ebook img

Understanding Probability. Chance Rules in Everyday Life PDF

454 Pages·2007·3.19 MB·english
by  Tijms
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Understanding Probability. Chance Rules in Everyday Life

This page intentionally left blank UnderstandingProbability Chanceeventsarecommonplaceinourdailylives.Everydaywefacesituationswhere theresultisuncertain,and,perhapswithoutrealizingit,weguessaboutthelikelihood ofoneoutcomeoranother.Fortunately,masteringtheconceptsofprobabilitycancast newlightonsituationswhererandomnessandchanceappeartorule. InthisfullyrevisedsecondeditionofUnderstandingProbability,thereadercan learnabouttheworldofprobabilityinanappealingway.Theauthordemystifiesthe lawoflargenumbers,bettingsystems,randomwalks,thebootstrap,rareevents,the centrallimittheorem,theBayesianapproach,andmore. Thissecondeditionhaswidercoverage,moreexplanationsandexamplesand exercises,andanewchapterintroducingMarkovchains,makingitagreatchoicefora firstprobabilitycourse.Butitseasy-goingstylemakesitjustasvaluableifyouwantto learnaboutthesubjectonyourown,andhighschoolalgebraisreallyallthe mathematicalbackgroundyouneed. Henk Tijms isProfessorofOperationsResearchattheVrijeUniversityin Amsterdam.Theauthorofseveraltextbooks,includingAFirstCourseinStochastic Models,heisintensivelyactiveinthepopularizationofappliedmathematicsand probabilityinDutchhighschools.Hehasalsowrittennumerouspapersonapplied probabilityandstochasticoptimizationforinternationaljournals,includingApplied ProbabilityandProbabilityintheEngineeringandInformationalSciences. Understanding Probability Chance Rules in Everyday Life SecondEdition HENK TIJMS VrijeUniversity CAMBRIDGEUNIVERSITYPRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB28RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521701723 © H. Tijms 2007 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2007 ISBN-13 978-0-511-34626-2 eBook (Adobe Reader) ISBN-10 0-511-34626-3 eBook (Adobe Reader) ISBN-13 978-0-521-70172-3 paperback ISBN-10 0-521-70172-4 paperback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Preface pageix Introduction 1 PARTONE: PROBABILITYINACTION 9 1 Probabilityquestions 11 2 Thelawoflargenumbersandsimulation 17 2.1 Thelawoflargenumbersforprobabilities 18 2.2 Basicprobabilityconcepts 27 2.3 Expectedvalueandthelawoflargenumbers 32 2.4 Thedrunkard’swalk 37 2.5 TheSt.Petersburgparadox 39 2.6 Rouletteandthelawoflargenumbers 41 2.7 TheKellybettingsystem 44 2.8 Random-numbergenerator 50 2.9 Simulatingfromprobabilitydistributions 55 2.10 Problems 64 3 Probabilitiesineverydaylife 73 3.1 Thebirthdayproblem 74 3.2 Thecouponcollector’sproblem 79 3.3 Craps 82 3.4 Gamblingsystemsforroulette 86 3.5 The1970draftlottery 89 3.6 Bootstrapmethod 93 3.7 Problems 95 v vi Contents 4 Rareeventsandlotteries 103 4.1 Thebinomialdistribution 104 4.2 ThePoissondistribution 108 4.3 Thehypergeometricdistribution 125 4.4 Problems 134 5 Probabilityandstatistics 141 5.1 Thenormalcurve 143 5.2 Theconceptofstandarddeviation 151 5.3 Thesquare-rootlaw 159 5.4 Thecentrallimittheorem 160 5.5 Graphicalillustrationofthecentrallimit theorem 164 5.6 Statisticalapplications 166 5.7 Confidenceintervalsforsimulations 170 5.8 Thecentrallimittheoremandrandomwalks 177 5.9 FalsifieddataandBenford’slaw 191 5.10 Thenormaldistributionstrikesagain 196 5.11 Statisticsandprobabilitytheory 197 5.12 Problems 200 6 ChancetreesandBayes’rule 206 6.1 TheMontyHalldilemma 207 6.2 Thetestparadox 212 6.3 Problems 217 PARTTWO: ESSENTIALSOFPROBABILITY 221 7 Foundationsofprobabilitytheory 223 7.1 Probabilisticfoundations 223 7.2 Compoundchanceexperiments 231 7.3 Somebasicrules 235 8 ConditionalprobabilityandBayes 243 8.1 Conditionalprobability 243 8.2 Bayes’ruleinoddsform 251 8.3 Bayesianstatistics 256 9 Basicrulesfordiscreterandomvariables 263 9.1 Randomvariables 263 Contents vii 9.2 Expectedvalue 264 9.3 Expectedvalueofsumsofrandomvariables 268 9.4 Substitutionruleandvariance 270 9.5 Independenceofrandomvariables 275 9.6 Specialdiscretedistributions 279 10 Continuousrandomvariables 284 10.1 Conceptofprobabilitydensity 285 10.2 Importantprobabilitydensities 296 10.3 Transformationofrandomvariables 308 10.4 Failureratefunction 310 11 Jointlydistributedrandomvariables 313 11.1 Jointprobabilitydensities 313 11.2 Marginalprobabilitydensities 319 11.3 Transformationofrandomvariables 323 11.4 Covarianceandcorrelationcoefficient 327 12 Multivariatenormaldistribution 331 12.1 Bivariatenormaldistribution 331 12.2 Multivariatenormaldistribution 339 12.3 Multidimensionalcentrallimittheorem 342 12.4 Thechi-squaretest 348 13 Conditionaldistributions 352 13.1 Conditionalprobabilitydensities 352 13.2 Lawofconditionalprobabilities 356 13.3 Lawofconditionalexpectations 361 14 Generatingfunctions 367 14.1 Generatingfunctions 367 14.2 Moment-generatingfunctions 374 15 Markovchains 385 15.1 Markovmodel 386 15.2 TransientanalysisofMarkovchains 394 15.3 AbsorbingMarkovchains 398 15.4 Long-runanalysisofMarkovchains 404 viii Contents Appendix Countingmethodsandex 415 Recommendedreading 421 Answerstoodd-numberedproblems 422 Bibliography 437 Index 439

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.