PHYSICS RESEARCH AND TECHNOLOGY UNDERSTANDING PLANE WAVES No part of this digital document may be reproduced, stored in a retrieval system or transmitted in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. P R T HYSICS ESEARCH AND ECHNOLOGY Additional books and e-books in this series can be found on Nova’s website under the Series tab. PHYSICS RESEARCH AND TECHNOLOGY UNDERSTANDING PLANE WAVES WILLIAM A. COOPER EDITOR Copyright © 2020 by Nova Science Publishers, Inc. All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means: electronic, electrostatic, magnetic, tape, mechanical photocopying, recording or otherwise without the written permission of the Publisher. We have partnered with Copyright Clearance Center to make it easy for you to obtain permissions to reuse content from this publication. Simply navigate to this publication’s page on Nova’s website and locate the “Get Permission” button below the title description. This button is linked directly to the title’s permission page on copyright.com. Alternatively, you can visit copyright.com and search by title, ISBN, or ISSN. For further questions about using the service on copyright.com, please contact: Copyright Clearance Center Phone: +1-(978) 750-8400 Fax: +1-(978) 750-4470 E-mail: [email protected]. NOTICE TO THE READER The Publisher has taken reasonable care in the preparation of this book, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained in this book. The Publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or in part, from the readers’ use of, or reliance upon, this material. Any parts of this book based on government reports are so indicated and copyright is claimed for those parts to the extent applicable to compilations of such works. Independent verification should be sought for any data, advice or recommendations contained in this book. In addition, no responsibility is assumed by the Publisher for any injury and/or damage to persons or property arising from any methods, products, instructions, ideas or otherwise contained in this publication. This publication is designed to provide accurate and authoritative information with regard to the subject matter covered herein. It is sold with the clear understanding that the Publisher is not engaged in rendering legal or any other professional services. If legal or any other expert assistance is required, the services of a competent person should be sought. FROM A DECLARATION OF PARTICIPANTS JOINTLY ADOPTED BY A COMMITTEE OF THE AMERICAN BAR ASSOCIATION AND A COMMITTEE OF PUBLISHERS. Additional color graphics may be available in the e-book version of this book. Library of Congress Cataloging-in-Publication Data ISBN: (cid:28)(cid:26)(cid:27)(cid:16)(cid:20)(cid:16)(cid:24)(cid:22)(cid:25)(cid:20)(cid:25)(cid:16)(cid:27)(cid:21)(cid:21)(cid:16)(cid:27)(cid:3)(cid:11)(cid:72)(cid:69)(cid:82)(cid:82)(cid:78)(cid:12) Published by Nova Science Publishers, Inc. † New York CONTENTS Preface vii Chapter 1 Recent Progress in Acoustical Theory and Applications 1 Lin Fa and Meishan Zhao Chapter 2 Recent Development of an Acoustic Measurement System 113 Lin Fa and Meishan Zhao Chapter 3 Plane Nonlinear Elastic Waves: Approximate Approaches to Analysis of Evolution 147 Jeremiah Rushchitsky Chapter 4 Spacetime Symmetries and Interaction of Quantum Relativistic Particles with External Plane Wave Fields 203 H. K. Ould-Lahoucine Index 217 Related Nova Publications 221 PREFACE As a critical theoretical advance, Understanding Plane Waves discusses the acoustic Goos-Hänchen effect. The important applications of this effect are discussed, including plane wave propagating inside transversely isotropic elastic-solids, reflection/refraction at interface between two anisotropic rocks, and acoustical applications to petroleum logging and seismic exploration. Next, the authors explore a newly developed acoustic-measurement system with emphasis on measurement process and recent improvements that make an acoustic-measurement more accurate. Three approaches which are used to analyze the evolution of the plane longitudinal and transverse waves that are propagated in a nonlinear hyperelastic medium are discussed: the method of successive approximations, the method of slowly varying amplitudes and the method of restriction on the displacement gradient. Lastly, the subject of relativistic quantum particles interacting with classical plane wave fields is examined from the standpoint of space-time symmetries which have been found to be encoded in the solutions of relativistic equations. Chapter 1 - Studies of plane wave propagating inside applied media have been central to the development of our understanding of acoustics, so