ebook img

Understanding Markov chains. Examples and applications PDF

379 Pages·2018·2.842 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Understanding Markov chains. Examples and applications

Springer Undergraduate Mathematics Series Nicolas Privault Understanding Markov Chains Examples and Applications Second Edition Springer Undergraduate Mathematics Series Advisory Board M. A. J. Chaplain, University of St. Andrews A. MacIntyre, Queen Mary University of London S. Scott, King’s College London N. Snashall, University of Leicester E. Süli, University of Oxford M. R. Tehranchi, University of Cambridge J. F. Toland, University of Bath More information about this series at http://www.springer.com/series/3423 Nicolas Privault Understanding Markov Chains Examples and Applications Second Edition 123 NicolasPrivault Schoolof Physical andMathematical Sciences NanyangTechnological University Singapore Singapore Additional material tothis bookcanbedownloaded from http://extras.springer.com. ISSN 1615-2085 ISSN 2197-4144 (electronic) SpringerUndergraduate MathematicsSeries ISBN978-981-13-0658-7 ISBN978-981-13-0659-4 (eBook) https://doi.org/10.1007/978-981-13-0659-4 LibraryofCongressControlNumber:2018942179 MathematicsSubjectClassification(2010): 60J10,60J27,60J28,60J20 1stedition:©SpringerScience+BusinessMediaSingapore2013 2ndedition:©SpringerNatureSingaporePteLtd.2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721, Singapore Preface Stochastic and Markovian modeling are of importance to many areas of science including physics, biology, engineering, as well as economics, finance, and social sciences. This text is an undergraduate-level introduction to the Markovian mod- eling of time-dependent randomness in discrete and continuous time, mostly on discrete state spaces, with an emphasis on the understanding of concepts by examplesandelementaryderivations.Thissecondeditionincludesarevisionofthe main course content of the first edition, with additional illustrations and applica- tions.Inparticular,theexercisesectionshavebeenconsiderableexpandedandnow contain 138 exercises and 11 longer problems. Thebookismostlyself-containedexceptforitsmainprerequisites,whichconsist in a knowledge of basic probabilistic concepts. This includes random variables, discrete distributions (essentially binomial, geometric, and Poisson), continuous distributions (Gaussian and gamma), and their probability density functions, expectation, independence, and conditional probabilities, some of which are recalled in the first chapter. Such basic topics can be regarded as belonging to the fieldof“static”probability,i.e.,probabilitywithouttimedependence,asopposedto the contents of this text which is dealing with random evolution over time. Our treatment of time-dependent randomness revolves around the important technique of first-step analysis for random walks, branching processes, and more generallyforMarkovchainsindiscreteandcontinuoustime,withapplicationtothe computation of ruin probabilities and mean hitting times. In addition to the treat- mentofMarkovchains,abriefintroductiontomartingalesisgivenindiscretetime. Thisprovidesadifferent way torecover thecomputations of ruinprobabilities and meanhittingtimeswhichhavebeenpresentedintheMarkovianframework.Spatial Poissonprocessesonabstractspacesarealsoconsideredwithoutanytimeordering. TherealreadyexistmanytextbooksonstochasticprocessesandMarkovchains, including [BN96, Çin75, Dur99, GS01, JS01, KT81, Med10, Nor98, Ros96, Ste01].Incomparisonwiththeexistingliterature,whichissometimesdealingwith structural properties of stochastic processes via a more compact and abstract treatment,thepresentbooktendstoemphasizeelementaryandexplicitcalculations v vi Preface insteadofquickerargumentsthatmayshortenthepathtothesolution,whilebeing sometimes difficult to reproduce by undergraduate students. Some of the exercises have been influenced by [Çin75, JS01, KT81, Med10, Ros96] and other references, while a number of them are original, and their solu- tions have been derived independently. The problems, which are longer than the exercises, are based on various topics of application. This second edition only contains the answers to selected exercises, and the remaining solutions can be downloadedinasolutionmanualavailablefromthepublisher’sWebsite,together with Python and R codes. This text is also illustrated by 41 figures. Some theorems whose proofs are technical, as in Chaps. 7 and 9, have been quoted from [BN96, KT81]. The contents of this book have benefited from numerous questions, comments, and suggestions from undergraduate students in StochasticProcessesattheNanyangTechnologicalUniversity(NTU)inSingapore. Singapore, Singapore Nicolas Privault March 2018 Contents 1 Probability Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Probability Spaces and Events. . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Probability Measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Conditional Probabilities and Independence . . . . . . . . . . . . . . . 