ebook img

Understanding probability PDF

573 Pages·2012·3.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Understanding probability

UnderstandingProbability UnderstandingProbabilityisauniqueandstimulatingapproachtoafirstcoursein probability.Thefirstpartofthebookdemystifiesprobabilityandusesmanywonderful probabilityapplicationsfromeverydaylifetohelpthereaderdevelopafeelfor probabilities.Thesecondpart,coveringawiderangeoftopics,teachesclearlyand simplythebasicsofprobability. ThisfullyrevisedThirdEditionhasbeenpackedwithevenmoreexercisesand examples,anditincludesnewsectionsonBayesianinference,MarkovchainMonte Carlosimulation,hittingprobabilitiesinrandomwalksandBrownianmotion,anda newchapteroncontinuous-timeMarkovchainswithapplications.Hereyouwillfind allthematerialtaughtinanintroductoryprobabilitycourse.Thefirstpartofthebook, withitseasy-goingstyle,canbereadbyanybodywithareasonablebackgroundinhigh schoolmathematics.Thesecondpartofthebookrequiresabasiccourseincalculus. Henk Tijms isEmeritusProfessoratVrijeUniversityinAmsterdam.Heisthe authorofseveraltextbooksandnumerouspapersonappliedprobabilityandstochastic optimization.In2008HenkTijmsreceivedtheprestigiousINFORMSExpository WritingAwardforhispublicationsandbooks. Understanding Probability ThirdEdition HENK TIJMS VrijeUniversity,Amsterdam cambridge university press Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,Sa˜oPaulo,Delhi,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9781107658561 (cid:2)C H.Tijms2004,2007,2012 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2004 Secondedition2007 Thirdedition2012 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcatalogrecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloginginPublicationdata Tijms,H.C. Understandingprobability/HenkTijms.–3rded. p. cm. Includesbibliographicalreferencesandindex. ISBN978-1-107-65856-1(pbk.) 1.Probabilities. 2.Mathematicalanalysis. 3.Chance. I.Title. QA273.T48 2012 519.2–dc23 2012010536 ISBN978-1-107-65856-1Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Contents Preface pageix Introduction 1 PARTONE:PROBABILITYINACTION 9 1 Probabilityquestions 11 2 Lawoflargenumbersandsimulation 18 2.1 Lawoflargenumbersforprobabilities 19 2.2 Basicprobabilityconcepts 28 2.3 Expectedvalueandthelawoflargenumbers 34 2.4 Drunkard’swalk 38 2.5 St.Petersburgparadox 41 2.6 Rouletteandthelawoflargenumbers 44 2.7 Kellybettingsystem 46 2.8 Random-numbergenerator 52 2.9 Simulatingfromprobabilitydistributions 57 2.10 Problems 65 3 Probabilitiesineverydaylife 75 3.1 Birthdayproblem 76 3.2 Couponcollector’sproblem 83 3.3 Craps 86 3.4 Gamblingsystemsforroulette 90 3.5 Gambler’sruinproblem 93 3.6 Optimalstopping 95 v vi Contents 3.7 The1970draftlottery 98 3.8 Problems 102 4 Rareeventsandlotteries 108 4.1 Binomialdistribution 109 4.2 Poissondistribution 111 4.3 Hypergeometricdistribution 129 4.4 Problems 136 5 Probabilityandstatistics 142 5.1 Normalcurve 144 5.2 Conceptofstandarddeviation 152 5.3 Square-rootlaw 160 5.4 Centrallimittheorem 162 5.5 Graphicalillustrationofthecentrallimittheorem 166 5.6 Statisticalapplications 168 5.7 Confidenceintervalsforsimulations 171 5.8 Centrallimittheoremandrandomwalks 177 5.9 Brownianmotion 186 5.10 FalsifieddataandBenford’slaw 196 5.11 Normaldistributionstrikesagain 202 5.12 Statisticsandprobabilitytheory 203 5.13 Problems 206 6 ChancetreesandBayes’rule 212 6.1 MontyHalldilemma 213 6.2 Testparadox 218 6.3 Problems 222 PARTTWO:ESSENTIALSOFPROBABILITY 227 7 Foundationsofprobabilitytheory 229 7.1 Probabilisticfoundations 230 7.2 Compoundchanceexperiments 239 7.3 Somebasicrules 243 8 ConditionalprobabilityandBayes 256 8.1 Conditionalprobability 256 8.2 Lawofconditionalprobability 266 Contents vii 8.3 Bayes’ruleinoddsform 270 8.4 Bayesianstatistics−discretecase 278 9 Basicrulesfordiscreterandomvariables 283 9.1 Randomvariables 283 9.2 Expectedvalue 286 9.3 Expectedvalueofsumsofrandomvariables 290 9.4 Substitutionruleandvariance 293 9.5 Independenceofrandomvariables 299 9.6 Importantdiscreterandomvariables 303 10 