as to the development of applied technologies. It was understood from the viii William A. Cooper beginning of these studies that a detailed description of plane wave propagating inside anisotropic media is extremely important. Recent research progress in this aspect has attracted the attention of scientists from both the physical sciences and the biological sciences divisions. In this chapter, the authors begin with introducing some basic but important concepts of plane wave propagating inside isotropic/anisotropic media, including electric-acoustic conversions, elliptical-polarization states, anisotropy effect on time-depth relation, and more. As a critical theoretical advance, the authors will discuss the acoustic Goos-Hänchen effect. The important applications will be discussed, including plane wave propagating inside transversely isotropic elastic-solids, reflection/refraction at the interface between two anisotropic rocks, and acoustical application to petroleum logging and seismic exploration, e.g., slim-hole acoustic- logging tool, conversions of acoustic logging signal, as well as seismic signal and data analysis. The authors end the chapter with some concluding remarks and speculations. Chapter 2 - The authors discuss a newly developed acoustic- measurement system with emphasis on measurement process and recent improvements that make an acoustic-measurement more accurate. This system is based on a model electric-acoustic transmission-network which consists of a series of parallel-connected equivalent-circuits. For acoustic- transducers, the authors place special emphasis on the importance of the contribution from each individual frequency component of an excitation signal, the propagation medium, and the cumulative signal-output from transducer’s mechanic/electric terminals. The system has been tested for realistic acoustic transmission. Based on the results of the measurement, the authors conclude that this system is easy to operate, user friendly, and highly accurate. Chapter 3 - Three approaches (methods) are used to analyze the evolution of the plane longitudinal and transverse waves that are propagated in a nonlinear hyperelastic medium - method of successive approximations,methodofslowlyvaryingamplitudes, method of restriction on the displacement gradient. The evolution is understood in thestandard forphysicsmeaning: thewavewithsomegiveninitialprofile(harmonic or Preface ix solitary) evolves, that is, changes this profile. The term “the profile is distorted” is used sometimes too. Themedium of propagation is described by the well-known in nonlinear mechanics of materials five-constant Murnaghan model. First, the noted methods are described briefly as applied to the wave propagation problems. Further, the longitudinal and transverse plane waves are analyzed separately. The point is that the Murnaghan model describes the longitudinal wave by the quadratic nonlinear wave equation, whereas the transverse wave – by the cubic nonlinear wave equation. Ten variants (known and new = published and unpublished) for the longitudinal wave and four variants for the transverse wave (known and new = published and unpublished) of an approximate analysis are described and commented on. It is shown that each variant provides an answer on a certain aspect in the initial wave profile evolution study. A statement of some variants is accompanied by the 2Dand 3D pictures.Anattention is drawn tothefeatures of the evolutionprocess as well as to similarities and differences in the results obtained. Chapter 4 - The subject of relativistic quantum particles interacting with classical plane wave fields is examined from the standpoint of the space-time symmetries which have been found to be encoded in the solutions of relativistic equations. Principally, it is shown how the elements of the proper Lorentz group come into play as a basic ingredient to get the solution of the Dirac equation under the form of variable transformations acting on the free-field solution. Subsequently, this underlying Lorentz structure is also found in the full solutions of spin 1 particles in interaction with classical plane wave fields by mean of a local gauge, a Lorentz and displacement transformations (ULT) acting as variable transformations on the free-field. On the other hand, considering the role played by the relativistic Green function as a fundamental object in the description of several scattering processes in quantum electrodynamics (QED) involved with the electromagnetic plane waves, an exhaustive review is done of the different approaches devoted to its derivation including the algebraic methods, path integrals and worldline formalisms.