6 1.4 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 Probability Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.6 Expectation of Random Variables . . . . . . . . . . . . . . . . . . . . . . 17 1.7 Moment and Probability Generating Functions . . . . . . . . . . . . . 30 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2 Gambling Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.1 Constrained Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2 Ruin Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.3 Mean Game Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3 Random Walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.1 Unrestricted Random Walk . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2 Mean and Variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.3 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.4 First Return to Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4 Discrete-Time Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.1 Markov Property. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.2 Transition Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.3 Examples of Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.4 Higher-Order Transition Probabilities. . . . . . . . . . . . . . . . . . . . 98 4.5 The Two-State Discrete-Time Markov Chain . . . . . . . . . . . . . . 101 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 vii viii Contents 5 First Step Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.1 Hitting Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.2 Mean Hitting and Absorption Times . . . . . . . . . . . . . . . . . . . . 121 5.3 First Return Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.4 Mean Number of Returns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6 Classification of States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.1 Communicating States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.2 Recurrent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 6.3 Transient States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.4 Positive Versus Null Recurrence . . . . . . . . . . . . . . . . . . . . . . . 156 6.5 Periodicity and Aperiodicity . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 7 Long-Run Behavior of Markov Chains. . . . . . . . . . . . . . . . . . . . . . 163 7.1 Limiting Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 7.2 Stationary Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 7.3 Markov Chain Monte Carlo. . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 8 Branching Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 8.1 Construction and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 8.2 Probability Generating Functions . . . . . . . . . . . . . . . . . . . . . . . 192 8.3 Extinction Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 9 Continuous-Time Markov Chains. . . . . . . . . . . . . . . . . . . . . . . . . . 211 9.1 The Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 9.2 Continuous-Time Markov Chains. . . . . . . . . . . . . . . . . . . . . . . 217 9.3 Transition Semigroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 9.4 Infinitesimal Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 9.5 The Two-State Continuous-Time Markov Chain. . . . . . . . . . . . 235 9.6 Limiting and Stationary Distributions. . . . . . . . . . . . . . . . . . . . 240 9.7 The Discrete-Time Embedded Chain . . . . . . . . . . . . . . . . . . . . 247 9.8 Mean Absorption Time and Probabilities . . . . . . . . . . . . . . . . . 252 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 10 Discrete-Time Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 10.1 Filtrations and Conditional Expectations. . . . . . . . . . . . . . . . . . 263 10.2 Martingales - Definition and Properties . . . . . . . . . . . . . . . . . . 265 10.3 Stopping Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 10.4 Ruin Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 10.5 Mean Game Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 Contents ix 11 Spatial Poisson Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 11.1 Spatial Poisson (1781–1840) Processes . . . . . . . . . . . . . . . . . . 281 11.2 Poisson Stochastic Integrals. . . . . . . . . . . . . . . . . . . . . . . . . . . 283 11.3 Transformations of Poisson Measures . . . . . . . . . . . . . . . . . . . 285 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 12 Reliability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 12.1 Survival Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 12.2 Poisson Process with Time-Dependent Intensity . . . . . . . . . . . . 291 12.3 Mean Time to Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 Exercise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 Appendix A: Some Useful Identities .... .... .... .... .... ..... .... 295 Appendix B: Solutions to Selected Exercises and Problems.. ..... .... 297 References.... .... .... .... ..... .... .... .... .... .... ..... .... 363 Subject Index.. .... .... .... ..... .... .... .... .... .... ..... .... 365 Author Index.. .... .... .... ..... .... .... .... .... .... ..... .... 371

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.