ebook img

Understanding Scientific Assessments in Adversarial Polities through Quebec Sh PDF

154 Pages·2016·1.87 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Understanding Scientific Assessments in Adversarial Polities through Quebec Sh

Université de Montréal An Enforced Cooperation: Understanding Scientific Assessments in Adversarial Polities through Quebec Shale Gas Policymaking, 2010-2014 Par Alexandre Harvey Département de Science politique, Faculté des Arts et des Sciences Mémoire présenté en vue de l'obtention du grade de Maîtrise ès sciences en Science politique Avril 2016 © Alexandre Harvey, 2016 Résumé Les biotechnologies, le réchauffement climatique, les ressources naturelles et la gestion des écosystèmes sont tous représentatifs de la “nouvelle politique de la nature” (Hajer 2003), un terme englobant les enjeux marqués par une grande incertitude scientifique et un encadrement réglementaire inadapté aux nouvelles réalités, suscitant de fait un conflit politique hors du commun. Dans l'espoir de diminuer ces tensions et de générer un savoir consensuel, de nombreux gouvernements se tournent vers des institutions scientifiques ad hoc pour documenter l'élaboration des politiques et répondre aux préoccupations des partie-prenantes. Mais ces évaluations scientifiques permettent-elles réellement de créer une compréhension commune partagée par ces acteurs politiques polarisés? Alors que l'on pourrait croire que celles-ci génèrent un climat d'apprentissage collectif rassembleur, un environnement politique conflictuel rend l'apprentissage entre opposant extrêmement improbable. Ainsi, cette recherche documente le potentiel conciliateur des évaluation scientifique en utilisant le cas des gaz de schiste québécois (2010-2014). Ce faisant, elle mobilise la littérature sur les dimensions politiques du savoir et de la science afin de conceptualiser le rôle des évaluations scientifiques au sein d'une théorie de la médiation scientifique (scientific brokerage). Une analyse de réseau (SNA) des 5751 références contenues dans les documents déposés par 268 organisations participant aux consultations publiques de 2010 et 2014 constitue le corps de la démonstration empirique. Précisément, il y est démontré comment un médiateur scientifique peut rediriger le flux d'information afin de contrer l'incompatibilité entre apprentissage collectif et conflit politique. L'argument mobilise les mécanismes cognitifs traditionnellement présents dans la théorie des médiateurs de politique (policy broker), mais introduit aussi les jeux de pouvoir fondamentaux à la circulation de la connaissance entre acteurs politiques. Mots clés : médiation, évaluation scientifique, apprentissage collectif, élaboration des politiques publiques, conflit politique, analyse de réseau, sous-système, Exponential Random Graph Model Summary Biotechnology, climate change, natural resources, and ecosystem management are all representative of the “new politics of nature” (Hajer 2003), a term encompassing policy issues with high scientific uncertainties, unadapted regulatory regimes, and acute political conflict. In the hope of diminishing these tensions and generating a consensual understanding, several governments mandated ad hoc scientific institutions to document policymaking and answer stakeholder’s concerns. But do those scientific assessments really help to generate a shared understanding between otherwise polarized policy actors? While it would be possible that these create inclusive collective learning dynamics, policy learning has been shown as being extremely unlikely among competing policy actors. Accordingly, this research documents the conciliatory power of scientific assessments using the Quebec shale gas policymaking case (2010–2014). In doing so, it mobilizes the literature stressing the political nature of science to conceptualize scientific assessment in light of a scientific brokerage theory. Empirically, the research uses Social Network Analysis to unravel the collective learning dynamics found in two information networks built from the 5751 references found in the advocacy and technical documents published by 268 organizations during two public consultations. Precisely, findings demonstrate that scientific brokerage can redirect information flows to counteract the divide between collective learning and political conflict. The argument mobilizes cognitive mechanisms traditionally found in policy brokerage theory, but also introduces often forgotten power interplays prominent in policy-related knowledge diffusion. Keywords: brokerage, scientific assessment, collective learning, policymaking, policy, political conflict, social network analysis, subsystem, Exponential Random Graph Model Table of Contents List of Figures..........................................................................................................................................v List of Tables...........................................................................................................................................vi List of Abbreviations.............................................................................................................................vii Introduction.............................................................................................................................................1 I - An Important Inquiry...................................................................................................................................2 II - The Study in Theoretical Perspectives........................................................................................................4 III - Methodological Strategy...........................................................................................................................6 IV - Structure of the Thesis...............................................................................................................................8 Chapter 1: Theoretical Framework.......................................................................................................9 I - Understanding Policy-oriented Knowledge..................................................................................................9 Political Knowledge.....................................................................................................................................................10 A Review of Collective Learning..................................................................................................................................12 An Integrated Picture of Collective Learning..............................................................................................................21 II – A Network-based Approach to Collective Learning.................................................................................22 Coalitions and belief systems.......................................................................................................................................23 Other Actors..................................................................................................................................................................24 Expected Dynamics of Adversarial Subsystems...........................................................................................................26 III – Brokering a Crisis Recovery...................................................................................................................29 Delineating the Broker: A Definition............................................................................................................................29 How Brokerage Improves Policy Networks: The Functions........................................................................................32 How Brokers Reach Structural Holes: Acquiring Influence........................................................................................39 