is pro-vitamin to vitamin A. Beta-carotene is an important precursor for Vitamin-A biosynthesis and its dietary intake is important especially in case of resource poor in order to fight against Vitamin-A deficiency and its related health issues. Worldwide, an estimated 250 million under five years’ children are thought to be deficient in vitamin A [Mason et al., 2001]. In sub-Saharan Africa, some three million children under the age of five suffer from vitamin A-related blindness. Two-thirds of affected children die within months of going blind, mainly because of increased susceptibility to infection associated with insufficient intake of vitamin A [Ruel, 2001]. To make available the biofortified varieties of Sweetpotato to resource poor is an excellent option to address this issue. 1

Description:
Biofortified Sweetpotato with higher starch as well as beta-carotene content is manuscript as well as KB helped in designing of the experiment and .. driven by different regulatory pathways. The two RING domain type genes.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.