Continuousrandomvariables 318 10.1 Conceptofprobabilitydensity 319 10.2 Expectedvalueofacontinuousrandom variable 326 10.3 Substitutionruleandthevariance 328 10.4 Importantprobabilitydensities 333 10.5 Transformationofrandomvariables 353 10.6 Failureratefunction 357 11 Jointlydistributedrandomvariables 360 11.1 Jointprobabilitymassfunction 360 11.2 Jointprobabilitydensityfunction 362 11.3 Marginalprobabilitydensities 367 11.4 Transformationofrandomvariables 374 11.5 Covarianceandcorrelationcoefficient 377 12 Multivariatenormaldistribution 382 12.1 Bivariatenormaldistribution 382 12.2 Multivariatenormaldistribution 391 12.3 Multidimensionalcentrallimittheorem 393 12.4 Chi-squaretest 399 13 Conditioningbyrandomvariables 404 13.1 Conditionaldistributions 404 13.2 Lawofconditionalprobabilityforrandomvariables 411 13.3 Lawofconditionalexpectation 418 13.4 Conditionalexpectationasacomputationaltool 422 13.5 Bayesianstatistics−continuouscase 428 viii Contents 14 Generatingfunctions 435 14.1 Generatingfunctions 435 14.2 Moment-generatingfunctions 443 14.3 Chernoffbound 448 14.4 Stronglawoflargenumbersrevisited 450 14.5 Centrallimittheoremrevisited 454 14.6 Lawoftheiteratedlogarithm 456 15 Discrete-timeMarkovchains 459 15.1 Markovchainmodel 460 15.2 Time-dependentanalysisofMarkovchains 468 15.3 AbsorbingMarkovchains 472 15.4 Long-runanalysisofMarkovchains 481 15.5 MarkovchainMonteCarlosimulation 490 16 Continuous-timeMarkovchains 507 16.1 Markovchainmodel 507 16.2 Time-dependentprobabilities 516 16.3 Limitingprobabilities 520 Appendix Countingmethodsandex 532 Recommendedreading 538 Answerstoodd-numberedproblems 539 Bibliography 556 Index 558 Preface Why do so many students find probability difficult? Could it be the way the subjectistaughtinsomanytextbooks?WhenIwasastudent,aclassintopology madeagreatimpressiononme.Theteacheraskedusnottotakenotesduring thefirsthourofhislectures.Inthathour,heexplainedideasandconceptsfrom topologyinanon-rigorous,intuitiveway.Allwehadtodowaslisteninorder tograsptheconceptsbeingintroduced.Inthesecondhourofthelecture,the materialfromthefirsthourwastreatedinamathematicallyrigorouswayand thestudentswereallowedtotakenotes.Ilearnedalotfromthisapproachof interweavingintuitionandformalmathematics. Thisbookiswrittenverymuchinthesamespirit.Itfirsthelpsyoudevelop a“feelforprobabilities”beforepresentingthemoreformalmathematics.The bookisnotwritteninatheorem–proofstyle.Instead,itaimstoteachthenovice theconceptsofprobabilitythroughtheuseofmotivatingandinsightfulexam- ples.Nomathematicsareintroducedwithoutspecificexamplesandapplications to motivate the theory. Instruction is driven by the need to answer questions aboutprobabilityproblemsthataredrawnfromreal-worldcontexts.Thebook isorganizedintotwoparts.PartOneisinformal,usingmanythought-provoking examplesandproblemsfromtherealworldtohelpthereaderunderstandwhat probabilityreallymeans.Probabilitycanbefunandengaging,butthisbeauti- fulbranchofmathematicsisalsoindispensabletomodernscience.Thebasic theoryofprobability–includingtopicsthatareusuallynotfoundinintroduc- toryprobabilitybooks–iscoveredinPartTwo.Designedforanintroductory probabilitycourse,thiscanbereadindependentlyofPartOne.Thebookcan be used in a variety of disciplines ranging from finance and engineering to mathematics and statistics. As well as for introductory courses, the book is alsosuitableforself-study.TheprerequisiteknowledgeforPartTwoisabasic course in calculus, but Part One can be read by anybody with a reasonable backgroundinhighschoolmathematics. This book distinguishes itself from other introductory probability texts by its emphasis on why probability works and how to apply it. Simulation in ix

Description:
Understanding Probability is a unique and stimulating approach to a first course in probability. The first part of the book demystifies probability and uses many wonderful probability applications from everyday life to help the reader develop a feel for probabilities. The second part, covering a wid
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.