A Hypothesis.................................................................................................................................................................46 IV - Summary.................................................................................................................................................46 Chapter 2: Case and Methodology......................................................................................................48 I - The politics of shale gas.............................................................................................................................49 Scientific Controversies................................................................................................................................................49 From Science to Quebec Politics..................................................................................................................................53 From Events to Research Design..................................................................................................................................59 i II – Data..........................................................................................................................................................60 Relational Data: From References to Collaborative Dynamics...................................................................................61 III - Analytical Strategy: A Dual Investigation................................................................................................64 A Macro-Order Analysis...............................................................................................................................................64 A Micro Order of Analysis............................................................................................................................................69 IV - Conclusion..............................................................................................................................................73 Chapter 3: Results and Discussion......................................................................................................75 I - Improved Collective Learning....................................................................................................................75 II – Influential Brokerage...............................................................................................................................78 An Explanation: The Collaborative Core Thesis..........................................................................................................84 Inferential Modelling....................................................................................................................................................88 III - Discussion: Strengthening Brokerage Theory..........................................................................................92 Explaining the Collaborative Core...............................................................................................................................93 A Better Definition of Policy Brokers...........................................................................................................................95 The State of Information in Adversarial Policymaking................................................................................................97 IV - Conclusion..............................................................................................................................................99 Concluding Remarks...........................................................................................................................100 I - Addressing Limits and Their Consequences.............................................................................................101 Capturing Collective Learning...................................................................................................................................101 Network Construction.................................................................................................................................................103 ERGM Degeneracy.....................................................................................................................................................104 External Validity.........................................................................................................................................................105 II - Few Words on a Brokerage Research Agenda.........................................................................................106 Appendix A: SNA Statistics Details...................................................................................................108 Reciprocity...................................................................................................................................................108 Burt's constraint............................................................................................................................................108 Hubs and Authorities Algorithm...................................................................................................................109 Similarity Matrices.......................................................................................................................................109 Louvain algorithm........................................................................................................................................110 Closeness......................................................................................................................................................111 Local transitivity...........................................................................................................................................111 ii Exponential Random Graph Model...............................................................................................................111 Appendix B: Degeneracy and Goodness of-Fit.................................................................................112 MCMC Behaviour........................................................................................................................................112 Goodness-of-fit.............................................................................................................................................119 Appendix C: R codes...........................................................................................................................123 Bibliography........................................................................................................................................130 iii List of Figures Figure 1.1: A Comprehensive Framework of Collective Learning.........................................................14 Figure 1.2: Structural Holes of Policy Network......................................................................................34 Figure 1.3: Models of Trust-building......................................................................................................37 Figure 1.4: Structural Advantages of Brokers for Information Circulation............................................38 Figure 1.5: The Framework Applied to Information Networks and Scientific Brokerage......................44 Figure 2.1: Horizontal Fracturing and Shale Gas Extraction..................................................................51 Figure 2.2: Montly Coverage of Shale Gas in the Province of Quebec, 2010-14...................................54 Figure 2.3: Distribution of Policy Preferences........................................................................................56 Figure 2.4: Brokerage Types...................................................................................................................70 Figure 2.6: The Relation Between Authority Score, Hub score, and Brokerage....................................71 Figure 3.1: Distribution of Normalized Authority in 2011 and 2014......................................................77 Figure 3.2: Brokerage Count in 2011 and 2014......................................................................................79 Figure 3.3: Authority and Hub Scores.....................................................................................................82 Figure 3.4: Distribution of Organizational Affiliation by Information Community...............................83 Figure 3.5: Cumulative Authority of Information Sources by Community............................................87 Figure 4.1: MCMC Estimation Behaviour [1/3]...................................................................................113 Figure 4.2: MCMC Estimation Behaviour [2/3]...................................................................................114 Figure 4.3: MCMC Estimation Behaviour [3/3]...................................................................................115 Figure 5.1: In-degree Goodness-of-fit...................................................................................................119 Figure 5.2: Out-degree Goodness-of-fit................................................................................................120 Figure 5.3: Shared-partners Goodness-of-fit.........................................................................................121 Figure 5.4: Minimum Geodesic Distance Goodness-of-Fit..................................................................122 iv List of Tables Table I: Summary of the Macro-order Instruments.................................................................................69 Table II: Summary of the Micro-order Instruments................................................................................73 Table III: Summary of Collective Learning Dynamics...........................................................................76 Table IV: Collective Learning Dynamics in Assessment and Advocacy Subnetworks..........................85 Table V: ERGM Results..........................................................................................................................89 Table VI: Typical Cases Facilitating ERGM Interpretation....................................................................91 Table VII: General Estimation Information..........................................................................................116 Table VIII: Descriptive Statistics for Each Variable.............................................................................116 Table IX: Cross-correlation...................................................................................................................117 Table X: Auto-correlation......................................................................................................................118 v List of Abbreviations ACF Advocacy Coalition Framework BAPE Bureau d'audience publique sur l'environnment EES Évaluation environnementale stratégique ERGM Exponential Random Graph Model IPCC Intergovernmental Panel on Climate Change SNA Social Network Analysis vi Introduction Climate change mitigation, biotechnology, and ecosystem management are all representative of the “new politics of nature” (Hajer 2003). Characterized by an increasing complexity, they regularly exhibit an important degree of technicality, ambiguity, and uncertainty. Their scope goes well beyond the human one and possesses a multidimensional nature. Such peculiarities often lead to a broad range of individuals to involve in the policymaking process, each of them having their own—and most of the time incompatible— set of political preferences, worldviews, and interests. Those actors respective expertise are diverse and range from a user-gathered local knowledge to an impressive amount of scientific sophistication in a delimited field of inquiry. As a consequence, post-materialist issues such as those noted above are frequently entangled with acute political contention resulting from competing interests. From a governmental point of view, the new politics of nature poses important challenges to good management. The significant amount of complexity induces legitimacy and analytical capacity concerns, which in turn push governments toward a broader articulation of governance to achieve efficient problem solving. Such articulation of governance, however, falls outside traditional policymaking institutions. Indeed, issues of the new politics of nature transcend existing structures of governance and occur through what Hajer called the “institutional void”: “established institutional arrangements often lack the powers to deliver the required or requested policy results on their own [and, accordingly, policymaking takes] part in transnational, polycentric networks of governance in which power is dispersed” (2003, 175). In the absence of agreed rules, the polity becomes mostly informal and emerges as a consequence of deliberative policymaking instead of constraining it. Understood simultaneously, the interaction between (1) the need for a decentralized form of governance (2) high potential for political conflict, and (3) deliberative and poorly institutionalized 1 political arenas poses crucial political challenges to contemporary societies. To grasp those challenges, numerous societies rely on broad, open, and deliberative scientific assessments to document the issue at hand and give political actors a common understanding of a given phenomenon. However, insights from the new politics of nature suggest the probabilities of success are rather thin. As explained with greater details in the theoretical part of this research, political conflict, deliberation, and genuine collective learning make poor associates. Strong policy-related beliefs induce political confrontations, which in turn activate cognitive defence mechanisms further limiting the potential for constructive dialogue. Hence, understanding the processes by which societal debates become polarized and means of mitigating such outcome rises as a pressing and necessary research agenda. Assessing how information is created, how it circulates across policy actors, and why a particular argument is rejected or welcomed into an individual’s cognitive system constitutes a significant contribution to the new politics of nature. Specifically, this research contributes to this research agenda by investigating the capacity of scientific assessments to diminish political conflict: Can scientific assessments create a shared understanding between political actors operating in adversarial policymaking? I - An Important Inquiry While one should acknowledge that the authority of science and expertise in policymaking has been severely criticized in the literature to the point where some practitioners developed their own skepticism about their validity (Jasanoff and Wynne 1998), reasons are strong to believe that scientific knowledge remains central to policymaking and still holds a firm intellectual leverage and legitimacy-building potential. From an empirical perspective, science is frequently invoked on pragmatic grounds as the predominant technique to reduce uncertainty. Shale gas, which constitutes the empirical foundation of this research, remarkably illustrates such phenomenon. Heavily concerned by the environmental, social, and 2

Description:
Université de Montréal. An Enforced Cooperation: diverse and range from a user-gathered local knowledge to an impressive amount of scientific sophistication in a delimited field of collaborative management are not surefire strategies for limiting the influence of normative beliefs in steering t
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.